mirror of https://github.com/coqui-ai/TTS.git
Fixup
This commit is contained in:
parent
15fb20c7c0
commit
7eceead0d7
|
@ -22,42 +22,42 @@ d_vectors_file_pth_path = os.path.join(get_tests_input_path(), "../data/dummy_sp
|
|||
class SpeakerManagerTest(unittest.TestCase):
|
||||
"""Test SpeakerManager for loading embedding files and computing d_vectors from waveforms"""
|
||||
|
||||
# @staticmethod
|
||||
# def test_speaker_embedding():
|
||||
# # load config
|
||||
# config = load_config(encoder_config_path)
|
||||
# config.audio.resample = True
|
||||
@staticmethod
|
||||
def test_speaker_embedding():
|
||||
# load config
|
||||
config = load_config(encoder_config_path)
|
||||
config.audio.resample = True
|
||||
|
||||
# # create a dummy speaker encoder
|
||||
# model = setup_encoder_model(config)
|
||||
# save_checkpoint(model, None, None, get_tests_input_path(), 0)
|
||||
# create a dummy speaker encoder
|
||||
model = setup_encoder_model(config)
|
||||
save_checkpoint(model, None, None, get_tests_input_path(), 0)
|
||||
|
||||
# # load audio processor and speaker encoder
|
||||
# ap = AudioProcessor(**config.audio)
|
||||
# manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path)
|
||||
# load audio processor and speaker encoder
|
||||
ap = AudioProcessor(**config.audio)
|
||||
manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path)
|
||||
|
||||
# # load a sample audio and compute embedding
|
||||
# waveform = ap.load_wav(sample_wav_path)
|
||||
# mel = ap.melspectrogram(waveform)
|
||||
# d_vector = manager.compute_embeddings(mel)
|
||||
# assert d_vector.shape[1] == 256
|
||||
# load a sample audio and compute embedding
|
||||
waveform = ap.load_wav(sample_wav_path)
|
||||
mel = ap.melspectrogram(waveform)
|
||||
d_vector = manager.compute_embeddings(mel)
|
||||
assert d_vector.shape[1] == 256
|
||||
|
||||
# # compute d_vector directly from an input file
|
||||
# d_vector = manager.compute_embedding_from_clip(sample_wav_path)
|
||||
# d_vector2 = manager.compute_embedding_from_clip(sample_wav_path)
|
||||
# d_vector = torch.FloatTensor(d_vector)
|
||||
# d_vector2 = torch.FloatTensor(d_vector2)
|
||||
# assert d_vector.shape[0] == 256
|
||||
# assert (d_vector - d_vector2).sum() == 0.0
|
||||
# compute d_vector directly from an input file
|
||||
d_vector = manager.compute_embedding_from_clip(sample_wav_path)
|
||||
d_vector2 = manager.compute_embedding_from_clip(sample_wav_path)
|
||||
d_vector = torch.FloatTensor(d_vector)
|
||||
d_vector2 = torch.FloatTensor(d_vector2)
|
||||
assert d_vector.shape[0] == 256
|
||||
assert (d_vector - d_vector2).sum() == 0.0
|
||||
|
||||
# # compute d_vector from a list of wav files.
|
||||
# d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2])
|
||||
# d_vector3 = torch.FloatTensor(d_vector3)
|
||||
# assert d_vector3.shape[0] == 256
|
||||
# assert (d_vector - d_vector3).sum() != 0.0
|
||||
# compute d_vector from a list of wav files.
|
||||
d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2])
|
||||
d_vector3 = torch.FloatTensor(d_vector3)
|
||||
assert d_vector3.shape[0] == 256
|
||||
assert (d_vector - d_vector3).sum() != 0.0
|
||||
|
||||
# # remove dummy model
|
||||
# os.remove(encoder_model_path)
|
||||
# remove dummy model
|
||||
os.remove(encoder_model_path)
|
||||
|
||||
def test_speakers_file_processing(self):
|
||||
manager = SpeakerManager(d_vectors_file_path=d_vectors_file_path)
|
||||
|
|
Loading…
Reference in New Issue