Add notebook to extract spectrograms from trained TTS model

This commit is contained in:
Eren Golge 2019-04-12 16:14:38 +02:00
parent 7d3d825904
commit 824c09120b
1 changed files with 274 additions and 0 deletions

View File

@ -0,0 +1,274 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is a notebook to generate mel-spectrograms from a TTS model to be used for WaveRNN training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TTS_PATH = \"/home/erogol/projects/\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.append(TTS_PATH)\n",
"import torch\n",
"import importlib\n",
"import numpy as np\n",
"from tqdm import tqdm as tqdm\n",
"from torch.utils.data import DataLoader\n",
"from TTS.models.tacotron2 import Tacotron2\n",
"from TTS.datasets.TTSDataset import MyDataset\n",
"from TTS.utils.audio import AudioProcessor\n",
"from TTS.utils.visual import plot_spectrogram\n",
"from TTS.utils.generic_utils import load_config\n",
"from TTS.datasets.preprocess import ljspeech\n",
"%matplotlib inline\n",
"\n",
"import os\n",
"os.environ['CUDA_VISIBLE_DEVICES']='0'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def set_filename(wav_path, out_path):\n",
" wav_file = os.path.basename(wav_path)\n",
" file_name = wav_file.split('.')[0]\n",
" os.makedirs(os.path.join(out_path, \"quant\"), exist_ok=True)\n",
" os.makedirs(os.path.join(out_path, \"mel\"), exist_ok=True)\n",
" os.makedirs(os.path.join(out_path, \"wav_gl\"), exist_ok=True)\n",
" wavq_path = os.path.join(out_path, \"quant\", file_name)\n",
" mel_path = os.path.join(out_path, \"mel\", file_name)\n",
" wav_path = os.path.join(out_path, \"wav_gl\", file_name)\n",
" return file_name, wavq_path, mel_path, wav_path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"OUT_PATH = \"/home/erogol/Data/LJSpeech-1.1/wavernn_4152/\"\n",
"DATA_PATH = \"/home/erogol/Data/LJSpeech-1.1/\"\n",
"METADATA_FILE = \"metadata_train.csv\"\n",
"CONFIG_PATH = \"/media/erogol/data_ssd/Data/models/ljspeech_models/4258_nancy/config.json\"\n",
"MODEL_FILE = \"/home/erogol/checkpoint_92000.pth.tar\"\n",
"DRY_RUN = True # if False, does not generate output files, only computes loss and visuals.\n",
"BATCH_SIZE = 16\n",
"\n",
"use_cuda = torch.cuda.is_available()\n",
"\n",
"C = load_config(CONFIG_PATH)\n",
"ap = AudioProcessor(bits=9, **C.audio)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = MyDataset(DATA_PATH, METADATA_FILE, C.r, C.text_cleaner, ap, ljspeech, use_phonemes=C.use_phonemes, phoneme_cache_path=C.phoneme_cache_path)\n",
"loader = DataLoader(dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from utils.text.symbols import symbols, phonemes\n",
"from utils.generic_utils import sequence_mask\n",
"from layers.losses import L1LossMasked\n",
"# load the model\n",
"MyModel = importlib.import_module('TTS.models.'+C.model.lower())\n",
"MyModel = getattr(MyModel, C.model)\n",
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
"model = MyModel(num_chars, C.r, attn_win=False)\n",
"checkpoint = torch.load(MODEL_FILE)\n",
"model.load_state_dict(checkpoint['model'])\n",
"print(checkpoint['step'])\n",
"model.eval()\n",
"if use_cuda:\n",
" model = model.cuda()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate model outputs "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"file_idxs = []\n",
"losses = []\n",
"postnet_losses = []\n",
"criterion = L1LossMasked()\n",
"for data in tqdm(loader):\n",
" # setup input data\n",
" text_input = data[0]\n",
" text_lengths = data[1]\n",
" linear_input = data[2]\n",
" mel_input = data[3]\n",
" mel_lengths = data[4]\n",
" stop_targets = data[5]\n",
" item_idx = data[6]\n",
" \n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
"# linear_input = linear_input.cuda()\n",
" stop_targets = stop_targets.cuda()\n",
" \n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, mel_postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input, mask)\n",
" \n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(mel_postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
"\n",
" # quantize and save wav\n",
" wavq = ap.quantize(wav)\n",
" np.save(wavq_path, wavq)\n",
"\n",
" # save TTS mel\n",
" mel = mel_postnet_outputs[idx]\n",
" mel = mel.data.cpu().numpy()\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
"\n",
" # save GL voice\n",
" # wav_gen = ap.inv_mel_spectrogram(mel.T) # mel to wav\n",
" # wav_gen = ap.quantize(wav_gen)\n",
" # np.save(wav_path, wav_gen)\n",
"\n",
"if not DRY_RUN:\n",
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
" \n",
"\n",
"print(np.mean(losses))\n",
"print(np.mean(postnet_losses))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check model performance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"idx = 1\n",
"mel_example = mel_postnet_outputs[idx].data.cpu().numpy()\n",
"plot_spectrogram(mel_example[:mel_lengths[idx], :], ap);\n",
"print(mel_example[:mel_lengths[1], :].shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wav = ap.load_wav(item_idx[idx])\n",
"melt = ap.melspectrogram(wav)\n",
"print(melt.shape)\n",
"plot_spectrogram(melt.T, ap);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pylab as plt\n",
"mel_diff = mel_outputs[idx] - mel_postnet_outputs[idx]\n",
"plt.figure(figsize=(16, 10))\n",
"plt.imshow(abs(mel_diff.detach().cpu().numpy()[:mel_lengths[idx],:]).T,aspect=\"auto\", origin=\"lower\");\n",
"plt.colorbar()\n",
"plt.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pylab as plt\n",
"# mel = mel_poutputs[idx].detach().cpu().numpy()\n",
"mel = mel_postnet_outputs[idx].detach().cpu().numpy()\n",
"mel_diff2 = melt.T - mel[:melt.shape[1]]\n",
"plt.figure(figsize=(16, 10))\n",
"plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n",
"plt.colorbar()\n",
"plt.tight_layout()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}