mirror of https://github.com/coqui-ai/TTS.git
Add notebook to extract spectrograms from trained TTS model
This commit is contained in:
parent
7d3d825904
commit
824c09120b
|
@ -0,0 +1,274 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This is a notebook to generate mel-spectrograms from a TTS model to be used for WaveRNN training."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"TTS_PATH = \"/home/erogol/projects/\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"sys.path.append(TTS_PATH)\n",
|
||||
"import torch\n",
|
||||
"import importlib\n",
|
||||
"import numpy as np\n",
|
||||
"from tqdm import tqdm as tqdm\n",
|
||||
"from torch.utils.data import DataLoader\n",
|
||||
"from TTS.models.tacotron2 import Tacotron2\n",
|
||||
"from TTS.datasets.TTSDataset import MyDataset\n",
|
||||
"from TTS.utils.audio import AudioProcessor\n",
|
||||
"from TTS.utils.visual import plot_spectrogram\n",
|
||||
"from TTS.utils.generic_utils import load_config\n",
|
||||
"from TTS.datasets.preprocess import ljspeech\n",
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"os.environ['CUDA_VISIBLE_DEVICES']='0'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def set_filename(wav_path, out_path):\n",
|
||||
" wav_file = os.path.basename(wav_path)\n",
|
||||
" file_name = wav_file.split('.')[0]\n",
|
||||
" os.makedirs(os.path.join(out_path, \"quant\"), exist_ok=True)\n",
|
||||
" os.makedirs(os.path.join(out_path, \"mel\"), exist_ok=True)\n",
|
||||
" os.makedirs(os.path.join(out_path, \"wav_gl\"), exist_ok=True)\n",
|
||||
" wavq_path = os.path.join(out_path, \"quant\", file_name)\n",
|
||||
" mel_path = os.path.join(out_path, \"mel\", file_name)\n",
|
||||
" wav_path = os.path.join(out_path, \"wav_gl\", file_name)\n",
|
||||
" return file_name, wavq_path, mel_path, wav_path"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"OUT_PATH = \"/home/erogol/Data/LJSpeech-1.1/wavernn_4152/\"\n",
|
||||
"DATA_PATH = \"/home/erogol/Data/LJSpeech-1.1/\"\n",
|
||||
"METADATA_FILE = \"metadata_train.csv\"\n",
|
||||
"CONFIG_PATH = \"/media/erogol/data_ssd/Data/models/ljspeech_models/4258_nancy/config.json\"\n",
|
||||
"MODEL_FILE = \"/home/erogol/checkpoint_92000.pth.tar\"\n",
|
||||
"DRY_RUN = True # if False, does not generate output files, only computes loss and visuals.\n",
|
||||
"BATCH_SIZE = 16\n",
|
||||
"\n",
|
||||
"use_cuda = torch.cuda.is_available()\n",
|
||||
"\n",
|
||||
"C = load_config(CONFIG_PATH)\n",
|
||||
"ap = AudioProcessor(bits=9, **C.audio)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dataset = MyDataset(DATA_PATH, METADATA_FILE, C.r, C.text_cleaner, ap, ljspeech, use_phonemes=C.use_phonemes, phoneme_cache_path=C.phoneme_cache_path)\n",
|
||||
"loader = DataLoader(dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from utils.text.symbols import symbols, phonemes\n",
|
||||
"from utils.generic_utils import sequence_mask\n",
|
||||
"from layers.losses import L1LossMasked\n",
|
||||
"# load the model\n",
|
||||
"MyModel = importlib.import_module('TTS.models.'+C.model.lower())\n",
|
||||
"MyModel = getattr(MyModel, C.model)\n",
|
||||
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
|
||||
"model = MyModel(num_chars, C.r, attn_win=False)\n",
|
||||
"checkpoint = torch.load(MODEL_FILE)\n",
|
||||
"model.load_state_dict(checkpoint['model'])\n",
|
||||
"print(checkpoint['step'])\n",
|
||||
"model.eval()\n",
|
||||
"if use_cuda:\n",
|
||||
" model = model.cuda()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generate model outputs "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pickle\n",
|
||||
"\n",
|
||||
"file_idxs = []\n",
|
||||
"losses = []\n",
|
||||
"postnet_losses = []\n",
|
||||
"criterion = L1LossMasked()\n",
|
||||
"for data in tqdm(loader):\n",
|
||||
" # setup input data\n",
|
||||
" text_input = data[0]\n",
|
||||
" text_lengths = data[1]\n",
|
||||
" linear_input = data[2]\n",
|
||||
" mel_input = data[3]\n",
|
||||
" mel_lengths = data[4]\n",
|
||||
" stop_targets = data[5]\n",
|
||||
" item_idx = data[6]\n",
|
||||
" \n",
|
||||
" # dispatch data to GPU\n",
|
||||
" if use_cuda:\n",
|
||||
" text_input = text_input.cuda()\n",
|
||||
" text_lengths = text_lengths.cuda()\n",
|
||||
" mel_input = mel_input.cuda()\n",
|
||||
" mel_lengths = mel_lengths.cuda()\n",
|
||||
"# linear_input = linear_input.cuda()\n",
|
||||
" stop_targets = stop_targets.cuda()\n",
|
||||
" \n",
|
||||
" mask = sequence_mask(text_lengths)\n",
|
||||
" mel_outputs, mel_postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input, mask)\n",
|
||||
" \n",
|
||||
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
|
||||
" loss_postnet = criterion(mel_postnet_outputs, mel_input, mel_lengths)\n",
|
||||
" losses.append(loss.item())\n",
|
||||
" postnet_losses.append(loss_postnet.item())\n",
|
||||
" if not DRY_RUN:\n",
|
||||
" for idx in range(text_input.shape[0]):\n",
|
||||
" wav_file_path = item_idx[idx]\n",
|
||||
" wav = ap.load_wav(wav_file_path)\n",
|
||||
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
|
||||
" file_idxs.append(file_name)\n",
|
||||
"\n",
|
||||
" # quantize and save wav\n",
|
||||
" wavq = ap.quantize(wav)\n",
|
||||
" np.save(wavq_path, wavq)\n",
|
||||
"\n",
|
||||
" # save TTS mel\n",
|
||||
" mel = mel_postnet_outputs[idx]\n",
|
||||
" mel = mel.data.cpu().numpy()\n",
|
||||
" mel_length = mel_lengths[idx]\n",
|
||||
" mel = mel[:mel_length, :].T\n",
|
||||
" np.save(mel_path, mel)\n",
|
||||
"\n",
|
||||
" # save GL voice\n",
|
||||
" # wav_gen = ap.inv_mel_spectrogram(mel.T) # mel to wav\n",
|
||||
" # wav_gen = ap.quantize(wav_gen)\n",
|
||||
" # np.save(wav_path, wav_gen)\n",
|
||||
"\n",
|
||||
"if not DRY_RUN:\n",
|
||||
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
|
||||
" \n",
|
||||
"\n",
|
||||
"print(np.mean(losses))\n",
|
||||
"print(np.mean(postnet_losses))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Check model performance"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"idx = 1\n",
|
||||
"mel_example = mel_postnet_outputs[idx].data.cpu().numpy()\n",
|
||||
"plot_spectrogram(mel_example[:mel_lengths[idx], :], ap);\n",
|
||||
"print(mel_example[:mel_lengths[1], :].shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"wav = ap.load_wav(item_idx[idx])\n",
|
||||
"melt = ap.melspectrogram(wav)\n",
|
||||
"print(melt.shape)\n",
|
||||
"plot_spectrogram(melt.T, ap);"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib import pylab as plt\n",
|
||||
"mel_diff = mel_outputs[idx] - mel_postnet_outputs[idx]\n",
|
||||
"plt.figure(figsize=(16, 10))\n",
|
||||
"plt.imshow(abs(mel_diff.detach().cpu().numpy()[:mel_lengths[idx],:]).T,aspect=\"auto\", origin=\"lower\");\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.tight_layout()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib import pylab as plt\n",
|
||||
"# mel = mel_poutputs[idx].detach().cpu().numpy()\n",
|
||||
"mel = mel_postnet_outputs[idx].detach().cpu().numpy()\n",
|
||||
"mel_diff2 = melt.T - mel[:melt.shape[1]]\n",
|
||||
"plt.figure(figsize=(16, 10))\n",
|
||||
"plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.tight_layout()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Reference in New Issue