mirror of https://github.com/coqui-ai/TTS.git
config remove empty chars
This commit is contained in:
parent
b3ec50b5c4
commit
84c5c4a587
30
config.json
30
config.json
|
@ -1,5 +1,5 @@
|
||||||
{
|
{
|
||||||
"model": "Tacotron2",
|
"model": "Tacotron2",
|
||||||
"run_name": "ljspeech",
|
"run_name": "ljspeech",
|
||||||
"run_description": "tacotron2",
|
"run_description": "tacotron2",
|
||||||
|
|
||||||
|
@ -11,12 +11,12 @@
|
||||||
"hop_length": 256, // stft window hop-lengh in ms.
|
"hop_length": 256, // stft window hop-lengh in ms.
|
||||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||||
|
|
||||||
// Audio processing parameters
|
// Audio processing parameters
|
||||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||||
|
|
||||||
// Silence trimming
|
// Silence trimming
|
||||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||||
|
@ -26,7 +26,7 @@
|
||||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||||
|
|
||||||
// MelSpectrogram parameters
|
// MelSpectrogram parameters
|
||||||
"num_mels": 80, // size of the mel spec frame.
|
"num_mels": 80, // size of the mel spec frame.
|
||||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||||
|
|
||||||
|
@ -50,7 +50,7 @@
|
||||||
// "punctuations":"!'(),-.:;? ",
|
// "punctuations":"!'(),-.:;? ",
|
||||||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||||||
// },
|
// },
|
||||||
|
|
||||||
// DISTRIBUTED TRAINING
|
// DISTRIBUTED TRAINING
|
||||||
"distributed":{
|
"distributed":{
|
||||||
"backend": "nccl",
|
"backend": "nccl",
|
||||||
|
@ -61,8 +61,8 @@
|
||||||
|
|
||||||
// TRAINING
|
// TRAINING
|
||||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||||
"eval_batch_size":16,
|
"eval_batch_size":16,
|
||||||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||||||
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||||
"ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
"ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||||
|
@ -80,11 +80,11 @@
|
||||||
"wd": 0.000001, // Weight decay weight.
|
"wd": 0.000001, // Weight decay weight.
|
||||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||||||
|
|
||||||
// TACOTRON PRENET
|
// TACOTRON PRENET
|
||||||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||||||
"prenet_type": "original", // "original" or "bn".
|
"prenet_type": "original", // "original" or "bn".
|
||||||
"prenet_dropout": true, // enable/disable dropout at prenet.
|
"prenet_dropout": true, // enable/disable dropout at prenet.
|
||||||
|
|
||||||
// ATTENTION
|
// ATTENTION
|
||||||
"attention_type": "original", // 'original' or 'graves'
|
"attention_type": "original", // 'original' or 'graves'
|
||||||
|
@ -98,16 +98,16 @@
|
||||||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||||||
|
|
||||||
// STOPNET
|
// STOPNET
|
||||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||||
|
|
||||||
// TENSORBOARD and LOGGING
|
// TENSORBOARD and LOGGING
|
||||||
"print_step": 25, // Number of steps to log traning on console.
|
"print_step": 25, // Number of steps to log traning on console.
|
||||||
"print_eval": false, // If True, it prints loss values in evalulation.
|
"print_eval": false, // If True, it prints loss values in evalulation.
|
||||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||||
|
|
||||||
// DATA LOADING
|
// DATA LOADING
|
||||||
"text_cleaner": "phoneme_cleaners",
|
"text_cleaner": "phoneme_cleaners",
|
||||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||||
|
@ -119,7 +119,7 @@
|
||||||
|
|
||||||
// PATHS
|
// PATHS
|
||||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||||
|
|
||||||
// PHONEMES
|
// PHONEMES
|
||||||
"phoneme_cache_path": "mozilla_us_phonemes_3", // phoneme computation is slow, therefore, it caches results in the given folder.
|
"phoneme_cache_path": "mozilla_us_phonemes_3", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||||
|
|
Loading…
Reference in New Issue