graves attention [WIP]

This commit is contained in:
Eren Golge 2019-10-31 15:08:09 +01:00
parent 537cd66f27
commit 84d81b6579
2 changed files with 79 additions and 14 deletions

View File

@ -105,6 +105,70 @@ class LocationLayer(nn.Module):
return processed_attention
class GravesAttention(nn.Module):
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
def __init__(self, query_dim, K, attention_alignment=0.05):
super(GravesAttention, self).__init__()
self._mask_value = -float("inf")
self.K = K
self.attention_alignment = attention_alignment
self.epsilon = 1e-5
self.J = None
self.N_a = nn.Sequential(
nn.Linear(query_dim, query_dim//2),
nn.Tanh(),
nn.Linear(query_dim//2, 3*K))
self.mu_tm1 = None
def init_states(self, inputs):
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]).expand_as(torch.Tensor(inputs.shape[0], self.K, inputs.shape[1])).to(inputs.device)
self.mu_tm1 = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
def forward(self, query, inputs, mask):
"""
shapes:
query: B x D_attention_rnn
inputs: B x T_in x D_encoder
mask: B x T_in
"""
gbk_t = self.N_a(query)
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
# attention model parameters
# each B x K
g_t = gbk_t[:, 0, :]
b_t = gbk_t[:, 1, :]
k_t = gbk_t[:, 2, :]
# attention GMM parameters
g_t = torch.softmax(g_t, dim=-1) + self.epsilon # distribution weight
sig_t = torch.exp(b_t) + self.epsilon # variance
mu_t = self.mu_tm1 + self.attention_alignment * torch.exp(k_t) # mean
g_t = g_t.unsqueeze(2).expand(g_t.size(0),
g_t.size(1),
inputs.size(1))
sig_t = sig_t.unsqueeze(2).expand_as(g_t)
mu_t_ = mu_t.unsqueeze(2).expand_as(g_t)
j = self.J[:g_t.size(0), :, :inputs.size(1)]
# attention weights
phi_t = g_t * torch.exp(-0.5 * sig_t * (mu_t_ - j)**2)
alpha_t = self.COEF * torch.sum(phi_t, 1)
# apply masking
# if mask is not None:
# alpha_t.data.masked_fill_(~mask, self._mask_value)
breakpoint()
c_t = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
self.mu_tm1 = mu_t
return c_t, mu_t, alpha_t
class Attention(nn.Module):
# Pylint gets confused by PyTorch conventions here
#pylint: disable=attribute-defined-outside-init

View File

@ -1,7 +1,7 @@
# coding: utf-8
import torch
from torch import nn
from .common_layers import Prenet, Attention, Linear
from .common_layers import Prenet, Attention, Linear, GravesAttention
class BatchNormConv1d(nn.Module):
@ -288,17 +288,18 @@ class Decoder(nn.Module):
# attention_rnn generates queries for the attention mechanism
self.attention_rnn = nn.GRUCell(in_features + 128, self.query_dim)
self.attention = Attention(query_dim=self.query_dim,
embedding_dim=in_features,
attention_dim=128,
location_attention=location_attn,
attention_location_n_filters=32,
attention_location_kernel_size=31,
windowing=attn_windowing,
norm=attn_norm,
forward_attn=forward_attn,
trans_agent=trans_agent,
forward_attn_mask=forward_attn_mask)
# self.attention = Attention(query_dim=self.query_dim,
# embedding_dim=in_features,
# attention_dim=128,
# location_attention=location_attn,
# attention_location_n_filters=32,
# attention_location_kernel_size=31,
# windowing=attn_windowing,
# norm=attn_norm,
# forward_attn=forward_attn,
# trans_agent=trans_agent,
# forward_attn_mask=forward_attn_mask)
self.attention = GravesAttention(self.query_dim, 5)
# (processed_memory | attention context) -> |Linear| -> decoder_RNN_input
self.project_to_decoder_in = nn.Linear(256 + in_features, 256)
# decoder_RNN_input -> |RNN| -> RNN_state
@ -342,7 +343,7 @@ class Decoder(nn.Module):
]
self.context_vec = inputs.data.new(B, self.in_features).zero_()
# cache attention inputs
self.processed_inputs = self.attention.inputs_layer(inputs)
# self.processed_inputs = self.attention.inputs_layer(inputs)
def _parse_outputs(self, outputs, attentions, stop_tokens):
# Back to batch first
@ -362,7 +363,7 @@ class Decoder(nn.Module):
torch.cat((processed_memory, self.context_vec), -1),
self.attention_rnn_hidden)
self.context_vec = self.attention(
self.attention_rnn_hidden, inputs, self.processed_inputs, mask)
self.attention_rnn_hidden, inputs, mask)
# Concat RNN output and attention context vector
decoder_input = self.project_to_decoder_in(
torch.cat((self.attention_rnn_hidden, self.context_vec), -1))