Transform the Speaker Encoder dataset to a generic dataset and create emotion encoder config

This commit is contained in:
Edresson Casanova 2022-03-01 09:09:37 -03:00
parent 1c6d16cffc
commit 854c887764
24 changed files with 130 additions and 110 deletions

View File

@ -10,7 +10,7 @@ import torch
from torch.utils.data import DataLoader
from trainer.torch import NoamLR
from TTS.encoder.dataset import SpeakerEncoderDataset
from TTS.encoder.dataset import EncoderDataset
from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.encoder.utils.generic_utils import save_best_model, setup_speaker_encoder_model
from TTS.encoder.utils.training import init_training
@ -35,13 +35,13 @@ def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False
if is_val:
loader = None
else:
dataset = SpeakerEncoderDataset(
dataset = EncoderDataset(
ap,
meta_data_eval if is_val else meta_data_train,
voice_len=c.voice_len,
num_utter_per_speaker=c.num_utters_per_speaker,
num_speakers_in_batch=c.num_speakers_in_batch,
skip_speakers=c.skip_speakers,
num_utter_per_class=c.num_utter_per_class,
num_classes_in_batch=c.num_classes_in_batch,
skip_classes=c.skip_classes,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
verbose=verbose,
@ -52,12 +52,12 @@ def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.num_speakers_in_batch,
batch_size=c.num_classes_in_batch,
shuffle=False,
num_workers=c.num_loader_workers,
collate_fn=dataset.collate_fn,
)
return loader, dataset.get_num_speakers()
return loader, dataset.get_num_classes()
def train(model, optimizer, scheduler, criterion, data_loader, global_step):
@ -91,7 +91,7 @@ def train(model, optimizer, scheduler, criterion, data_loader, global_step):
outputs = model(inputs)
# loss computation
loss = criterion(outputs.view(c.num_speakers_in_batch, outputs.shape[0] // c.num_speakers_in_batch, -1), labels)
loss = criterion(outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels)
loss.backward()
grad_norm, _ = check_update(model, c.grad_clip)
optimizer.step()
@ -160,14 +160,14 @@ def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=False)
data_loader, num_speakers = setup_loader(ap, is_val=False, verbose=True)
data_loader, num_classes = setup_loader(ap, is_val=False, verbose=True)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method="softmax")
elif c.loss == "angleproto":
criterion = AngleProtoLoss()
elif c.loss == "softmaxproto":
criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_speakers)
criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_classes)
else:
raise Exception("The %s not is a loss supported" % c.loss)

View File

@ -37,7 +37,7 @@ def register_config(model_name: str) -> Coqpit:
"""
config_class = None
config_name = model_name + "_config"
paths = ["TTS.tts.configs", "TTS.vocoder.configs", "TTS.speaker_encoder"]
paths = ["TTS.tts.configs", "TTS.vocoder.configs", "TTS.encoder"]
for path in paths:
try:
config_class = find_module(path, config_name)

View File

@ -37,9 +37,9 @@
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"steps_plot_stats": 10, // number of steps to plot embeddings.
"num_speakers_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"num_utters_per_speaker": 10, //
"skip_speakers": false, // skip speakers with samples less than "num_utters_per_speaker"
"num_classes_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"num_utter_per_class": 10, //
"skip_classes": false, // skip speakers with samples less than "num_utter_per_class"
"voice_len": 1.6, // number of seconds for each training instance
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.

View File

@ -42,9 +42,9 @@
"steps_plot_stats": 100, // number of steps to plot embeddings.
// Speakers config
"num_speakers_in_batch": 200, // Batch size for training.
"num_utters_per_speaker": 2, //
"skip_speakers": true, // skip speakers with samples less than "num_utters_per_speaker"
"num_classes_in_batch": 200, // Batch size for training.
"num_utter_per_class": 2, //
"skip_classes": true, // skip speakers with samples less than "num_utter_per_class"
"voice_len": 2, // number of seconds for each training instance
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.

View File

@ -43,9 +43,9 @@
"steps_plot_stats": 100, // number of steps to plot embeddings.
// Speakers config
"num_speakers_in_batch": 200, // Batch size for training.
"num_utters_per_speaker": 2, //
"skip_speakers": true, // skip speakers with samples less than "num_utters_per_speaker"
"num_classes_in_batch": 200, // Batch size for training.
"num_utter_per_class": 2, //
"skip_classes": true, // skip speakers with samples less than "num_utter_per_class"
"voice_len": 2, // number of seconds for each training instance
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.

View File

@ -7,17 +7,17 @@ from torch.utils.data import Dataset
from TTS.encoder.utils.generic_utils import AugmentWAV, Storage
class SpeakerEncoderDataset(Dataset):
class EncoderDataset(Dataset):
def __init__(
self,
ap,
meta_data,
voice_len=1.6,
num_speakers_in_batch=64,
num_classes_in_batch=64,
storage_size=1,
sample_from_storage_p=0.5,
num_utter_per_speaker=10,
skip_speakers=False,
num_utter_per_class=10,
skip_classes=False,
verbose=False,
augmentation_config=None,
use_torch_spec=None,
@ -33,22 +33,23 @@ class SpeakerEncoderDataset(Dataset):
self.items = meta_data
self.sample_rate = ap.sample_rate
self.seq_len = int(voice_len * self.sample_rate)
self.num_speakers_in_batch = num_speakers_in_batch
self.num_utter_per_speaker = num_utter_per_speaker
self.skip_speakers = skip_speakers
self.num_classes_in_batch = num_classes_in_batch
self.num_utter_per_class = num_utter_per_class
self.skip_classes = skip_classes
self.ap = ap
self.verbose = verbose
self.use_torch_spec = use_torch_spec
self.__parse_items()
storage_max_size = storage_size * num_speakers_in_batch
storage_max_size = storage_size * num_classes_in_batch
self.storage = Storage(
maxsize=storage_max_size, storage_batchs=storage_size, num_speakers_in_batch=num_speakers_in_batch
maxsize=storage_max_size, storage_batchs=storage_size, num_classes_in_batch=num_classes_in_batch
)
self.sample_from_storage_p = float(sample_from_storage_p)
speakers_aux = list(self.speakers)
speakers_aux.sort()
self.speakerid_to_classid = {key: i for i, key in enumerate(speakers_aux)}
classes_aux = list(self.classes)
classes_aux.sort()
self.classname_to_classid = {key: i for i, key in enumerate(classes_aux)}
# Augmentation
self.augmentator = None
@ -63,156 +64,158 @@ class SpeakerEncoderDataset(Dataset):
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Speakers per Batch: {num_speakers_in_batch}")
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_speaker} utters")
print(f" | > Classes per Batch: {num_classes_in_batch}")
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_class} utters")
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num speakers: {len(self.speakers)}")
print(f" | > Num Classes: {len(self.classes)}")
print(f" | > Classes: {list(self.classes)}")
def load_wav(self, filename):
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
return audio
def __parse_items(self):
self.speaker_to_utters = {}
self.class_to_utters = {}
for i in self.items:
path_ = i["audio_file"]
speaker_ = i["speaker_name"]
if speaker_ in self.speaker_to_utters.keys():
self.speaker_to_utters[speaker_].append(path_)
else:
self.speaker_to_utters[speaker_] = [
self.class_to_utters[class_name] = [
path_,
]
if self.skip_speakers:
self.speaker_to_utters = {
k: v for (k, v) in self.speaker_to_utters.items() if len(v) >= self.num_utter_per_speaker
if self.skip_classes:
self.class_to_utters = {
k: v for (k, v) in self.class_to_utters.items() if len(v) >= self.num_utter_per_class
}
self.speakers = [k for (k, v) in self.speaker_to_utters.items()]
self.classes = [k for (k, v) in self.class_to_utters.items()]
def __len__(self):
return int(1e10)
def get_num_speakers(self):
return len(self.speakers)
def get_num_classes(self):
return len(self.classes)
def __sample_speaker(self, ignore_speakers=None):
speaker = random.sample(self.speakers, 1)[0]
# if list of speakers_id is provide make sure that it's will be ignored
if ignore_speakers and self.speakerid_to_classid[speaker] in ignore_speakers:
def __sample_class(self, ignore_classes=None):
class_name = random.sample(self.classes, 1)[0]
# if list of classes_id is provide make sure that it's will be ignored
if ignore_classes and self.classname_to_classid[class_name] in ignore_classes:
while True:
speaker = random.sample(self.speakers, 1)[0]
if self.speakerid_to_classid[speaker] not in ignore_speakers:
class_name = random.sample(self.classes, 1)[0]
if self.classname_to_classid[class_name] not in ignore_classes:
break
if self.num_utter_per_speaker > len(self.speaker_to_utters[speaker]):
utters = random.choices(self.speaker_to_utters[speaker], k=self.num_utter_per_speaker)
if self.num_utter_per_class > len(self.class_to_utters[class_name]):
utters = random.choices(self.class_to_utters[class_name], k=self.num_utter_per_class)
else:
utters = random.sample(self.speaker_to_utters[speaker], self.num_utter_per_speaker)
return speaker, utters
utters = random.sample(self.class_to_utters[class_name], self.num_utter_per_class)
return class_name, utters
def __sample_speaker_utterances(self, speaker):
def __sample_class_utterances(self, class_name):
"""
Sample all M utterances for the given speaker.
Sample all M utterances for the given class_name.
"""
wavs = []
labels = []
for _ in range(self.num_utter_per_speaker):
for _ in range(self.num_utter_per_class):
# TODO:dummy but works
while True:
# remove speakers that have num_utter less than 2
if len(self.speaker_to_utters[speaker]) > 1:
utter = random.sample(self.speaker_to_utters[speaker], 1)[0]
# remove classes that have num_utter less than 2
if len(self.class_to_utters[class_name]) > 1:
utter = random.sample(self.class_to_utters[class_name], 1)[0]
else:
if speaker in self.speakers:
self.speakers.remove(speaker)
if class_name in self.classes:
self.classes.remove(class_name)
speaker, _ = self.__sample_speaker()
class_name, _ = self.__sample_class()
continue
wav = self.load_wav(utter)
if wav.shape[0] - self.seq_len > 0:
break
if utter in self.speaker_to_utters[speaker]:
self.speaker_to_utters[speaker].remove(utter)
if utter in self.class_to_utters[class_name]:
self.class_to_utters[class_name].remove(utter)
if self.augmentator is not None and self.data_augmentation_p:
if random.random() < self.data_augmentation_p:
wav = self.augmentator.apply_one(wav)
wavs.append(wav)
labels.append(self.speakerid_to_classid[speaker])
labels.append(self.classname_to_classid[class_name])
return wavs, labels
def __getitem__(self, idx):
speaker, _ = self.__sample_speaker()
speaker_id = self.speakerid_to_classid[speaker]
return speaker, speaker_id
class_name, _ = self.__sample_class()
class_id = self.classname_to_classid[class_name]
return class_name, class_id
def __load_from_disk_and_storage(self, speaker):
def __load_from_disk_and_storage(self, class_name):
# don't sample from storage, but from HDD
wavs_, labels_ = self.__sample_speaker_utterances(speaker)
wavs_, labels_ = self.__sample_class_utterances(class_name)
# put the newly loaded item into storage
self.storage.append((wavs_, labels_))
return wavs_, labels_
def collate_fn(self, batch):
# get the batch speaker_ids
# get the batch class_ids
batch = np.array(batch)
speakers_id_in_batch = set(batch[:, 1].astype(np.int32))
classes_id_in_batch = set(batch[:, 1].astype(np.int32))
labels = []
feats = []
speakers = set()
classes = set()
for speaker, speaker_id in batch:
speaker_id = int(speaker_id)
for class_name, class_id in batch:
class_id = int(class_id)
# ensure that an speaker appears only once in the batch
if speaker_id in speakers:
# ensure that an class appears only once in the batch
if class_id in classes:
# remove current speaker
if speaker_id in speakers_id_in_batch:
speakers_id_in_batch.remove(speaker_id)
# remove current class
if class_id in classes_id_in_batch:
classes_id_in_batch.remove(class_id)
speaker, _ = self.__sample_speaker(ignore_speakers=speakers_id_in_batch)
speaker_id = self.speakerid_to_classid[speaker]
speakers_id_in_batch.add(speaker_id)
class_name, _ = self.__sample_class(ignore_classes=classes_id_in_batch)
class_id = self.classname_to_classid[class_name]
classes_id_in_batch.add(class_id)
if random.random() < self.sample_from_storage_p and self.storage.full():
# sample from storage (if full)
wavs_, labels_ = self.storage.get_random_sample_fast()
# force choose the current speaker or other not in batch
# force choose the current class or other not in batch
# It's necessary for ideal training with AngleProto and GE2E losses
if labels_[0] in speakers_id_in_batch and labels_[0] != speaker_id:
if labels_[0] in classes_id_in_batch and labels_[0] != class_id:
attempts = 0
while True:
wavs_, labels_ = self.storage.get_random_sample_fast()
if labels_[0] == speaker_id or labels_[0] not in speakers_id_in_batch:
if labels_[0] == class_id or labels_[0] not in classes_id_in_batch:
break
attempts += 1
# Try 5 times after that load from disk
if attempts >= 5:
wavs_, labels_ = self.__load_from_disk_and_storage(speaker)
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
break
else:
# don't sample from storage, but from HDD
wavs_, labels_ = self.__load_from_disk_and_storage(speaker)
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
# append speaker for control
speakers.add(labels_[0])
# append class for control
classes.add(labels_[0])
# remove current speaker and append other
if speaker_id in speakers_id_in_batch:
speakers_id_in_batch.remove(speaker_id)
# remove current class and append other
if class_id in classes_id_in_batch:
classes_id_in_batch.remove(class_id)
speakers_id_in_batch.add(labels_[0])
classes_id_in_batch.add(labels_[0])
# get a random subset of each of the wavs and extract mel spectrograms.
feats_ = []

View File

@ -0,0 +1,17 @@
from dataclasses import asdict, dataclass
from TTS.encoder.speaker_encoder_config import SpeakerEncoderConfig
@dataclass
class EmotionEncoderConfig(SpeakerEncoderConfig):
"""Defines parameters for Speaker Encoder model."""
model: str = "emotion_encoder"
def check_values(self):
super().check_values()
c = asdict(self)
assert (
c["model_params"]["input_dim"] == self.audio.num_mels
), " [!] model input dimendion must be equal to melspectrogram dimension."

View File

@ -51,10 +51,10 @@ class SpeakerEncoderConfig(BaseTrainingConfig):
print_step: int = 20
# data loader
num_speakers_in_batch: int = MISSING
num_utters_per_speaker: int = MISSING
num_classes_in_batch: int = MISSING
num_utter_per_class: int = MISSING
num_loader_workers: int = MISSING
skip_speakers: bool = False
skip_classes: bool = False
voice_len: float = 1.6
def check_values(self):

View File

@ -14,11 +14,11 @@ from TTS.utils.io import save_fsspec
class Storage(object):
def __init__(self, maxsize, storage_batchs, num_speakers_in_batch, num_threads=8):
def __init__(self, maxsize, storage_batchs, num_classes_in_batch, num_threads=8):
# use multiprocessing for threading safe
self.storage = Manager().list()
self.maxsize = maxsize
self.num_speakers_in_batch = num_speakers_in_batch
self.num_classes_in_batch = num_classes_in_batch
self.num_threads = num_threads
self.ignore_last_batch = False
@ -28,7 +28,7 @@ class Storage(object):
# used for fast random sample
self.safe_storage_size = self.maxsize - self.num_threads
if self.ignore_last_batch:
self.safe_storage_size -= self.num_speakers_in_batch
self.safe_storage_size -= self.num_classes_in_batch
def __len__(self):
return len(self.storage)
@ -48,7 +48,7 @@ class Storage(object):
storage_size = len(self.storage) - self.num_threads
if self.ignore_last_batch:
storage_size -= self.num_speakers_in_batch
storage_size -= self.num_classes_in_batch
return self.storage[random.randint(0, storage_size)]

View File

@ -29,12 +29,12 @@ colormap = (
)
def plot_embeddings(embeddings, num_utter_per_speaker):
embeddings = embeddings[: 10 * num_utter_per_speaker]
def plot_embeddings(embeddings, num_utter_per_class):
embeddings = embeddings[: 10 * num_utter_per_class]
model = umap.UMAP()
projection = model.fit_transform(embeddings)
num_speakers = embeddings.shape[0] // num_utter_per_speaker
ground_truth = np.repeat(np.arange(num_speakers), num_utter_per_speaker)
num_speakers = embeddings.shape[0] // num_utter_per_class
ground_truth = np.repeat(np.arange(num_speakers), num_utter_per_class)
colors = [colormap[i] for i in ground_truth]
fig, ax = plt.subplots(figsize=(16, 10))

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

View File

@ -435,7 +435,7 @@ def emotion(root_path, meta_file, ignored_speakers=None):
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
items.append([wav_file, speaker_id, emotion_id])
items.append([speaker_id, wav_file, emotion_id])
return items

View File

@ -24,8 +24,8 @@ output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = SpeakerEncoderConfig(
batch_size=4,
num_speakers_in_batch=1,
num_utters_per_speaker=10,
num_classes_in_batch=1,
num_utter_per_class=10,
num_loader_workers=0,
max_train_step=2,
print_step=1,

View File

@ -36,8 +36,8 @@
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"steps_plot_stats": 10, // number of steps to plot embeddings.
"num_speakers_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"num_utters_per_speaker": 10, //
"num_classes_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"num_utter_per_class": 10, //
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"wd": 0.000001, // Weight decay weight.
"checkpoint": true, // If true, it saves checkpoints per "save_step"