mirror of https://github.com/coqui-ai/TTS.git
add tf tacotron2 test and edit test utils imports after utils
refactoring
This commit is contained in:
parent
67397be1c0
commit
8805370645
|
@ -6,7 +6,8 @@ import torch as T
|
||||||
from TTS.server.synthesizer import Synthesizer
|
from TTS.server.synthesizer import Synthesizer
|
||||||
from TTS.tests import get_tests_input_path, get_tests_output_path
|
from TTS.tests import get_tests_input_path, get_tests_output_path
|
||||||
from TTS.utils.text.symbols import make_symbols, phonemes, symbols
|
from TTS.utils.text.symbols import make_symbols, phonemes, symbols
|
||||||
from TTS.utils.generic_utils import load_config, save_checkpoint, setup_model
|
from TTS.utils.generic_utils import setup_model
|
||||||
|
from TTS.utils.io import load_config, save_checkpoint
|
||||||
|
|
||||||
|
|
||||||
class DemoServerTest(unittest.TestCase):
|
class DemoServerTest(unittest.TestCase):
|
||||||
|
|
|
@ -5,7 +5,7 @@ import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from TTS.utils.generic_utils import load_config
|
from TTS.utils.io import load_config
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
from TTS.datasets import TTSDataset
|
from TTS.datasets import TTSDataset
|
||||||
from TTS.datasets.preprocess import ljspeech
|
from TTS.datasets.preprocess import ljspeech
|
||||||
|
|
|
@ -6,7 +6,7 @@ import numpy as np
|
||||||
|
|
||||||
from torch import optim
|
from torch import optim
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from TTS.utils.generic_utils import load_config
|
from TTS.utils.io import load_config
|
||||||
from TTS.layers.losses import MSELossMasked
|
from TTS.layers.losses import MSELossMasked
|
||||||
from TTS.models.tacotron2 import Tacotron2
|
from TTS.models.tacotron2 import Tacotron2
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,59 @@
|
||||||
|
import os
|
||||||
|
import copy
|
||||||
|
import torch
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from torch import optim
|
||||||
|
from torch import nn
|
||||||
|
from TTS.utils.io import load_config
|
||||||
|
from TTS.layers.losses import MSELossMasked
|
||||||
|
from TTS.tf.models.tacotron2 import Tacotron2
|
||||||
|
|
||||||
|
#pylint: disable=unused-variable
|
||||||
|
|
||||||
|
torch.manual_seed(1)
|
||||||
|
use_cuda = torch.cuda.is_available()
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
file_path = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
c = load_config(os.path.join(file_path, 'test_config.json'))
|
||||||
|
|
||||||
|
|
||||||
|
class TacotronTFTrainTest(unittest.TestCase):
|
||||||
|
def test_train_step(self):
|
||||||
|
''' test forward pass '''
|
||||||
|
input = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||||
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device)
|
||||||
|
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||||
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||||
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||||
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||||
|
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||||
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||||
|
|
||||||
|
input = tf.convert_to_tensor(input.cpu().numpy())
|
||||||
|
input_lengths = tf.convert_to_tensor(input_lengths.cpu().numpy())
|
||||||
|
mel_spec = tf.convert_to_tensor(mel_spec.cpu().numpy())
|
||||||
|
|
||||||
|
for idx in mel_lengths:
|
||||||
|
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||||
|
|
||||||
|
stop_targets = stop_targets.view(input.shape[0],
|
||||||
|
stop_targets.size(1) // c.r, -1)
|
||||||
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
|
||||||
|
|
||||||
|
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5)
|
||||||
|
# training pass
|
||||||
|
output = model(input, input_lengths, mel_spec, training=True)
|
||||||
|
|
||||||
|
# check model output shapes
|
||||||
|
assert np.all(output[0].shape == mel_spec.shape)
|
||||||
|
assert np.all(output[1].shape == mel_spec.shape)
|
||||||
|
assert output[2].shape[2] == input.shape[1]
|
||||||
|
assert output[2].shape[1] == (mel_spec.shape[1] // model.decoder.r)
|
||||||
|
assert output[3].shape[1] == (mel_spec.shape[1] // model.decoder.r)
|
||||||
|
|
||||||
|
# inference pass
|
||||||
|
output = model(input, training=False)
|
|
@ -5,7 +5,7 @@ import unittest
|
||||||
|
|
||||||
from torch import optim
|
from torch import optim
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from TTS.utils.generic_utils import load_config
|
from TTS.utils.io import load_config
|
||||||
from TTS.layers.losses import L1LossMasked
|
from TTS.layers.losses import L1LossMasked
|
||||||
from TTS.models.tacotron import Tacotron
|
from TTS.models.tacotron import Tacotron
|
||||||
|
|
||||||
|
|
|
@ -5,7 +5,7 @@ import os
|
||||||
import unittest
|
import unittest
|
||||||
from TTS.utils.text import *
|
from TTS.utils.text import *
|
||||||
from TTS.tests import get_tests_path
|
from TTS.tests import get_tests_path
|
||||||
from TTS.utils.generic_utils import load_config
|
from TTS.utils.io import load_config
|
||||||
|
|
||||||
TESTS_PATH = get_tests_path()
|
TESTS_PATH = get_tests_path()
|
||||||
conf = load_config(os.path.join(TESTS_PATH, 'test_config.json'))
|
conf = load_config(os.path.join(TESTS_PATH, 'test_config.json'))
|
||||||
|
|
Loading…
Reference in New Issue