Test updates for loaders

This commit is contained in:
Eren G 2018-07-30 13:52:16 +02:00
parent 5d7338ddf6
commit 8864252941
3 changed files with 158 additions and 27 deletions

View File

@ -2,7 +2,8 @@ import unittest
import torch as T
from TTS.layers.tacotron import Prenet, CBHG, Decoder, Encoder
from TTS.layers.losses import L1LossMasked, _sequence_mask
from TTS.layers.losses import L1LossMasked
from TTS.utils.generic_utils import sequence_mask
class PrenetTests(unittest.TestCase):
@ -79,7 +80,7 @@ class L1LossMaskedTests(unittest.TestCase):
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.arange(5, 9)).long()
mask = ((_sequence_mask(dummy_length).float() - 1.0)
mask = ((sequence_mask(dummy_length).float() - 1.0)
* 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])

View File

@ -4,7 +4,8 @@ import numpy as np
from torch.utils.data import DataLoader
from TTS.utils.generic_utils import load_config
from TTS.datasets.LJSpeech import LJSpeechDataset
from TTS.utils.audio import AudioProcessor
from TTS.datasets import LJSpeech, Kusal
file_path = os.path.dirname(os.path.realpath(__file__))
c = load_config(os.path.join(file_path, 'test_config.json'))
@ -15,21 +16,25 @@ class TestLJSpeechDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestLJSpeechDataset, self).__init__(*args, **kwargs)
self.max_loader_iter = 4
self.ap = AudioProcessor(sample_rate=c.sample_rate,
num_mels=c.num_mels,
min_level_db=c.min_level_db,
frame_shift_ms=c.frame_shift_ms,
frame_length_ms=c.frame_length_ms,
ref_level_db=c.ref_level_db,
num_freq=c.num_freq,
power=c.power,
preemphasis=c.preemphasis,
min_mel_freq=c.min_mel_freq,
max_mel_freq=c.max_mel_freq)
def test_loader(self):
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
os.path.join(c.data_path_LJSpeech, 'wavs'),
dataset = LJSpeech.MyDataset(os.path.join(c.data_path_LJSpeech),
os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
c.r,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
ap = self.ap,
min_seq_len=c.min_seq_len
)
dataloader = DataLoader(dataset, batch_size=2,
@ -57,19 +62,12 @@ class TestLJSpeechDataset(unittest.TestCase):
assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
os.path.join(c.data_path_LJSpeech, 'wavs'),
dataset = LJSpeech.MyDataset(os.path.join(c.data_path_LJSpeech),
os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
1,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
ap = self.ap,
min_seq_len=c.min_seq_len
)
# Test for batch size 1
@ -141,6 +139,135 @@ class TestLJSpeechDataset(unittest.TestCase):
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
class TestKusalDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestKusalDataset, self).__init__(*args, **kwargs)
self.max_loader_iter = 4
self.ap = AudioProcessor(sample_rate=c.sample_rate,
num_mels=c.num_mels,
min_level_db=c.min_level_db,
frame_shift_ms=c.frame_shift_ms,
frame_length_ms=c.frame_length_ms,
ref_level_db=c.ref_level_db,
num_freq=c.num_freq,
power=c.power,
preemphasis=c.preemphasis,
min_mel_freq=c.min_mel_freq,
max_mel_freq=c.max_mel_freq)
def test_loader(self):
dataset = Kusal.MyDataset(os.path.join(c.data_path_Kusal),
os.path.join(c.data_path_Kusal, 'prompts.txt'),
c.r,
c.text_cleaner,
ap = self.ap,
min_seq_len=c.min_seq_len
)
dataloader = DataLoader(dataset, batch_size=2,
shuffle=True, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
assert check_count == 0, \
" !! Negative values in text_input: {}".format(check_count)
# TODO: more assertion here
assert linear_input.shape[0] == c.batch_size
assert mel_input.shape[0] == c.batch_size
assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = Kusal.MyDataset(os.path.join(c.data_path_Kusal),
os.path.join(c.data_path_Kusal, 'prompts.txt'),
1,
c.text_cleaner,
ap = self.ap,
min_seq_len=c.min_seq_len
)
# Test for batch size 1
dataloader = DataLoader(dataset, batch_size=1,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
# check the last time step to be zero padded
assert mel_input[0, -1].sum() == 0
# assert mel_input[0, -2].sum() != 0
assert linear_input[0, -1].sum() == 0
# assert linear_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target[0, -2] == 0
assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[0] == mel_input[0].shape[0]
# Test for batch size 2
dataloader = DataLoader(dataset, batch_size=2,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=False, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the first item in the batch
assert mel_input[idx, -1].sum() == 0
assert mel_input[idx, -2].sum() != 0, mel_input
assert linear_input[idx, -1].sum() == 0
assert linear_input[idx, -2].sum() != 0
assert stop_target[idx, -1] == 1
assert stop_target[idx, -2] == 0
assert stop_target[idx].sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[idx] == mel_input[idx].shape[0]
# check the second itme in the batch
assert mel_input[1-idx, -1].sum() == 0
assert linear_input[1-idx, -1].sum() == 0
assert stop_target[1-idx, -1] == 1
assert len(mel_lengths.shape) == 1
# check batch conditions
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
# class TestTWEBDataset(unittest.TestCase):

View File

@ -9,6 +9,8 @@
"ref_level_db": 20,
"hidden_size": 128,
"embedding_size": 256,
"min_mel_freq": null,
"max_mel_freq": null,
"text_cleaner": "english_cleaners",
"epochs": 2000,
@ -27,8 +29,9 @@
"num_loader_workers": 4,
"save_step": 200,
"data_path_LJSpeech": "/data/shared/KeithIto/LJSpeech-1.0",
"data_path_TWEB": "/data/shared/BibleSpeech",
"data_path_LJSpeech": "C:/Users/erogol/Data/LJSpeech-1.1",
"data_path_Kusal": "C:/Users/erogol/Data/Kusal",
"output_path": "result",
"min_seq_len": 0,
"log_dir": "/home/erogol/projects/TTS/logs/"
}