mirror of https://github.com/coqui-ai/TTS.git
Add TWEB data loader tests
This commit is contained in:
parent
ae4b87580a
commit
89dded8964
|
@ -5,21 +5,22 @@ import numpy as np
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from TTS.utils.generic_utils import load_config
|
from TTS.utils.generic_utils import load_config
|
||||||
from TTS.datasets.LJSpeech import LJSpeechDataset
|
from TTS.datasets.LJSpeech import LJSpeechDataset
|
||||||
|
from TTS.datasets.TWEB import TWEBDataset
|
||||||
|
|
||||||
|
|
||||||
file_path = os.path.dirname(os.path.realpath(__file__))
|
file_path = os.path.dirname(os.path.realpath(__file__))
|
||||||
c = load_config(os.path.join(file_path, 'test_config.json'))
|
c = load_config(os.path.join(file_path, 'test_config.json'))
|
||||||
|
|
||||||
|
|
||||||
class TestDataset(unittest.TestCase):
|
class TestLJSpeechDataset(unittest.TestCase):
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super(TestDataset, self).__init__(*args, **kwargs)
|
super(TestLJSpeechDataset, self).__init__(*args, **kwargs)
|
||||||
self.max_loader_iter = 4
|
self.max_loader_iter = 4
|
||||||
|
|
||||||
def test_loader(self):
|
def test_loader(self):
|
||||||
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
|
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
|
||||||
os.path.join(c.data_path, 'wavs'),
|
os.path.join(c.data_path_LJSpeech, 'wavs'),
|
||||||
c.r,
|
c.r,
|
||||||
c.sample_rate,
|
c.sample_rate,
|
||||||
c.text_cleaner,
|
c.text_cleaner,
|
||||||
|
@ -58,8 +59,8 @@ class TestDataset(unittest.TestCase):
|
||||||
assert mel_input.shape[2] == c.num_mels
|
assert mel_input.shape[2] == c.num_mels
|
||||||
|
|
||||||
def test_padding(self):
|
def test_padding(self):
|
||||||
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
|
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
|
||||||
os.path.join(c.data_path, 'wavs'),
|
os.path.join(c.data_path_LJSpeech, 'wavs'),
|
||||||
1,
|
1,
|
||||||
c.sample_rate,
|
c.sample_rate,
|
||||||
c.text_cleaner,
|
c.text_cleaner,
|
||||||
|
@ -141,3 +142,136 @@ class TestDataset(unittest.TestCase):
|
||||||
# check batch conditions
|
# check batch conditions
|
||||||
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
||||||
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
||||||
|
|
||||||
|
|
||||||
|
class TestTWEBDataset(unittest.TestCase):
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(TestTWEBDataset, self).__init__(*args, **kwargs)
|
||||||
|
self.max_loader_iter = 4
|
||||||
|
|
||||||
|
def test_loader(self):
|
||||||
|
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
||||||
|
os.path.join(c.data_path_TWEB, 'wavs'),
|
||||||
|
c.r,
|
||||||
|
c.sample_rate,
|
||||||
|
c.text_cleaner,
|
||||||
|
c.num_mels,
|
||||||
|
c.min_level_db,
|
||||||
|
c.frame_shift_ms,
|
||||||
|
c.frame_length_ms,
|
||||||
|
c.preemphasis,
|
||||||
|
c.ref_level_db,
|
||||||
|
c.num_freq,
|
||||||
|
c.power
|
||||||
|
)
|
||||||
|
|
||||||
|
dataloader = DataLoader(dataset, batch_size=2,
|
||||||
|
shuffle=True, collate_fn=dataset.collate_fn,
|
||||||
|
drop_last=True, num_workers=c.num_loader_workers)
|
||||||
|
|
||||||
|
for i, data in enumerate(dataloader):
|
||||||
|
if i == self.max_loader_iter:
|
||||||
|
break
|
||||||
|
text_input = data[0]
|
||||||
|
text_lengths = data[1]
|
||||||
|
linear_input = data[2]
|
||||||
|
mel_input = data[3]
|
||||||
|
mel_lengths = data[4]
|
||||||
|
stop_target = data[5]
|
||||||
|
item_idx = data[6]
|
||||||
|
|
||||||
|
neg_values = text_input[text_input < 0]
|
||||||
|
check_count = len(neg_values)
|
||||||
|
assert check_count == 0, \
|
||||||
|
" !! Negative values in text_input: {}".format(check_count)
|
||||||
|
# TODO: more assertion here
|
||||||
|
assert linear_input.shape[0] == c.batch_size
|
||||||
|
assert mel_input.shape[0] == c.batch_size
|
||||||
|
assert mel_input.shape[2] == c.num_mels
|
||||||
|
|
||||||
|
def test_padding(self):
|
||||||
|
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
||||||
|
os.path.join(c.data_path_TWEB, 'wavs'),
|
||||||
|
1,
|
||||||
|
c.sample_rate,
|
||||||
|
c.text_cleaner,
|
||||||
|
c.num_mels,
|
||||||
|
c.min_level_db,
|
||||||
|
c.frame_shift_ms,
|
||||||
|
c.frame_length_ms,
|
||||||
|
c.preemphasis,
|
||||||
|
c.ref_level_db,
|
||||||
|
c.num_freq,
|
||||||
|
c.power
|
||||||
|
)
|
||||||
|
|
||||||
|
# Test for batch size 1
|
||||||
|
dataloader = DataLoader(dataset, batch_size=1,
|
||||||
|
shuffle=False, collate_fn=dataset.collate_fn,
|
||||||
|
drop_last=False, num_workers=c.num_loader_workers)
|
||||||
|
|
||||||
|
for i, data in enumerate(dataloader):
|
||||||
|
if i == self.max_loader_iter:
|
||||||
|
break
|
||||||
|
|
||||||
|
text_input = data[0]
|
||||||
|
text_lengths = data[1]
|
||||||
|
linear_input = data[2]
|
||||||
|
mel_input = data[3]
|
||||||
|
mel_lengths = data[4]
|
||||||
|
stop_target = data[5]
|
||||||
|
item_idx = data[6]
|
||||||
|
|
||||||
|
# check the last time step to be zero padded
|
||||||
|
assert mel_input[0, -1].sum() == 0
|
||||||
|
assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
|
||||||
|
assert linear_input[0, -1].sum() == 0
|
||||||
|
assert linear_input[0, -2].sum() != 0
|
||||||
|
assert stop_target[0, -1] == 1
|
||||||
|
assert stop_target[0, -2] == 0
|
||||||
|
assert stop_target.sum() == 1
|
||||||
|
assert len(mel_lengths.shape) == 1
|
||||||
|
assert mel_lengths[0] == mel_input[0].shape[0]
|
||||||
|
|
||||||
|
# Test for batch size 2
|
||||||
|
dataloader = DataLoader(dataset, batch_size=2,
|
||||||
|
shuffle=False, collate_fn=dataset.collate_fn,
|
||||||
|
drop_last=False, num_workers=c.num_loader_workers)
|
||||||
|
|
||||||
|
for i, data in enumerate(dataloader):
|
||||||
|
if i == self.max_loader_iter:
|
||||||
|
break
|
||||||
|
text_input = data[0]
|
||||||
|
text_lengths = data[1]
|
||||||
|
linear_input = data[2]
|
||||||
|
mel_input = data[3]
|
||||||
|
mel_lengths = data[4]
|
||||||
|
stop_target = data[5]
|
||||||
|
item_idx = data[6]
|
||||||
|
|
||||||
|
if mel_lengths[0] > mel_lengths[1]:
|
||||||
|
idx = 0
|
||||||
|
else:
|
||||||
|
idx = 1
|
||||||
|
|
||||||
|
# check the first item in the batch
|
||||||
|
assert mel_input[idx, -1].sum() == 0
|
||||||
|
assert mel_input[idx, -2].sum() != 0, mel_input
|
||||||
|
assert linear_input[idx, -1].sum() == 0
|
||||||
|
assert linear_input[idx, -2].sum() != 0
|
||||||
|
assert stop_target[idx, -1] == 1
|
||||||
|
assert stop_target[idx, -2] == 0
|
||||||
|
assert stop_target[idx].sum() == 1
|
||||||
|
assert len(mel_lengths.shape) == 1
|
||||||
|
assert mel_lengths[idx] == mel_input[idx].shape[0]
|
||||||
|
|
||||||
|
# check the second itme in the batch
|
||||||
|
assert mel_input[1-idx, -1].sum() == 0
|
||||||
|
assert linear_input[1-idx, -1].sum() == 0
|
||||||
|
assert stop_target[1-idx, -1] == 1
|
||||||
|
assert len(mel_lengths.shape) == 1
|
||||||
|
|
||||||
|
# check batch conditions
|
||||||
|
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
||||||
|
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
{
|
{
|
||||||
"num_mels": 80,
|
"num_mels": 80,
|
||||||
"num_freq": 1025,
|
"num_freq": 1025,
|
||||||
"sample_rate": 20000,
|
"sample_rate": 22050,
|
||||||
"frame_length_ms": 50,
|
"frame_length_ms": 50,
|
||||||
"frame_shift_ms": 12.5,
|
"frame_shift_ms": 12.5,
|
||||||
"preemphasis": 0.97,
|
"preemphasis": 0.97,
|
||||||
|
@ -24,7 +24,8 @@
|
||||||
"num_loader_workers": 4,
|
"num_loader_workers": 4,
|
||||||
|
|
||||||
"save_step": 200,
|
"save_step": 200,
|
||||||
"data_path": "/data/shared/KeithIto/LJSpeech-1.0",
|
"data_path_LJSpeech": "/data/shared/KeithIto/LJSpeech-1.0",
|
||||||
|
"data_path_TWEB": "/data/shared/BibleSpeech",
|
||||||
"output_path": "result",
|
"output_path": "result",
|
||||||
"log_dir": "/home/erogol/projects/TTS/logs/"
|
"log_dir": "/home/erogol/projects/TTS/logs/"
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue