add External Embedding per sample instead of nn.Embedding

This commit is contained in:
Edresson 2020-07-29 00:49:00 -03:00 committed by erogol
parent e265810e8c
commit 8a1c113df6
9 changed files with 190 additions and 127 deletions

View File

@ -49,7 +49,7 @@ from mozilla_voice_tts.utils.training import (NoamLR, adam_weight_decay,
use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False):
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
if is_val and not c.run_eval:
loader = None
else:
@ -68,7 +68,8 @@ def setup_loader(ap, r, is_val=False, verbose=False):
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
verbose=verbose)
verbose=verbose,
speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None)
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
@ -82,9 +83,8 @@ def setup_loader(ap, r, is_val=False, verbose=False):
pin_memory=False)
return loader
def format_data(data):
if c.use_speaker_embedding:
def format_data(data, speaker_mapping=None):
if speaker_mapping is None and c.use_speaker_embedding and not c.use_external_speaker_embedding_file:
speaker_mapping = load_speaker_mapping(OUT_PATH)
# setup input data
@ -99,13 +99,20 @@ def format_data(data):
avg_spec_length = torch.mean(mel_lengths.float())
if c.use_speaker_embedding:
speaker_ids = [
speaker_mapping[speaker_name] for speaker_name in speaker_names
]
speaker_ids = torch.LongTensor(speaker_ids)
if c.use_external_speaker_embedding_file:
speaker_embeddings = data[8]
speaker_ids = None
else:
speaker_ids = [
speaker_mapping[speaker_name] for speaker_name in speaker_names
]
speaker_ids = torch.LongTensor(speaker_ids)
speaker_embeddings = None
else:
speaker_embeddings = None
speaker_ids = None
# set stop targets view, we predict a single stop token per iteration.
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // c.r, -1)
@ -122,13 +129,16 @@ def format_data(data):
stop_targets = stop_targets.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, avg_text_length, avg_spec_length
if speaker_embeddings is not None:
speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, avg_text_length, avg_spec_length
def train(model, criterion, optimizer, optimizer_st, scheduler,
ap, global_step, epoch, amp):
ap, global_step, epoch, amp, speaker_mapping=None):
data_loader = setup_loader(ap, model.decoder.r, is_val=False,
verbose=(epoch == 0))
verbose=(epoch == 0), speaker_mapping=speaker_mapping)
model.train()
epoch_time = 0
keep_avg = KeepAverage()
@ -143,7 +153,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, avg_text_length, avg_spec_length = format_data(data)
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, avg_text_length, avg_spec_length = format_data(data, speaker_mapping)
loader_time = time.time() - end_time
global_step += 1
@ -158,10 +168,10 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
# forward pass model
if c.bidirectional_decoder or c.double_decoder_consistency:
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids)
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids)
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
decoder_backward_output = None
alignments_backward = None
@ -312,8 +322,8 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
@torch.no_grad()
def evaluate(model, criterion, ap, global_step, epoch):
data_loader = setup_loader(ap, model.decoder.r, is_val=True)
def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping=None):
data_loader = setup_loader(ap, model.decoder.r, is_val=True, speaker_mapping=speaker_mapping)
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
@ -323,16 +333,16 @@ def evaluate(model, criterion, ap, global_step, epoch):
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, _, _ = format_data(data)
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data, speaker_mapping)
assert mel_input.shape[1] % model.decoder.r == 0
# forward pass model
if c.bidirectional_decoder or c.double_decoder_consistency:
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
decoder_backward_output = None
alignments_backward = None
@ -494,22 +504,41 @@ def main(args): # pylint: disable=redefined-outer-name
if c.use_speaker_embedding:
speakers = get_speakers(meta_data_train)
if args.restore_path:
prev_out_path = os.path.dirname(args.restore_path)
speaker_mapping = load_speaker_mapping(prev_out_path)
assert all([speaker in speaker_mapping
for speaker in speakers]), "As of now you, you cannot " \
"introduce new speakers to " \
"a previously trained model."
else:
if c.use_external_speaker_embedding_file: # if restore checkpoint and use External Embedding file
prev_out_path = os.path.dirname(args.restore_path)
speaker_mapping = load_speaker_mapping(prev_out_path)
if not speaker_mapping:
print("WARNING: speakers.json speakers.json was not found in restore_path, trying to use CONFIG.external_speaker_embedding_file")
speaker_mapping = load_speaker_mapping(c.external_speaker_embedding_file)
if not speaker_mapping:
raise RuntimeError("You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.external_speaker_embedding_file")
speaker_embedding_dim = len(speaker_mapping[list(speaker_mapping.keys())[0]]['embedding'])
elif not c.use_external_speaker_embedding_file: # if restore checkpoint and don't use External Embedding file
prev_out_path = os.path.dirname(args.restore_path)
speaker_mapping = load_speaker_mapping(prev_out_path)
speaker_embedding_dim = None
assert all([speaker in speaker_mapping
for speaker in speakers]), "As of now you, you cannot " \
"introduce new speakers to " \
"a previously trained model."
elif c.use_external_speaker_embedding_file and c.external_speaker_embedding_file: # if start new train using External Embedding file
speaker_mapping = load_speaker_mapping(c.external_speaker_embedding_file)
print(speaker_mapping)
speaker_embedding_dim = len(speaker_mapping[list(speaker_mapping.keys())[0]]['embedding'])
elif c.use_external_speaker_embedding_file and not c.external_speaker_embedding_file: # if start new train using External Embedding file and don't pass external embedding file
raise "use_external_speaker_embedding_file is True, so you need pass a external speaker embedding file, run GE2E-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb or AngularPrototypical-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb notebook in notebooks/ folder"
else: # if start new train and don't use External Embedding file
speaker_mapping = {name: i for i, name in enumerate(speakers)}
speaker_embedding_dim = None
save_speaker_mapping(OUT_PATH, speaker_mapping)
num_speakers = len(speaker_mapping)
print("Training with {} speakers: {}".format(num_speakers,
", ".join(speakers)))
else:
num_speakers = 0
speaker_embedding_dim = None
model = setup_model(num_chars, num_speakers, c)
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
params = set_weight_decay(model, c.wd)
optimizer = RAdam(params, lr=c.lr, weight_decay=0)
@ -530,6 +559,8 @@ def main(args): # pylint: disable=redefined-outer-name
# setup criterion
criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)
for name, _ in model.named_parameters():
print(name)
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location='cpu')
@ -592,7 +623,7 @@ def main(args): # pylint: disable=redefined-outer-name
print("\n > Number of output frames:", model.decoder.r)
train_avg_loss_dict, global_step = train(model, criterion, optimizer,
optimizer_st, scheduler, ap,
global_step, epoch, amp)
global_step, epoch, amp, speaker_mapping)
eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict['avg_postnet_loss']

View File

@ -1,5 +1,5 @@
{
"model": "Tacotron",
"model": "Tacotron2",
"run_name": "ljspeech-ddc-bn",
"run_description": "tacotron2 with ddc and batch-normalization",
@ -114,7 +114,7 @@
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING
"text_cleaner": "portuguese_cleaners",
"text_cleaner": "phoneme_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
@ -131,7 +131,9 @@
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_speaker_embedding": true, // use speaker embedding to enable multi-speaker learning.
"use_speaker_embedding": true, // use speaker embedding to enable multi-speaker learning.
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"use_gst": true, // use global style tokens
"gst": { // gst parameter if gst is enabled
"gst_style_input": null, // Condition the style input either on a

View File

@ -24,6 +24,7 @@ class MyDataset(Dataset):
phoneme_cache_path=None,
phoneme_language="en-us",
enable_eos_bos=False,
speaker_mapping=None,
verbose=False):
"""
Args:
@ -58,6 +59,7 @@ class MyDataset(Dataset):
self.phoneme_cache_path = phoneme_cache_path
self.phoneme_language = phoneme_language
self.enable_eos_bos = enable_eos_bos
self.speaker_mapping = speaker_mapping
self.verbose = verbose
if use_phonemes and not os.path.isdir(phoneme_cache_path):
os.makedirs(phoneme_cache_path, exist_ok=True)
@ -127,7 +129,8 @@ class MyDataset(Dataset):
'text': text,
'wav': wav,
'item_idx': self.items[idx][1],
'speaker_name': speaker_name
'speaker_name': speaker_name,
'wav_file_name': os.path.basename(wav_file)
}
return sample
@ -191,9 +194,15 @@ class MyDataset(Dataset):
batch[idx]['item_idx'] for idx in ids_sorted_decreasing
]
text = [batch[idx]['text'] for idx in ids_sorted_decreasing]
speaker_name = [batch[idx]['speaker_name']
for idx in ids_sorted_decreasing]
# get speaker embeddings
if self.speaker_mapping is not None:
wav_files_names = [batch[idx]['wav_file_name'] for idx in ids_sorted_decreasing]
speaker_embedding = [self.speaker_mapping[w]['embedding'] for w in wav_files_names]
else:
speaker_embedding = None
# compute features
mel = [self.ap.melspectrogram(w).astype('float32') for w in wav]
@ -224,6 +233,9 @@ class MyDataset(Dataset):
mel_lengths = torch.LongTensor(mel_lengths)
stop_targets = torch.FloatTensor(stop_targets)
if speaker_embedding is not None:
speaker_embedding = torch.FloatTensor(speaker_embedding)
# compute linear spectrogram
if self.compute_linear_spec:
linear = [self.ap.spectrogram(w).astype('float32') for w in wav]
@ -234,7 +246,7 @@ class MyDataset(Dataset):
else:
linear = None
return text, text_lenghts, speaker_name, linear, mel, mel_lengths, \
stop_targets, item_idxs
stop_targets, item_idxs, speaker_embedding
raise TypeError(("batch must contain tensors, numbers, dicts or lists;\
found {}".format(type(batch[0]))))

View File

@ -291,7 +291,7 @@ class Decoder(nn.Module):
def __init__(self, in_channels, frame_channels, r, memory_size, attn_type, attn_windowing,
attn_norm, prenet_type, prenet_dropout, forward_attn,
trans_agent, forward_attn_mask, location_attn, attn_K,
separate_stopnet, speaker_embedding_dim):
separate_stopnet):
super(Decoder, self).__init__()
self.r_init = r
self.r = r
@ -462,15 +462,12 @@ class Decoder(nn.Module):
t += 1
return self._parse_outputs(outputs, attentions, stop_tokens)
def inference(self, inputs, speaker_embeddings=None):
def inference(self, inputs):
"""
Args:
inputs: encoder outputs.
speaker_embeddings: speaker vectors.
Shapes:
- inputs: (B, T, D_out_enc)
- speaker_embeddings: (B, D_embed)
- inputs: batch x time x encoder_out_dim
"""
outputs = []
attentions = []
@ -483,8 +480,6 @@ class Decoder(nn.Module):
if t > 0:
new_memory = outputs[-1]
self._update_memory_input(new_memory)
if speaker_embeddings is not None:
self.memory_input = torch.cat([self.memory_input, speaker_embeddings], dim=-1)
output, stop_token, attention = self.decode(inputs, None)
stop_token = torch.sigmoid(stop_token.data)
outputs += [output]

View File

@ -147,8 +147,7 @@ class Decoder(nn.Module):
#pylint: disable=attribute-defined-outside-init
def __init__(self, in_channels, frame_channels, r, attn_type, attn_win, attn_norm,
prenet_type, prenet_dropout, forward_attn, trans_agent,
forward_attn_mask, location_attn, attn_K, separate_stopnet,
speaker_embedding_dim):
forward_attn_mask, location_attn, attn_K, separate_stopnet):
super(Decoder, self).__init__()
self.frame_channels = frame_channels
self.r_init = r
@ -335,16 +334,14 @@ class Decoder(nn.Module):
outputs, stop_tokens, alignments)
return outputs, alignments, stop_tokens
def inference(self, inputs, speaker_embeddings=None):
def inference(self, inputs):
r"""Decoder inference without teacher forcing and use
Stopnet to stop decoder.
Args:
inputs: Encoder outputs.
speaker_embeddings: speaker embedding vectors.
Shapes:
- inputs: (B, T, D_out_enc)
- speaker_embeddings: (B, D_embed)
- outputs: (B, T_mel, D_mel)
- alignments: (B, T_in, T_out)
- stop_tokens: (B, T_out)
@ -358,8 +355,6 @@ class Decoder(nn.Module):
outputs, stop_tokens, alignments, t = [], [], [], 0
while True:
memory = self.prenet(memory)
if speaker_embeddings is not None:
memory = torch.cat([memory, speaker_embeddings], dim=-1)
decoder_output, alignment, stop_token = self.decode(memory)
stop_token = torch.sigmoid(stop_token.data)
outputs += [decoder_output.squeeze(1)]

View File

@ -27,6 +27,7 @@ class Tacotron(TacotronAbstract):
bidirectional_decoder=False,
double_decoder_consistency=False,
ddc_r=None,
speaker_embedding_dim=None,
gst=False,
gst_embedding_dim=256,
gst_num_heads=4,
@ -40,39 +41,46 @@ class Tacotron(TacotronAbstract):
location_attn, attn_K, separate_stopnet,
bidirectional_decoder, double_decoder_consistency,
ddc_r, gst)
# init layer dims
decoder_in_features = 256
encoder_in_features = 256
speaker_embedding_dim = 256
proj_speaker_dim = 80 if num_speakers > 1 else 0
if speaker_embedding_dim is None:
# if speaker_embedding_dim is None we need use the nn.Embedding, with default speaker_embedding_dim
self.embeddings_per_sample = False
speaker_embedding_dim = 256
else:
# if speaker_embedding_dim is not None we need use speaker embedding per sample
self.embeddings_per_sample = True
# speaker and gst embeddings is concat in decoder input
if num_speakers > 1:
decoder_in_features = decoder_in_features + speaker_embedding_dim # add speaker embedding dim
if self.gst:
decoder_in_features = decoder_in_features + gst_embedding_dim # add gst embedding dim
# base model layers
# embedding layer
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
# speaker embedding layers
if num_speakers > 1:
if not self.embeddings_per_sample:
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
# base model layers
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(encoder_in_features)
self.decoder = Decoder(decoder_in_features, decoder_output_dim, r,
memory_size, attn_type, attn_win, attn_norm,
prenet_type, prenet_dropout, forward_attn,
trans_agent, forward_attn_mask, location_attn,
attn_K, separate_stopnet, proj_speaker_dim)
attn_K, separate_stopnet)
self.postnet = PostCBHG(decoder_output_dim)
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
postnet_output_dim)
# speaker embedding layers
if num_speakers > 1:
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
self.speaker_project_mel = nn.Sequential(
nn.Linear(speaker_embedding_dim, proj_speaker_dim), nn.Tanh())
self.speaker_embeddings = None
self.speaker_embeddings_projected = None
# global style token layers
if self.gst:
self.gst_layer = GST(num_mel=80,
@ -88,10 +96,9 @@ class Tacotron(TacotronAbstract):
decoder_in_features, decoder_output_dim, ddc_r, memory_size,
attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask, location_attn,
attn_K, separate_stopnet, proj_speaker_dim)
attn_K, separate_stopnet)
def forward(self, characters, text_lengths, mel_specs, mel_lengths=None, speaker_ids=None):
def forward(self, characters, text_lengths, mel_specs, mel_lengths=None, speaker_ids=None, speaker_embeddings=None):
"""
Shapes:
- characters: B x T_in
@ -99,24 +106,27 @@ class Tacotron(TacotronAbstract):
- mel_specs: B x T_out x D
- speaker_ids: B x 1
"""
self._init_states()
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
# B x T_in x embed_dim
inputs = self.embedding(characters)
# B x speaker_embed_dim
if speaker_ids is not None:
self.compute_speaker_embedding(speaker_ids)
# B x T_in x encoder_in_features
encoder_outputs = self.encoder(inputs)
# sequence masking
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
# global style token
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
# speaker embedding
if self.num_speakers > 1:
encoder_outputs = self._concat_speaker_embedding(
encoder_outputs, self.speaker_embeddings)
if not self.embeddings_per_sample:
# B x 1 x speaker_embed_dim
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
else:
# B x 1 x speaker_embed_dim
speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
# decoder_outputs: B x decoder_in_features x T_out
# alignments: B x T_in x encoder_in_features
# stop_tokens: B x T_in
@ -143,19 +153,22 @@ class Tacotron(TacotronAbstract):
return decoder_outputs, postnet_outputs, alignments, stop_tokens
@torch.no_grad()
def inference(self, characters, speaker_ids=None, style_mel=None):
def inference(self, characters, speaker_ids=None, style_mel=None, speaker_embeddings=None):
inputs = self.embedding(characters)
self._init_states()
if speaker_ids is not None:
self.compute_speaker_embedding(speaker_ids)
encoder_outputs = self.encoder(inputs)
if self.gst and style_mel is not None:
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if self.num_speakers > 1:
encoder_outputs = self._concat_speaker_embedding(
encoder_outputs, self.speaker_embeddings)
if not self.embeddings_per_sample:
# B x 1 x speaker_embed_dim
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
else:
# B x 1 x speaker_embed_dim
speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
decoder_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs, self.speaker_embeddings_projected)
encoder_outputs)
postnet_outputs = self.postnet(decoder_outputs)
postnet_outputs = self.last_linear(postnet_outputs)
decoder_outputs = decoder_outputs.transpose(1, 2)

View File

@ -27,6 +27,7 @@ class Tacotron2(TacotronAbstract):
bidirectional_decoder=False,
double_decoder_consistency=False,
ddc_r=None,
speaker_embedding_dim=None,
gst=False,
gst_embedding_dim=512,
gst_num_heads=4,
@ -41,25 +42,38 @@ class Tacotron2(TacotronAbstract):
ddc_r, gst)
# init layer dims
speaker_embedding_dim = 512 if num_speakers > 1 else 0
gst_embedding_dim = gst_embedding_dim if self.gst else 0
decoder_in_features = 512+speaker_embedding_dim+gst_embedding_dim
encoder_in_features = 512 if num_speakers > 1 else 512
proj_speaker_dim = 80 if num_speakers > 1 else 0
decoder_in_features = 512
encoder_in_features = 512
if speaker_embedding_dim is None:
# if speaker_embedding_dim is None we need use the nn.Embedding, with default speaker_embedding_dim
self.embeddings_per_sample = False
speaker_embedding_dim = 512
else:
# if speaker_embedding_dim is not None we need use speaker embedding per sample
self.embeddings_per_sample = True
# speaker and gst embeddings is concat in decoder input
if num_speakers > 1:
decoder_in_features = decoder_in_features + speaker_embedding_dim # add speaker embedding dim
if self.gst:
decoder_in_features = decoder_in_features + gst_embedding_dim # add gst embedding dim
# embedding layer
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
# speaker embedding layer
if num_speakers > 1:
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
if not self.embeddings_per_sample:
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
# base model layers
self.encoder = Encoder(encoder_in_features)
self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, attn_K, separate_stopnet, proj_speaker_dim)
location_attn, attn_K, separate_stopnet)
self.postnet = Postnet(self.postnet_output_dim)
# global style token layers
@ -77,7 +91,7 @@ class Tacotron2(TacotronAbstract):
decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
trans_agent, forward_attn_mask, location_attn, attn_K,
separate_stopnet, proj_speaker_dim)
separate_stopnet)
@staticmethod
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
@ -85,7 +99,7 @@ class Tacotron2(TacotronAbstract):
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
return mel_outputs, mel_outputs_postnet, alignments
def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None):
def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None, speaker_embeddings=None):
# compute mask for padding
# B x T_in_max (boolean)
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
@ -99,8 +113,13 @@ class Tacotron2(TacotronAbstract):
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
if self.num_speakers > 1:
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, embedded_speakers)
if not self.embeddings_per_sample:
# B x 1 x speaker_embed_dim
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
else:
# B x 1 x speaker_embed_dim
speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
@ -128,23 +147,18 @@ class Tacotron2(TacotronAbstract):
return decoder_outputs, postnet_outputs, alignments, stop_tokens
@torch.no_grad()
def inference(self, text, speaker_ids=None, style_mel=None):
def inference(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None):
embedded_inputs = self.embedding(text).transpose(1, 2)
encoder_outputs = self.encoder.inference(embedded_inputs)
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if self.num_speakers > 1:
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
else:
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
else:
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if not self.embeddings_per_sample:
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
decoder_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs)
@ -154,25 +168,21 @@ class Tacotron2(TacotronAbstract):
decoder_outputs, postnet_outputs, alignments)
return decoder_outputs, postnet_outputs, alignments, stop_tokens
def inference_truncated(self, text, speaker_ids=None, style_mel=None):
def inference_truncated(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None):
"""
Preserve model states for continuous inference
"""
embedded_inputs = self.embedding(text).transpose(1, 2)
encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if self.num_speakers > 1:
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
else:
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
else:
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if not self.embeddings_per_sample:
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
encoder_outputs)

View File

@ -44,7 +44,7 @@ def sequence_mask(sequence_length, max_len=None):
return seq_range_expand < seq_length_expand
def setup_model(num_chars, num_speakers, c):
def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
print(" > Using model: {}".format(c.model))
MyModel = importlib.import_module('mozilla_voice_tts.tts.models.' + c.model.lower())
MyModel = getattr(MyModel, c.model)
@ -72,7 +72,8 @@ def setup_model(num_chars, num_speakers, c):
separate_stopnet=c.separate_stopnet,
bidirectional_decoder=c.bidirectional_decoder,
double_decoder_consistency=c.double_decoder_consistency,
ddc_r=c.ddc_r)
ddc_r=c.ddc_r,
speaker_embedding_dim=speaker_embedding_dim)
elif c.model.lower() == "tacotron2":
model = MyModel(num_chars=num_chars,
num_speakers=num_speakers,
@ -96,7 +97,8 @@ def setup_model(num_chars, num_speakers, c):
separate_stopnet=c.separate_stopnet,
bidirectional_decoder=c.bidirectional_decoder,
double_decoder_consistency=c.double_decoder_consistency,
ddc_r=c.ddc_r)
ddc_r=c.ddc_r,
speaker_embedding_dim=speaker_embedding_dim)
return model
@ -175,7 +177,7 @@ def check_config(c):
check_argument('clip_norm', c['audio'], restricted=True, val_type=bool)
check_argument('mel_fmin', c['audio'], restricted=True, val_type=float, min_val=0.0, max_val=1000)
check_argument('mel_fmax', c['audio'], restricted=True, val_type=float, min_val=500.0)
check_argument('spec_gain', c['audio'], restricted=True, val_type=float, min_val=1, max_val=100)
check_argument('spec_gain', c['audio'], restricted=True, val_type=[int, float], min_val=1, max_val=100)
check_argument('do_trim_silence', c['audio'], restricted=True, val_type=bool)
check_argument('trim_db', c['audio'], restricted=True, val_type=int)
@ -246,10 +248,10 @@ def check_config(c):
# paths
check_argument('output_path', c, restricted=True, val_type=str)
# multi-speaker
# multi-speaker and gst
check_argument('use_speaker_embedding', c, restricted=True, val_type=bool)
# GST
check_argument('use_external_speaker_embedding_file', c, restricted=True, val_type=bool)
check_argument('external_speaker_embedding_file', c, restricted=True, val_type=str)
check_argument('use_gst', c, restricted=True, val_type=bool)
check_argument('gst_style_input', c, restricted=True, val_type=str)
check_argument('gst', c, restricted=True, val_type=dict)

View File

@ -10,12 +10,15 @@ def make_speakers_json_path(out_path):
def load_speaker_mapping(out_path):
"""Loads speaker mapping if already present."""
try:
with open(make_speakers_json_path(out_path)) as f:
if os.path.splitext(out_path)[1] == '.json':
json_file = out_path
else:
json_file = make_speakers_json_path(out_path)
with open(json_file) as f:
return json.load(f)
except FileNotFoundError:
return {}
def save_speaker_mapping(out_path, speaker_mapping):
"""Saves speaker mapping if not yet present."""
speakers_json_path = make_speakers_json_path(out_path)