hifigan implementation update

This commit is contained in:
Eren Gölge 2021-04-05 11:32:51 +02:00
parent a14d7bc5db
commit 8c9e1c9e58
6 changed files with 235 additions and 126 deletions

View File

@ -9,14 +9,20 @@ class ResStack(nn.Module):
resstack += [ resstack += [
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2),
nn.ReflectionPad1d(dilation), nn.ReflectionPad1d(dilation),
nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=kernel, dilation=dilation)), nn.utils.weight_norm(
nn.Conv1d(channel,
channel,
kernel_size=kernel,
dilation=dilation)),
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2),
nn.ReflectionPad1d(padding), nn.ReflectionPad1d(padding),
nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)), nn.utils.weight_norm(nn.Conv1d(channel, channel,
kernel_size=1)),
] ]
self.resstack = nn.Sequential(*resstack) self.resstack = nn.Sequential(*resstack)
self.shortcut = nn.utils.weight_norm(nn.Conv1d(channel, channel, kernel_size=1)) self.shortcut = nn.utils.weight_norm(
nn.Conv1d(channel, channel, kernel_size=1))
def forward(self, x): def forward(self, x):
x1 = self.shortcut(x) x1 = self.shortcut(x)
@ -32,12 +38,13 @@ class ResStack(nn.Module):
nn.utils.remove_weight_norm(self.resstack[14]) nn.utils.remove_weight_norm(self.resstack[14])
nn.utils.remove_weight_norm(self.resstack[17]) nn.utils.remove_weight_norm(self.resstack[17])
class MRF(nn.Module): class MRF(nn.Module):
def __init__(self, kernels, channel, dilations = [[1,1], [3,1], [5,1]]): def __init__(self, kernels, channel, dilations=[1, 3, 5]):
super(MRF, self).__init__() super().__init__()
self.resblock1 = ResStack(kernels[0], channel, 0) self.resblock1 = ResStack(kernels[0], channel, 0, dilations)
self.resblock2 = ResStack(kernels[1], channel, 6) self.resblock2 = ResStack(kernels[1], channel, 6, dilations)
self.resblock3 = ResStack(kernels[2], channel, 12) self.resblock3 = ResStack(kernels[2], channel, 12, dilations)
def forward(self, x): def forward(self, x):
x1 = self.resblock1(x) x1 = self.resblock1(x)

View File

@ -1,71 +1,174 @@
import torch import torch
from torch import nn import torch.nn.functional as F
from TTS.vocoder.layers.hifigan import MRF import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
LRELU_SLOPE = 0.1
class HifiganGenerator(nn.Module): def get_padding(k, d):
return int((k * d - d) / 2)
def __init__(self, in_channels=80, out_channels=1, base_channels=512, upsample_kernel=[16, 16, 4, 4],
resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[1, 3, 5]):
super(HifiganGenerator, self).__init__()
self.inference_padding = 2 class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.input = nn.Sequential( self.convs2 = nn.ModuleList([
nn.ReflectionPad1d(3), weight_norm(
nn.utils.weight_norm(nn.Conv1d(in_channels, base_channels, kernel_size=7)) Conv1d(channels,
) channels,
kernel_size,
generator = [] 1,
dilation=1,
for k in upsample_kernel: padding=get_padding(kernel_size, 1))),
inp = base_channels weight_norm(
out = int(inp / 2) Conv1d(channels,
generator += [ channels,
nn.LeakyReLU(0.2), kernel_size,
nn.utils.weight_norm(nn.ConvTranspose1d(inp, out, k, k//2)), 1,
MRF(resblock_kernel_sizes, out, resblock_dilation_sizes) dilation=1,
] padding=get_padding(kernel_size, 1))),
base_channels = out weight_norm(
self.generator = nn.Sequential(*generator) Conv1d(channels,
channels,
self.output = nn.Sequential( kernel_size,
nn.LeakyReLU(0.2), 1,
nn.ReflectionPad1d(3), dilation=1,
nn.utils.weight_norm(nn.Conv1d(base_channels, out_channels, kernel_size=7, stride=1)), padding=get_padding(kernel_size, 1)))
nn.Tanh() ])
)
def forward(self, x): def forward(self, x):
x1 = self.input(x) for c1, c2 in zip(self.convs1, self.convs2):
x2 = self.generator(x1) xt = F.leaky_relu(x, LRELU_SLOPE)
out = self.output(x2) xt = c1(xt)
return out xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super().__init__()
self.convs = nn.ModuleList([
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class HifiganGenerator(torch.nn.Module):
def __init__(self, in_channels, out_channels, resblock_type, resblock_dilation_sizes,
resblock_kernel_sizes, upsample_kernel_sizes,
upsample_initial_channel, upsample_factors):
super().__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_factors)
self.conv_pre = weight_norm(
Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
resblock = ResBlock1 if resblock_type == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_factors,
upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(upsample_initial_channel // (2**i),
upsample_initial_channel // (2**(i + 1)),
k,
u,
padding=(k - u) // 2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2**(i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3))
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def inference(self, c): def inference(self, c):
c = c.to(self.layers[1].weight.device) c = c.to(self.conv_pre.weight.device)
c = torch.nn.functional.pad( c = torch.nn.functional.pad(
c, c, (self.inference_padding, self.inference_padding), 'replicate')
(self.inference_padding, self.inference_padding),
'replicate')
return self.forward(c) return self.forward(c)
def remove_weight_norm(self): def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input[1]) print('Removing weight norm...')
nn.utils.remove_weight_norm(self.output[2]) for l in self.ups:
remove_weight_norm(l)
for idx, layer in enumerate(self.generator): for l in self.resblocks:
if len(layer.state_dict()) != 0: l.remove_weight_norm()
try: remove_weight_norm(self.conv_pre)
nn.utils.remove_weight_norm(layer) remove_weight_norm(self.conv_post)
except:
layer.remove_weight_norm()
def load_checkpoint(self, config, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
self.load_state_dict(state['model'])
if eval:
self.eval()
assert not self.training
self.remove_weight_norm()

View File

@ -10,7 +10,9 @@ class MelganDiscriminator(nn.Module):
kernel_sizes=(5, 3), kernel_sizes=(5, 3),
base_channels=16, base_channels=16,
max_channels=1024, max_channels=1024,
downsample_factors=(4, 4, 4, 4)): downsample_factors=(4, 4, 4, 4),
groups_denominator=4,
max_groups=256):
super(MelganDiscriminator, self).__init__() super(MelganDiscriminator, self).__init__()
self.layers = nn.ModuleList() self.layers = nn.ModuleList()
@ -35,7 +37,7 @@ class MelganDiscriminator(nn.Module):
max_channels) max_channels)
layer_kernel_size = downsample_factor * 10 + 1 layer_kernel_size = downsample_factor * 10 + 1
layer_padding = (layer_kernel_size - 1) // 2 layer_padding = (layer_kernel_size - 1) // 2
layer_groups = layer_in_channels // 4 layer_groups = layer_in_channels // groups_denominator
self.layers += [ self.layers += [
nn.Sequential( nn.Sequential(
weight_norm( weight_norm(

View File

@ -14,7 +14,9 @@ class MelganMultiscaleDiscriminator(nn.Module):
downsample_factors=(4, 4, 4), downsample_factors=(4, 4, 4),
pooling_kernel_size=4, pooling_kernel_size=4,
pooling_stride=2, pooling_stride=2,
pooling_padding=1): pooling_padding=2,
groups_denominator=4,
max_groups=256):
super(MelganMultiscaleDiscriminator, self).__init__() super(MelganMultiscaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([ self.discriminators = nn.ModuleList([
@ -23,12 +25,16 @@ class MelganMultiscaleDiscriminator(nn.Module):
kernel_sizes=kernel_sizes, kernel_sizes=kernel_sizes,
base_channels=base_channels, base_channels=base_channels,
max_channels=max_channels, max_channels=max_channels,
downsample_factors=downsample_factors) downsample_factors=downsample_factors,
groups_denominator=groups_denominator,
max_groups=max_groups)
for _ in range(num_scales) for _ in range(num_scales)
]) ])
self.pooling = nn.AvgPool1d(kernel_size=pooling_kernel_size, stride=pooling_stride, padding=pooling_padding, count_include_pad=False) self.pooling = nn.AvgPool1d(kernel_size=pooling_kernel_size,
stride=pooling_stride,
padding=pooling_padding,
count_include_pad=False)
def forward(self, x): def forward(self, x):
scores = list() scores = list()

View File

@ -2,8 +2,8 @@ from torch import nn
import torch.nn.functional as F import torch.nn.functional as F
from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator
class PeriodDiscriminator(nn.Module):
class PeriodDiscriminator(nn.Module):
def __init__(self, period): def __init__(self, period):
super(PeriodDiscriminator, self).__init__() super(PeriodDiscriminator, self).__init__()
layer = [] layer = []
@ -12,7 +12,8 @@ class PeriodDiscriminator(nn.Module):
for l in range(4): for l in range(4):
out = int(2**(5 + l + 1)) out = int(2**(5 + l + 1))
layer += [ layer += [
nn.utils.weight_norm(nn.Conv2d(inp, out, kernel_size=(5, 1), stride=(3, 1))), nn.utils.weight_norm(
nn.Conv2d(inp, out, kernel_size=(5, 1), stride=(3, 1))),
nn.LeakyReLU(0.2) nn.LeakyReLU(0.2)
] ]
inp = out inp = out
@ -20,8 +21,7 @@ class PeriodDiscriminator(nn.Module):
self.output = nn.Sequential( self.output = nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(out, 1024, kernel_size=(5, 1))), nn.utils.weight_norm(nn.Conv2d(out, 1024, kernel_size=(5, 1))),
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))) nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))))
)
def forward(self, x): def forward(self, x):
batch_size = x.shape[0] batch_size = x.shape[0]
@ -33,21 +33,22 @@ class PeriodDiscriminator(nn.Module):
return self.output(out1) return self.output(out1)
class MultiPeriodDiscriminator(nn.Module): class HifiDiscriminator(nn.Module):
def __init__(self, def __init__(self,
periods=[2, 3, 5, 7, 11], periods=[2, 3, 5, 7, 11],
in_channels=1, in_channels=1,
out_channels=1, out_channels=1,
num_scales=3, num_scales=3,
kernel_sizes=(5, 3), kernel_sizes=(5, 3),
base_channels=16, base_channels=64,
max_channels=1024, max_channels=1024,
downsample_factors=(4, 4, 4), downsample_factors=(2, 2, 4, 4),
pooling_kernel_size=4, pooling_kernel_size=4,
pooling_stride=2, pooling_stride=2,
pooling_padding=1): pooling_padding=1):
super(MultiPeriodDiscriminator, self).__init__() super().__init__()
self.discriminators = nn.ModuleList([ PeriodDiscriminator(periods[0]), self.discriminators = nn.ModuleList([
PeriodDiscriminator(periods[0]),
PeriodDiscriminator(periods[1]), PeriodDiscriminator(periods[1]),
PeriodDiscriminator(periods[2]), PeriodDiscriminator(periods[2]),
PeriodDiscriminator(periods[3]), PeriodDiscriminator(periods[3]),
@ -64,8 +65,9 @@ class MultiPeriodDiscriminator(nn.Module):
downsample_factors=downsample_factors, downsample_factors=downsample_factors,
pooling_kernel_size=pooling_kernel_size, pooling_kernel_size=pooling_kernel_size,
pooling_stride=pooling_stride, pooling_stride=pooling_stride,
pooling_padding=pooling_padding pooling_padding=pooling_padding,
) groups_denominator=32,
max_groups=16)
def forward(self, x): def forward(self, x):
scores, feats = self.msd(x) scores, feats = self.msd(x)

View File

@ -95,11 +95,8 @@ def setup_generator(c):
model = MyModel( model = MyModel(
in_channels=c.audio['num_mels'], in_channels=c.audio['num_mels'],
out_channels=1, out_channels=1,
base_channels=c.generator_model_params['upsample_initial_channel'], **c.generator_model_params)
upsample_kernel=c.generator_model_params['upsample_kernel_sizes'], if c.generator_model.lower() in 'melgan_generator':
resblock_kernel_sizes=c.generator_model_params['resblock_kernel_sizes'],
resblock_dilation_sizes=c.generator_model_params['resblock_dilation_sizes'])
elif c.generator_model.lower() in 'melgan_generator':
model = MyModel( model = MyModel(
in_channels=c.audio['num_mels'], in_channels=c.audio['num_mels'],
out_channels=1, out_channels=1,
@ -170,16 +167,8 @@ def setup_discriminator(c):
MyModel = importlib.import_module('TTS.vocoder.models.' + MyModel = importlib.import_module('TTS.vocoder.models.' +
c.discriminator_model.lower()) c.discriminator_model.lower())
MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower())) MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower()))
if c.discriminator_model in 'multi_period_discriminator': if c.discriminator_model in 'hifigan_discriminator':
model = MyModel( model = MyModel()
periods=c.discriminator_model_params['peroids'],
in_channels=1,
out_channels=1,
kernel_sizes=(5, 3),
base_channels=c.discriminator_model_params['base_channels'],
max_channels=c.discriminator_model_params['max_channels'],
downsample_factors=c.
discriminator_model_params['downsample_factors'])
if c.discriminator_model in 'random_window_discriminator': if c.discriminator_model in 'random_window_discriminator':
model = MyModel( model = MyModel(
cond_channels=c.audio['num_mels'], cond_channels=c.audio['num_mels'],