diff --git a/TTS/tts/layers/vits/discriminator.py b/TTS/tts/layers/vits/discriminator.py index 148f283c..4aba36df 100644 --- a/TTS/tts/layers/vits/discriminator.py +++ b/TTS/tts/layers/vits/discriminator.py @@ -2,7 +2,7 @@ import torch from torch import nn from torch.nn.modules.conv import Conv1d -from TTS.vocoder.models.hifigan_discriminator import DiscriminatorP, MultiPeriodDiscriminator +from TTS.vocoder.models.hifigan_discriminator import DiscriminatorP class DiscriminatorS(torch.nn.Module): @@ -12,19 +12,19 @@ class DiscriminatorS(torch.nn.Module): use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. """ - def __init__(self, use_spectral_norm=False): + def __init__(self, use_spectral_norm=False, upsampling_rates=[4, 4, 4, 4]): super().__init__() norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm - self.convs = nn.ModuleList( - [ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ] - ) + self.convs = nn.ModuleList([norm_f(Conv1d(1, 16, 15, 1, padding=7))]) + groups = 4 + in_channels = 16 + out_channels = 64 + for rate in upsampling_rates: + self.convs.append(norm_f(Conv1d(in_channels, out_channels, 41, rate, groups=groups, padding=20))) + groups = min(groups * rate, 256) + in_channels = min(in_channels * rate, 1024) + out_channels = min(out_channels * rate, 1024) + self.convs += [norm_f(Conv1d(1024, 1024, 5, 1, padding=2))] self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): @@ -58,10 +58,10 @@ class VitsDiscriminator(nn.Module): use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm. """ - def __init__(self, periods=(2, 3, 5, 7, 11), use_spectral_norm=False): + def __init__(self, use_spectral_norm=False, periods=[2, 3, 5, 7, 11], upsampling_rates=[4,4,4,4]): super().__init__() self.nets = nn.ModuleList() - self.nets.append(DiscriminatorS(use_spectral_norm=use_spectral_norm)) + self.nets.append(DiscriminatorS(use_spectral_norm=use_spectral_norm, upsampling_rates=upsampling_rates)) self.nets.extend([DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]) def forward(self, x, x_hat=None):