diff --git a/TTS/tts/layers/bark/load_model.py b/TTS/tts/layers/bark/load_model.py index 33144ed5..ce6b757f 100644 --- a/TTS/tts/layers/bark/load_model.py +++ b/TTS/tts/layers/bark/load_model.py @@ -37,12 +37,6 @@ if not hasattr(torch.nn.functional, "scaled_dot_product_attention"): ) -# def _string_md5(s): -# m = hashlib.md5() -# m.update(s.encode("utf-8")) -# return m.hexdigest() - - def _md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: @@ -51,20 +45,6 @@ def _md5(fname): return hash_md5.hexdigest() -# def _get_ckpt_path(model_type, CACHE_DIR): -# model_name = _string_md5(REMOTE_MODEL_PATHS[model_type]["path"]) -# return os.path.join(CACHE_DIR, f"{model_name}.pt") - - -# S3_BUCKET_PATH_RE = r"s3\:\/\/(.+?)\/" - - -# def _parse_s3_filepath(s3_filepath): -# bucket_name = re.search(S3_BUCKET_PATH_RE, s3_filepath).group(1) -# rel_s3_filepath = re.sub(S3_BUCKET_PATH_RE, "", s3_filepath) -# return bucket_name, rel_s3_filepath - - def _download(from_s3_path, to_local_path, CACHE_DIR): os.makedirs(CACHE_DIR, exist_ok=True) response = requests.get(from_s3_path, stream=True) @@ -111,15 +91,6 @@ def clear_cuda_cache(): torch.cuda.synchronize() -# def clean_models(model_key=None): -# global models -# model_keys = [model_key] if model_key is not None else models.keys() -# for k in model_keys: -# if k in models: -# del models[k] -# clear_cuda_cache() - - def load_model(ckpt_path, device, config, model_type="text"): logger.info(f"loading {model_type} model from {ckpt_path}...") @@ -187,61 +158,3 @@ def load_model(ckpt_path, device, config, model_type="text"): del checkpoint, state_dict clear_cuda_cache() return model, config - - -# def _load_codec_model(device): -# model = EncodecModel.encodec_model_24khz() -# model.set_target_bandwidth(6.0) -# model.eval() -# model.to(device) -# clear_cuda_cache() -# return model - - -# def load_model(ckpt_path=None, use_gpu=True, force_reload=False, model_type="text"): -# _load_model_f = functools.partial(_load_model, model_type=model_type) -# if model_type not in ("text", "coarse", "fine"): -# raise NotImplementedError() -# global models -# if torch.cuda.device_count() == 0 or not use_gpu: -# device = "cpu" -# else: -# device = "cuda" -# model_key = str(device) + f"__{model_type}" -# if model_key not in models or force_reload: -# if ckpt_path is None: -# ckpt_path = _get_ckpt_path(model_type) -# clean_models(model_key=model_key) -# model = _load_model_f(ckpt_path, device) -# models[model_key] = model -# return models[model_key] - - -# def load_codec_model(use_gpu=True, force_reload=False): -# global models -# if torch.cuda.device_count() == 0 or not use_gpu: -# device = "cpu" -# else: -# device = "cuda" -# model_key = str(device) + f"__codec" -# if model_key not in models or force_reload: -# clean_models(model_key=model_key) -# model = _load_codec_model(device) -# models[model_key] = model -# return models[model_key] - - -# def preload_models( -# text_ckpt_path=None, coarse_ckpt_path=None, fine_ckpt_path=None, use_gpu=True, use_smaller_models=False -# ): -# global USE_SMALLER_MODELS -# global REMOTE_MODEL_PATHS -# if use_smaller_models: -# USE_SMALLER_MODELS = True -# logger.info("Using smaller models generation.py") -# REMOTE_MODEL_PATHS = SMALL_REMOTE_MODEL_PATHS - -# _ = load_model(ckpt_path=text_ckpt_path, model_type="text", use_gpu=use_gpu, force_reload=True) -# _ = load_model(ckpt_path=coarse_ckpt_path, model_type="coarse", use_gpu=use_gpu, force_reload=True) -# _ = load_model(ckpt_path=fine_ckpt_path, model_type="fine", use_gpu=use_gpu, force_reload=True) -# _ = load_codec_model(use_gpu=use_gpu, force_reload=True)