Delete trainer_utils

This commit is contained in:
Eren Gölge 2022-02-20 11:51:03 +01:00
parent d0c27a9661
commit 935a604046
1 changed files with 0 additions and 150 deletions

View File

@ -1,150 +0,0 @@
import importlib
import os
import re
from typing import Dict, List, Tuple
from urllib.parse import urlparse
import fsspec
import torch
from TTS.utils.io import load_fsspec
from TTS.utils.training import NoamLR
def is_apex_available():
return importlib.util.find_spec("apex") is not None
def setup_torch_training_env(cudnn_enable: bool, cudnn_benchmark: bool, use_ddp: bool = False) -> Tuple[bool, int]:
"""Setup PyTorch environment for training.
Args:
cudnn_enable (bool): Enable/disable CUDNN.
cudnn_benchmark (bool): Enable/disable CUDNN benchmarking. Better to set to False if input sequence length is
variable between batches.
use_ddp (bool): DDP flag. True if DDP is enabled, False otherwise.
Returns:
Tuple[bool, int]: is cuda on or off and number of GPUs in the environment.
"""
num_gpus = torch.cuda.device_count()
if num_gpus > 1 and not use_ddp:
raise RuntimeError(
f" [!] {num_gpus} active GPUs. Define the target GPU by `CUDA_VISIBLE_DEVICES`. For multi-gpu training use `TTS/bin/distribute.py`."
)
torch.backends.cudnn.enabled = cudnn_enable
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)
return use_cuda, num_gpus
def get_scheduler(
lr_scheduler: str, lr_scheduler_params: Dict, optimizer: torch.optim.Optimizer
) -> torch.optim.lr_scheduler._LRScheduler: # pylint: disable=protected-access
"""Find, initialize and return a scheduler.
Args:
lr_scheduler (str): Scheduler name.
lr_scheduler_params (Dict): Scheduler parameters.
optimizer (torch.optim.Optimizer): Optimizer to pass to the scheduler.
Returns:
torch.optim.lr_scheduler._LRScheduler: Functional scheduler.
"""
if lr_scheduler is None:
return None
if lr_scheduler.lower() == "noamlr":
scheduler = NoamLR
else:
scheduler = getattr(torch.optim.lr_scheduler, lr_scheduler)
return scheduler(optimizer, **lr_scheduler_params)
def get_optimizer(
optimizer_name: str, optimizer_params: dict, lr: float, model: torch.nn.Module = None, parameters: List = None
) -> torch.optim.Optimizer:
"""Find, initialize and return a optimizer.
Args:
optimizer_name (str): Optimizer name.
optimizer_params (dict): Optimizer parameters.
lr (float): Initial learning rate.
model (torch.nn.Module): Model to pass to the optimizer.
Returns:
torch.optim.Optimizer: Functional optimizer.
"""
if optimizer_name.lower() == "radam":
module = importlib.import_module("TTS.utils.radam")
optimizer = getattr(module, "RAdam")
else:
optimizer = getattr(torch.optim, optimizer_name)
if model is not None:
parameters = model.parameters()
return optimizer(parameters, lr=lr, **optimizer_params)
def get_last_checkpoint(path: str) -> Tuple[str, str]:
"""Get latest checkpoint or/and best model in path.
It is based on globbing for `*.pth.tar` and the RegEx
`(checkpoint|best_model)_([0-9]+)`.
Args:
path: Path to files to be compared.
Raises:
ValueError: If no checkpoint or best_model files are found.
Returns:
Path to the last checkpoint
Path to best checkpoint
"""
fs = fsspec.get_mapper(path).fs
file_names = fs.glob(os.path.join(path, "*.pth.tar"))
scheme = urlparse(path).scheme
if scheme: # scheme is not preserved in fs.glob, add it back
file_names = [scheme + "://" + file_name for file_name in file_names]
last_models = {}
last_model_nums = {}
for key in ["checkpoint", "best_model"]:
last_model_num = None
last_model = None
# pass all the checkpoint files and find
# the one with the largest model number suffix.
for file_name in file_names:
match = re.search(f"{key}_([0-9]+)", file_name)
if match is not None:
model_num = int(match.groups()[0])
if last_model_num is None or model_num > last_model_num:
last_model_num = model_num
last_model = file_name
# if there is no checkpoint found above
# find the checkpoint with the latest
# modification date.
key_file_names = [fn for fn in file_names if key in fn]
if last_model is None and len(key_file_names) > 0:
last_model = max(key_file_names, key=os.path.getctime)
last_model_num = load_fsspec(last_model)["step"]
if last_model is not None:
last_models[key] = last_model
last_model_nums[key] = last_model_num
# check what models were found
if not last_models:
raise ValueError(f"No models found in continue path {path}!")
if "checkpoint" not in last_models: # no checkpoint just best model
last_models["checkpoint"] = last_models["best_model"]
elif "best_model" not in last_models: # no best model
# this shouldn't happen, but let's handle it just in case
last_models["best_model"] = last_models["checkpoint"]
# finally check if last best model is more recent than checkpoint
elif last_model_nums["best_model"] > last_model_nums["checkpoint"]:
last_models["checkpoint"] = last_models["best_model"]
return last_models["checkpoint"], last_models["best_model"]