mirror of https://github.com/coqui-ai/TTS.git
move split_dataset
This commit is contained in:
parent
9c18e40f64
commit
93a00373f6
|
@ -2,19 +2,41 @@ import os
|
|||
import re
|
||||
import sys
|
||||
import xml.etree.ElementTree as ET
|
||||
from collections import Counter
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from TTS.tts.utils.generic_utils import split_dataset
|
||||
|
||||
####################
|
||||
# UTILITIES
|
||||
####################
|
||||
|
||||
|
||||
def split_dataset(items):
|
||||
speakers = [item[-1] for item in items]
|
||||
is_multi_speaker = len(set(speakers)) > 1
|
||||
eval_split_size = min(500, int(len(items) * 0.01))
|
||||
assert eval_split_size > 0, " [!] You do not have enough samples to train. You need at least 100 samples."
|
||||
np.random.seed(0)
|
||||
np.random.shuffle(items)
|
||||
if is_multi_speaker:
|
||||
items_eval = []
|
||||
speakers = [item[-1] for item in items]
|
||||
speaker_counter = Counter(speakers)
|
||||
while len(items_eval) < eval_split_size:
|
||||
item_idx = np.random.randint(0, len(items))
|
||||
speaker_to_be_removed = items[item_idx][-1]
|
||||
if speaker_counter[speaker_to_be_removed] > 1:
|
||||
items_eval.append(items[item_idx])
|
||||
speaker_counter[speaker_to_be_removed] -= 1
|
||||
del items[item_idx]
|
||||
return items_eval, items
|
||||
return items[:eval_split_size], items[eval_split_size:]
|
||||
|
||||
|
||||
def load_meta_data(datasets, eval_split=True):
|
||||
meta_data_train_all = []
|
||||
meta_data_eval_all = [] if eval_split else None
|
||||
|
@ -38,7 +60,7 @@ def load_meta_data(datasets, eval_split=True):
|
|||
meta_data_train_all += meta_data_train
|
||||
# load attention masks for duration predictor training
|
||||
if dataset.meta_file_attn_mask is not None:
|
||||
meta_data = dict(load_attention_mask_meta_data(dataset['meta_file_attn_mask']))
|
||||
meta_data = dict(load_attention_mask_meta_data(dataset["meta_file_attn_mask"]))
|
||||
for idx, ins in enumerate(meta_data_train_all):
|
||||
attn_file = meta_data[ins[1]].strip()
|
||||
meta_data_train_all[idx].append(attn_file)
|
||||
|
|
|
@ -1,32 +1,8 @@
|
|||
import importlib
|
||||
import re
|
||||
from collections import Counter
|
||||
import torch
|
||||
|
||||
from TTS.utils.generic_utils import find_module
|
||||
|
||||
|
||||
def split_dataset(items):
|
||||
speakers = [item[-1] for item in items]
|
||||
is_multi_speaker = len(set(speakers)) > 1
|
||||
eval_split_size = min(500, int(len(items) * 0.01))
|
||||
assert eval_split_size > 0, " [!] You do not have enough samples to train. You need at least 100 samples."
|
||||
np.random.seed(0)
|
||||
np.random.shuffle(items)
|
||||
if is_multi_speaker:
|
||||
items_eval = []
|
||||
speakers = [item[-1] for item in items]
|
||||
speaker_counter = Counter(speakers)
|
||||
while len(items_eval) < eval_split_size:
|
||||
item_idx = np.random.randint(0, len(items))
|
||||
speaker_to_be_removed = items[item_idx][-1]
|
||||
if speaker_counter[speaker_to_be_removed] > 1:
|
||||
items_eval.append(items[item_idx])
|
||||
speaker_counter[speaker_to_be_removed] -= 1
|
||||
del items[item_idx]
|
||||
return items_eval, items
|
||||
return items[:eval_split_size], items[eval_split_size:]
|
||||
|
||||
|
||||
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
|
||||
def sequence_mask(sequence_length, max_len=None):
|
||||
if max_len is None:
|
||||
|
|
Loading…
Reference in New Issue