diff --git a/config_cluster.json b/config_cluster.json index fe227a01..d8b066d7 100644 --- a/config_cluster.json +++ b/config_cluster.json @@ -1,6 +1,6 @@ { "run_name": "mozilla-nomask-fattn-bn", - "run_description": "Finetune 4700 orignal -> bn prenet - Mozilla with prenet bn, no mask, forward attn, batch group size 0", + "run_description": "Finetune 4702 orignal -> bn prenet - Mozilla with prenet bn, no mask, batch group size 0", "audio":{ // Audio processing parameters @@ -41,7 +41,7 @@ "memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5. "attention_norm": "softmax", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron. "prenet_type": "bn", // ONLY TACOTRON2 - "original" or "bn". - "use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster. + "use_forward_attn": false, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster. "transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention. "loss_masking": false, // enable / disable loss masking against the sequence padding. "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. @@ -56,11 +56,11 @@ "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "batch_group_size": 0, //Number of batches to shuffle after bucketing. - "run_eval": false, - "test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time. + "run_eval": true, + "test_delay_epochs": 1, //Until attention is aligned, testing only wastes computation time. "data_path": "/media/erogol/data_ssd/Data/LJSpeech-1.1", // DATASET-RELATED: can overwritten from command argument - "meta_file_train": "prompts_train.data", // DATASET-RELATED: metafile for training dataloader. - "meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader. + "meta_file_train": "metadata.txt", // DATASET-RELATED: metafile for training dataloader. + "meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader. "dataset": "mozilla", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training "max_seq_len": 150, // DATASET-RELATED: maximum text length