mirror of https://github.com/coqui-ai/TTS.git
feat(openvoice): add config classes
This commit is contained in:
parent
b97d5378a5
commit
95998374bf
|
@ -229,7 +229,7 @@ class FreeVCConfig(BaseVCConfig):
|
|||
If true, language embedding is used. Defaults to `False`.
|
||||
|
||||
Note:
|
||||
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
|
||||
Check :class:`TTS.tts.configs.shared_configs.BaseVCConfig` for the inherited parameters.
|
||||
|
||||
Example:
|
||||
|
||||
|
|
|
@ -0,0 +1,201 @@
|
|||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
from coqpit import Coqpit
|
||||
|
||||
from TTS.vc.configs.shared_configs import BaseVCConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class OpenVoiceAudioConfig(Coqpit):
|
||||
"""Audio configuration
|
||||
|
||||
Args:
|
||||
input_sample_rate (int):
|
||||
The sampling rate of the input waveform.
|
||||
|
||||
output_sample_rate (int):
|
||||
The sampling rate of the output waveform.
|
||||
|
||||
fft_size (int):
|
||||
The length of the filter.
|
||||
|
||||
hop_length (int):
|
||||
The hop length.
|
||||
|
||||
win_length (int):
|
||||
The window length.
|
||||
"""
|
||||
|
||||
input_sample_rate: int = field(default=22050)
|
||||
output_sample_rate: int = field(default=22050)
|
||||
fft_size: int = field(default=1024)
|
||||
hop_length: int = field(default=256)
|
||||
win_length: int = field(default=1024)
|
||||
|
||||
|
||||
@dataclass
|
||||
class OpenVoiceArgs(Coqpit):
|
||||
"""OpenVoice model arguments.
|
||||
|
||||
zero_g (bool):
|
||||
Whether to zero the gradients.
|
||||
|
||||
inter_channels (int):
|
||||
The number of channels in the intermediate layers.
|
||||
|
||||
hidden_channels (int):
|
||||
The number of channels in the hidden layers.
|
||||
|
||||
filter_channels (int):
|
||||
The number of channels in the filter layers.
|
||||
|
||||
n_heads (int):
|
||||
The number of attention heads.
|
||||
|
||||
n_layers (int):
|
||||
The number of layers.
|
||||
|
||||
kernel_size (int):
|
||||
The size of the kernel.
|
||||
|
||||
p_dropout (float):
|
||||
The dropout probability.
|
||||
|
||||
resblock (str):
|
||||
The type of residual block.
|
||||
|
||||
resblock_kernel_sizes (List[int]):
|
||||
The kernel sizes for the residual blocks.
|
||||
|
||||
resblock_dilation_sizes (List[List[int]]):
|
||||
The dilation sizes for the residual blocks.
|
||||
|
||||
upsample_rates (List[int]):
|
||||
The upsample rates.
|
||||
|
||||
upsample_initial_channel (int):
|
||||
The number of channels in the initial upsample layer.
|
||||
|
||||
upsample_kernel_sizes (List[int]):
|
||||
The kernel sizes for the upsample layers.
|
||||
|
||||
n_layers_q (int):
|
||||
The number of layers in the quantization network.
|
||||
|
||||
use_spectral_norm (bool):
|
||||
Whether to use spectral normalization.
|
||||
|
||||
gin_channels (int):
|
||||
The number of channels in the global conditioning vector.
|
||||
|
||||
tau (float):
|
||||
Tau parameter for the posterior encoder
|
||||
"""
|
||||
|
||||
zero_g: bool = field(default=True)
|
||||
inter_channels: int = field(default=192)
|
||||
hidden_channels: int = field(default=192)
|
||||
filter_channels: int = field(default=768)
|
||||
n_heads: int = field(default=2)
|
||||
n_layers: int = field(default=6)
|
||||
kernel_size: int = field(default=3)
|
||||
p_dropout: float = field(default=0.1)
|
||||
resblock: str = field(default="1")
|
||||
resblock_kernel_sizes: list[int] = field(default_factory=lambda: [3, 7, 11])
|
||||
resblock_dilation_sizes: list[list[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
||||
upsample_rates: list[int] = field(default_factory=lambda: [8, 8, 2, 2])
|
||||
upsample_initial_channel: int = field(default=512)
|
||||
upsample_kernel_sizes: list[int] = field(default_factory=lambda: [16, 16, 4, 4])
|
||||
n_layers_q: int = field(default=3)
|
||||
use_spectral_norm: bool = field(default=False)
|
||||
gin_channels: int = field(default=256)
|
||||
tau: float = field(default=0.3)
|
||||
|
||||
|
||||
@dataclass
|
||||
class OpenVoiceConfig(BaseVCConfig):
|
||||
"""Defines parameters for OpenVoice VC model.
|
||||
|
||||
Args:
|
||||
model (str):
|
||||
Model name. Do not change unless you know what you are doing.
|
||||
|
||||
model_args (OpenVoiceArgs):
|
||||
Model architecture arguments. Defaults to `OpenVoiceArgs()`.
|
||||
|
||||
audio (OpenVoiceAudioConfig):
|
||||
Audio processing configuration. Defaults to `OpenVoiceAudioConfig()`.
|
||||
|
||||
return_wav (bool):
|
||||
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
||||
|
||||
compute_linear_spec (bool):
|
||||
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
||||
|
||||
use_weighted_sampler (bool):
|
||||
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
||||
|
||||
weighted_sampler_attrs (dict):
|
||||
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
||||
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
||||
|
||||
weighted_sampler_multipliers (dict):
|
||||
Weight each unique value of a key returned by the formatter for weighted sampling.
|
||||
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
||||
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
||||
|
||||
r (int):
|
||||
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
||||
|
||||
add_blank (bool):
|
||||
If true, a blank token is added in between every character. Defaults to `True`.
|
||||
|
||||
Note:
|
||||
Check :class:`TTS.tts.configs.shared_configs.BaseVCConfig` for the inherited parameters.
|
||||
|
||||
Example:
|
||||
|
||||
>>> from TTS.vc.configs.openvoice_config import OpenVoiceConfig
|
||||
>>> config = OpenVoiceConfig()
|
||||
"""
|
||||
|
||||
model: str = "openvoice"
|
||||
# model specific params
|
||||
model_args: OpenVoiceArgs = field(default_factory=OpenVoiceArgs)
|
||||
audio: OpenVoiceAudioConfig = field(default_factory=OpenVoiceAudioConfig)
|
||||
|
||||
# optimizer
|
||||
# TODO with training support
|
||||
|
||||
# loss params
|
||||
# TODO with training support
|
||||
|
||||
# data loader params
|
||||
return_wav: bool = True
|
||||
compute_linear_spec: bool = True
|
||||
|
||||
# sampler params
|
||||
use_weighted_sampler: bool = False # TODO: move it to the base config
|
||||
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
||||
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
||||
|
||||
# overrides
|
||||
r: int = 1 # DO NOT CHANGE
|
||||
add_blank: bool = True
|
||||
|
||||
# multi-speaker settings
|
||||
# use speaker embedding layer
|
||||
num_speakers: int = 0
|
||||
speakers_file: Optional[str] = None
|
||||
speaker_embedding_channels: int = 256
|
||||
|
||||
# use d-vectors
|
||||
use_d_vector_file: bool = False
|
||||
d_vector_file: Optional[list[str]] = None
|
||||
d_vector_dim: Optional[int] = None
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
for key, val in self.model_args.items():
|
||||
if hasattr(self, key):
|
||||
self[key] = val
|
Loading…
Reference in New Issue