mirror of https://github.com/coqui-ai/TTS.git
Add unit tests
This commit is contained in:
parent
c32082a62c
commit
984e2d66ac
|
@ -632,7 +632,10 @@ class Vits(BaseTTS):
|
|||
)
|
||||
|
||||
if self.args.init_discriminator:
|
||||
self.disc = VitsDiscriminator(periods=self.args.periods_multi_period_discriminator, use_spectral_norm=self.args.use_spectral_norm_disriminator)
|
||||
self.disc = VitsDiscriminator(
|
||||
periods=self.args.periods_multi_period_discriminator,
|
||||
use_spectral_norm=self.args.use_spectral_norm_disriminator,
|
||||
)
|
||||
|
||||
if self.args.TTS_part_sample_rate:
|
||||
self.interpolate_factor = self.config.audio["sample_rate"] / self.args.TTS_part_sample_rate
|
||||
|
|
|
@ -71,14 +71,6 @@ config.use_sdp = False
|
|||
# active language sampler
|
||||
config.use_language_weighted_sampler = True
|
||||
|
||||
# test upsample
|
||||
config.model_args.TTS_part_sample_rate = 11025
|
||||
config.model_args.interpolate_z = False
|
||||
config.model_args.detach_z_vocoder = True
|
||||
|
||||
config.model_args.upsample_rates_decoder = [8, 8, 4, 2]
|
||||
config.model_args.periods_multi_period_discriminator = [2, 3, 5, 7, 11, 13, 17, 19, 23]
|
||||
|
||||
config.save_json(config_path)
|
||||
|
||||
# train the model for one epoch
|
||||
|
|
|
@ -0,0 +1,90 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from trainer import get_last_checkpoint
|
||||
|
||||
from tests import get_device_id, get_tests_output_path, run_cli
|
||||
from TTS.tts.configs.vits_config import VitsConfig
|
||||
|
||||
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
|
||||
output_path = os.path.join(get_tests_output_path(), "train_outputs")
|
||||
|
||||
|
||||
config = VitsConfig(
|
||||
batch_size=2,
|
||||
eval_batch_size=2,
|
||||
num_loader_workers=0,
|
||||
num_eval_loader_workers=0,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1,
|
||||
print_step=1,
|
||||
print_eval=True,
|
||||
test_sentences=[
|
||||
["Be a voice, not an echo.", "ljspeech-1"],
|
||||
],
|
||||
)
|
||||
# set audio config
|
||||
config.audio.do_trim_silence = True
|
||||
config.audio.trim_db = 60
|
||||
|
||||
# active multispeaker d-vec mode
|
||||
config.model_args.use_speaker_embedding = True
|
||||
config.model_args.use_d_vector_file = False
|
||||
config.model_args.d_vector_file = None
|
||||
config.model_args.d_vector_dim = 256
|
||||
|
||||
|
||||
# test upsample interpolation approach
|
||||
config.model_args.TTS_part_sample_rate = 11025
|
||||
config.model_args.interpolate_z = True
|
||||
config.model_args.upsample_rates_decoder = [8, 8, 2, 2]
|
||||
config.model_args.periods_multi_period_discriminator = [2, 3, 5, 7]
|
||||
|
||||
|
||||
config.save_json(config_path)
|
||||
|
||||
# train the model for one epoch
|
||||
command_train = (
|
||||
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
|
||||
f"--coqpit.output_path {output_path} "
|
||||
"--coqpit.datasets.0.name ljspeech_test "
|
||||
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
||||
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
||||
"--coqpit.datasets.0.path tests/data/ljspeech "
|
||||
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
|
||||
"--coqpit.test_delay_epochs 0"
|
||||
)
|
||||
run_cli(command_train)
|
||||
|
||||
# Find latest folder
|
||||
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
||||
|
||||
# Inference using TTS API
|
||||
continue_config_path = os.path.join(continue_path, "config.json")
|
||||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
# restore the model and continue training for one more epoch
|
||||
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
|
||||
run_cli(command_train)
|
||||
shutil.rmtree(continue_path)
|
|
@ -0,0 +1,90 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from trainer import get_last_checkpoint
|
||||
|
||||
from tests import get_device_id, get_tests_output_path, run_cli
|
||||
from TTS.tts.configs.vits_config import VitsConfig
|
||||
|
||||
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
|
||||
output_path = os.path.join(get_tests_output_path(), "train_outputs")
|
||||
|
||||
|
||||
config = VitsConfig(
|
||||
batch_size=2,
|
||||
eval_batch_size=2,
|
||||
num_loader_workers=0,
|
||||
num_eval_loader_workers=0,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1,
|
||||
print_step=1,
|
||||
print_eval=True,
|
||||
test_sentences=[
|
||||
["Be a voice, not an echo.", "ljspeech-1"],
|
||||
],
|
||||
)
|
||||
# set audio config
|
||||
config.audio.do_trim_silence = True
|
||||
config.audio.trim_db = 60
|
||||
|
||||
# active multispeaker d-vec mode
|
||||
config.model_args.use_speaker_embedding = True
|
||||
config.model_args.use_d_vector_file = False
|
||||
config.model_args.d_vector_file = None
|
||||
config.model_args.d_vector_dim = 256
|
||||
|
||||
|
||||
# test upsample
|
||||
config.model_args.TTS_part_sample_rate = 11025
|
||||
config.model_args.interpolate_z = False
|
||||
config.model_args.upsample_rates_decoder = [8, 8, 4, 2]
|
||||
config.model_args.periods_multi_period_discriminator = [2, 3, 5, 7]
|
||||
|
||||
|
||||
config.save_json(config_path)
|
||||
|
||||
# train the model for one epoch
|
||||
command_train = (
|
||||
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
|
||||
f"--coqpit.output_path {output_path} "
|
||||
"--coqpit.datasets.0.name ljspeech_test "
|
||||
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
||||
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
||||
"--coqpit.datasets.0.path tests/data/ljspeech "
|
||||
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
|
||||
"--coqpit.test_delay_epochs 0"
|
||||
)
|
||||
run_cli(command_train)
|
||||
|
||||
# Find latest folder
|
||||
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
||||
|
||||
# Inference using TTS API
|
||||
continue_config_path = os.path.join(continue_path, "config.json")
|
||||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
# restore the model and continue training for one more epoch
|
||||
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
|
||||
run_cli(command_train)
|
||||
shutil.rmtree(continue_path)
|
Loading…
Reference in New Issue