Merge pull request #46 from idiap/fix-xtts-streaming

Fix XTTS streaming for transformers update
This commit is contained in:
Enno Hermann 2024-06-18 14:54:15 +01:00 committed by GitHub
commit 98c0f86cb3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 19 additions and 27 deletions

View File

View File

@ -4,7 +4,7 @@ import copy
import inspect
import random
import warnings
from typing import Callable, List, Optional, Union
from typing import Callable, Optional, Union
import numpy as np
import torch
@ -21,10 +21,11 @@ from transformers import (
PreTrainedModel,
StoppingCriteriaList,
)
from transformers.generation.stopping_criteria import validate_stopping_criteria
from transformers.generation.utils import GenerateOutput, SampleOutput, logger
def setup_seed(seed):
def setup_seed(seed: int) -> None:
if seed == -1:
return
torch.manual_seed(seed)
@ -49,9 +50,9 @@ class NewGenerationMixin(GenerationMixin):
generation_config: Optional[StreamGenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], list[int]]] = None,
synced_gpus: Optional[bool] = False,
seed=0,
seed: int = 0,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
r"""
@ -90,7 +91,7 @@ class NewGenerationMixin(GenerationMixin):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], list[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
@ -151,18 +152,7 @@ class NewGenerationMixin(GenerationMixin):
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs
# inputs_tensor has to be defined
@ -174,6 +164,9 @@ class NewGenerationMixin(GenerationMixin):
)
batch_size = inputs_tensor.shape[0]
device = inputs_tensor.device
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device)
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
@ -182,7 +175,7 @@ class NewGenerationMixin(GenerationMixin):
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor,
generation_config.pad_token_id,
@ -209,16 +202,15 @@ class NewGenerationMixin(GenerationMixin):
# 5. Prepare `input_ids` which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids = self._prepare_decoder_input_ids_for_generation(
batch_size,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
device=inputs_tensor.device,
)
else:
# if decoder-only then inputs_tensor has to be `input_ids`
input_ids = inputs_tensor
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
@ -577,7 +569,7 @@ class NewGenerationMixin(GenerationMixin):
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]`"
"`force_words_ids` has to either be a `list[list[list[int]]]` or `list[list[int]]`"
f"of positive integers, but is {generation_config.force_words_ids}."
)
@ -649,7 +641,7 @@ class NewGenerationMixin(GenerationMixin):
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
eos_token_id: Optional[Union[int, list[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,

View File

@ -69,7 +69,7 @@ dependencies = [
"gruut[de,es,fr]==2.2.3",
# Tortoise
"einops>=0.6.0",
"transformers>=4.33.0,<4.41.0",
"transformers>=4.41.1",
# Bark
"encodec>=0.1.1",
# XTTS