Update ForwardTTS for Trainer_v2

This commit is contained in:
Eren Gölge 2021-09-30 14:19:19 +00:00
parent d9df33f837
commit a156a40b47
4 changed files with 159 additions and 43 deletions

View File

@ -161,24 +161,7 @@ class ForwardTTS(BaseTTS):
# pylint: disable=dangerous-default-value
def __init__(self, config: Coqpit):
super().__init__()
# don't use isintance not to import recursively
if "Config" in config.__class__.__name__:
if "characters" in config:
# loading from FasrPitchConfig
_, self.config, num_chars = self.get_characters(config)
config.model_args.num_chars = num_chars
self.args = self.config.model_args
else:
# loading from ForwardTTSArgs
self.config = config
self.args = config.model_args
elif isinstance(config, ForwardTTSArgs):
self.args = config
self.config = config
else:
raise ValueError("config must be either a *Config or ForwardTTSArgs")
super().__init__(config)
self.max_duration = self.args.max_duration
self.use_aligner = self.args.use_aligner
@ -634,7 +617,8 @@ class ForwardTTS(BaseTTS):
return outputs, loss_dict
def train_log(self, ap: AudioProcessor, batch: dict, outputs: dict): # pylint: disable=no-self-use
def _create_logs(self, batch, outputs, ap):
"""Create common logger outputs."""
model_outputs = outputs["model_outputs"]
alignments = outputs["alignments"]
mel_input = batch["mel_input"]
@ -674,11 +658,22 @@ class ForwardTTS(BaseTTS):
train_audio = ap.inv_melspectrogram(pred_spec.T)
return figures, {"audio": train_audio}
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
) -> None: # pylint: disable=no-self-use
ap = assets["audio_processor"]
figures, audios = self._create_logs(batch, outputs, ap)
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, ap.sample_rate)
def eval_step(self, batch: dict, criterion: nn.Module):
return self.train_step(batch, criterion)
def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
return self.train_log(ap, batch, outputs)
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
ap = assets["audio_processor"]
figures, audios = self._create_logs(batch, outputs, ap)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, ap.sample_rate)
def load_checkpoint(
self, config, checkpoint_path, eval=False

View File

@ -1,8 +1,11 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs, init_training
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import FastPitchConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.utils.audio import AudioProcessor
from TTS.utils.manage import ModelManager
output_path = os.path.dirname(os.path.abspath(__file__))
@ -64,7 +67,23 @@ if not config.model_args.use_aligner:
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
)
# train the model
args, config, output_path, _, c_logger, tb_logger = init_training(TrainingArgs(), config)
trainer = Trainer(args, config, output_path, c_logger, tb_logger)
# init audio processor
ap = AudioProcessor(**config.audio)
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init the model
model = ForwardTTS(config)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,88 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import FastSpeechConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.utils.audio import AudioProcessor
from TTS.utils.manage import ModelManager
output_path = os.path.dirname(os.path.abspath(__file__))
# init configs
dataset_config = BaseDatasetConfig(
name="ljspeech",
meta_file_train="metadata.csv",
# meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"),
path=os.path.join(output_path, "../LJSpeech-1.1/"),
)
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=True,
trim_db=60.0,
signal_norm=False,
mel_fmin=0.0,
mel_fmax=8000,
spec_gain=1.0,
log_func="np.log",
ref_level_db=20,
preemphasis=0.0,
)
config = FastSpeechConfig(
run_name="fast_speech_ljspeech",
audio=audio_config,
batch_size=32,
eval_batch_size=16,
num_loader_workers=8,
num_eval_loader_workers=4,
compute_input_seq_cache=True,
compute_f0=False,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=True,
use_espeak_phonemes=False,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=50,
print_eval=False,
mixed_precision=False,
sort_by_audio_len=True,
max_seq_len=500000,
output_path=output_path,
datasets=[dataset_config],
)
# compute alignments
if not config.model_args.use_aligner:
manager = ModelManager()
model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA")
# TODO: make compute_attention python callable
os.system(
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
)
# init audio processor
ap = AudioProcessor(**config.audio)
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init the model
model = ForwardTTS(config)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -1,18 +1,16 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs, init_training
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import SpeedySpeechConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.utils.audio import AudioProcessor
from TTS.utils.manage import ModelManager
output_path = os.path.dirname(os.path.abspath(__file__))
# init configs
dataset_config = BaseDatasetConfig(
name="ljspeech",
meta_file_train="metadata.csv",
# meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"),
path=os.path.join(output_path, "../LJSpeech-1.1/"),
name="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/")
)
audio_config = BaseAudioConfig(
@ -53,16 +51,32 @@ config = SpeedySpeechConfig(
datasets=[dataset_config],
)
# compute alignments
if not config.model_args.use_aligner:
manager = ModelManager()
model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA")
# TODO: make compute_attention python callable
os.system(
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
)
# # compute alignments
# if not config.model_args.use_aligner:
# manager = ModelManager()
# model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA")
# # TODO: make compute_attention python callable
# os.system(
# f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
# )
# train the model
args, config, output_path, _, c_logger, tb_logger = init_training(TrainingArgs(), config)
trainer = Trainer(args, config, output_path, c_logger, tb_logger)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init model
model = ForwardTTS(config)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()