mirror of https://github.com/coqui-ai/TTS.git
fix distributed training for train_* scripts
This commit is contained in:
parent
193b81b273
commit
a1582a0e12
|
@ -19,13 +19,16 @@ from TTS.utils.tensorboard_logger import TensorboardLogger
|
||||||
from TTS.utils.training import setup_torch_training_env
|
from TTS.utils.training import setup_torch_training_env
|
||||||
from TTS.vocoder.datasets.gan_dataset import GANDataset
|
from TTS.vocoder.datasets.gan_dataset import GANDataset
|
||||||
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
|
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
|
||||||
# from distribute import (DistributedSampler, apply_gradient_allreduce,
|
|
||||||
# init_distributed, reduce_tensor)
|
|
||||||
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
|
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
|
||||||
from TTS.vocoder.utils.generic_utils import (plot_results, setup_discriminator,
|
from TTS.vocoder.utils.generic_utils import (plot_results, setup_discriminator,
|
||||||
setup_generator)
|
setup_generator)
|
||||||
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
|
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
|
||||||
|
|
||||||
|
# DISTRIBUTED
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP_th
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
from TTS.utils.distribute import init_distributed
|
||||||
|
|
||||||
use_cuda, num_gpus = setup_torch_training_env(True, True)
|
use_cuda, num_gpus = setup_torch_training_env(True, True)
|
||||||
|
|
||||||
|
|
||||||
|
@ -45,12 +48,12 @@ def setup_loader(ap, is_val=False, verbose=False):
|
||||||
use_cache=c.use_cache,
|
use_cache=c.use_cache,
|
||||||
verbose=verbose)
|
verbose=verbose)
|
||||||
dataset.shuffle_mapping()
|
dataset.shuffle_mapping()
|
||||||
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None
|
||||||
loader = DataLoader(dataset,
|
loader = DataLoader(dataset,
|
||||||
batch_size=1 if is_val else c.batch_size,
|
batch_size=1 if is_val else c.batch_size,
|
||||||
shuffle=True,
|
shuffle=False if num_gpus > 1 else True,
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
sampler=None,
|
sampler=sampler,
|
||||||
num_workers=c.num_val_loader_workers
|
num_workers=c.num_val_loader_workers
|
||||||
if is_val else c.num_loader_workers,
|
if is_val else c.num_loader_workers,
|
||||||
pin_memory=False)
|
pin_memory=False)
|
||||||
|
@ -243,41 +246,42 @@ def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D,
|
||||||
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
|
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
|
||||||
log_dict, loss_dict, keep_avg.avg_values)
|
log_dict, loss_dict, keep_avg.avg_values)
|
||||||
|
|
||||||
# plot step stats
|
if args.rank == 0:
|
||||||
if global_step % 10 == 0:
|
# plot step stats
|
||||||
iter_stats = {
|
if global_step % 10 == 0:
|
||||||
"lr_G": current_lr_G,
|
iter_stats = {
|
||||||
"lr_D": current_lr_D,
|
"lr_G": current_lr_G,
|
||||||
"step_time": step_time
|
"lr_D": current_lr_D,
|
||||||
}
|
"step_time": step_time
|
||||||
iter_stats.update(loss_dict)
|
}
|
||||||
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
iter_stats.update(loss_dict)
|
||||||
|
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
||||||
|
|
||||||
# save checkpoint
|
# save checkpoint
|
||||||
if global_step % c.save_step == 0:
|
if global_step % c.save_step == 0:
|
||||||
if c.checkpoint:
|
if c.checkpoint:
|
||||||
# save model
|
# save model
|
||||||
save_checkpoint(model_G,
|
save_checkpoint(model_G,
|
||||||
optimizer_G,
|
optimizer_G,
|
||||||
scheduler_G,
|
scheduler_G,
|
||||||
model_D,
|
model_D,
|
||||||
optimizer_D,
|
optimizer_D,
|
||||||
scheduler_D,
|
scheduler_D,
|
||||||
global_step,
|
global_step,
|
||||||
epoch,
|
epoch,
|
||||||
OUT_PATH,
|
OUT_PATH,
|
||||||
model_losses=loss_dict)
|
model_losses=loss_dict)
|
||||||
|
|
||||||
# compute spectrograms
|
# compute spectrograms
|
||||||
figures = plot_results(y_hat_vis, y_G, ap, global_step,
|
figures = plot_results(y_hat_vis, y_G, ap, global_step,
|
||||||
'train')
|
'train')
|
||||||
tb_logger.tb_train_figures(global_step, figures)
|
tb_logger.tb_train_figures(global_step, figures)
|
||||||
|
|
||||||
# Sample audio
|
# Sample audio
|
||||||
sample_voice = y_hat_vis[0].squeeze(0).detach().cpu().numpy()
|
sample_voice = y_hat_vis[0].squeeze(0).detach().cpu().numpy()
|
||||||
tb_logger.tb_train_audios(global_step,
|
tb_logger.tb_train_audios(global_step,
|
||||||
{'train/audio': sample_voice},
|
{'train/audio': sample_voice},
|
||||||
c.audio["sample_rate"])
|
c.audio["sample_rate"])
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
|
|
||||||
# print epoch stats
|
# print epoch stats
|
||||||
|
@ -286,7 +290,8 @@ def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D,
|
||||||
# Plot Training Epoch Stats
|
# Plot Training Epoch Stats
|
||||||
epoch_stats = {"epoch_time": epoch_time}
|
epoch_stats = {"epoch_time": epoch_time}
|
||||||
epoch_stats.update(keep_avg.avg_values)
|
epoch_stats.update(keep_avg.avg_values)
|
||||||
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
if args.rank == 0:
|
||||||
|
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
||||||
# TODO: plot model stats
|
# TODO: plot model stats
|
||||||
# if c.tb_model_param_stats:
|
# if c.tb_model_param_stats:
|
||||||
# tb_logger.tb_model_weights(model, global_step)
|
# tb_logger.tb_model_weights(model, global_step)
|
||||||
|
@ -417,20 +422,21 @@ def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch)
|
||||||
if c.print_eval:
|
if c.print_eval:
|
||||||
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
||||||
|
|
||||||
# compute spectrograms
|
if args.rank == 0:
|
||||||
figures = plot_results(y_hat, y_G, ap, global_step, 'eval')
|
# compute spectrograms
|
||||||
tb_logger.tb_eval_figures(global_step, figures)
|
figures = plot_results(y_hat, y_G, ap, global_step, 'eval')
|
||||||
|
tb_logger.tb_eval_figures(global_step, figures)
|
||||||
|
|
||||||
# Sample audio
|
# Sample audio
|
||||||
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
|
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
|
||||||
tb_logger.tb_eval_audios(global_step, {'eval/audio': sample_voice},
|
tb_logger.tb_eval_audios(global_step, {'eval/audio': sample_voice},
|
||||||
c.audio["sample_rate"])
|
c.audio["sample_rate"])
|
||||||
|
|
||||||
# synthesize a full voice
|
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
||||||
|
|
||||||
|
# synthesize a full voice
|
||||||
data_loader.return_segments = False
|
data_loader.return_segments = False
|
||||||
|
|
||||||
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
|
||||||
|
|
||||||
return keep_avg.avg_values
|
return keep_avg.avg_values
|
||||||
|
|
||||||
|
|
||||||
|
@ -450,9 +456,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
ap = AudioProcessor(**c.audio)
|
ap = AudioProcessor(**c.audio)
|
||||||
|
|
||||||
# DISTRUBUTED
|
# DISTRUBUTED
|
||||||
# if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
# init_distributed(args.rank, num_gpus, args.group_id,
|
init_distributed(args.rank, num_gpus, args.group_id,
|
||||||
# c.distributed["backend"], c.distributed["url"])
|
c.distributed["backend"], c.distributed["url"])
|
||||||
|
|
||||||
# setup models
|
# setup models
|
||||||
model_gen = setup_generator(c)
|
model_gen = setup_generator(c)
|
||||||
|
@ -532,8 +538,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
criterion_disc.cuda()
|
criterion_disc.cuda()
|
||||||
|
|
||||||
# DISTRUBUTED
|
# DISTRUBUTED
|
||||||
# if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
# model = apply_gradient_allreduce(model)
|
model_gen = DDP_th(model_gen, device_ids=[args.rank])
|
||||||
|
model_disc = DDP_th(model_disc, device_ids=[args.rank])
|
||||||
|
|
||||||
num_params = count_parameters(model_gen)
|
num_params = count_parameters(model_gen)
|
||||||
print(" > Generator has {} parameters".format(num_params), flush=True)
|
print(" > Generator has {} parameters".format(num_params), flush=True)
|
||||||
|
|
|
@ -11,6 +11,7 @@ import traceback
|
||||||
import torch
|
import torch
|
||||||
from random import randrange
|
from random import randrange
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
from TTS.tts.datasets.preprocess import load_meta_data
|
from TTS.tts.datasets.preprocess import load_meta_data
|
||||||
from TTS.tts.datasets.TTSDataset import MyDataset
|
from TTS.tts.datasets.TTSDataset import MyDataset
|
||||||
from TTS.tts.layers.losses import GlowTTSLoss
|
from TTS.tts.layers.losses import GlowTTSLoss
|
||||||
|
@ -34,6 +35,13 @@ from TTS.utils.tensorboard_logger import TensorboardLogger
|
||||||
from TTS.utils.training import (NoamLR, check_update,
|
from TTS.utils.training import (NoamLR, check_update,
|
||||||
setup_torch_training_env)
|
setup_torch_training_env)
|
||||||
|
|
||||||
|
# DISTRIBUTED
|
||||||
|
from apex.parallel import DistributedDataParallel as DDP_apex
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP_th
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
from TTS.utils.distribute import init_distributed, reduce_tensor
|
||||||
|
|
||||||
|
|
||||||
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
||||||
|
|
||||||
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
|
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
|
||||||
|
@ -481,10 +489,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
|
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
|
||||||
criterion = GlowTTSLoss()
|
criterion = GlowTTSLoss()
|
||||||
|
|
||||||
if c.apex_amp_level:
|
if c.apex_amp_level is not None:
|
||||||
# pylint: disable=import-outside-toplevel
|
# pylint: disable=import-outside-toplevel
|
||||||
from apex import amp
|
from apex import amp
|
||||||
from apex.parallel import DistributedDataParallel as DDP
|
|
||||||
model.cuda()
|
model.cuda()
|
||||||
model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level)
|
model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level)
|
||||||
else:
|
else:
|
||||||
|
@ -523,7 +530,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
|
|
||||||
# DISTRUBUTED
|
# DISTRUBUTED
|
||||||
if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
model = DDP(model)
|
if c.apex_amp_level is not None:
|
||||||
|
model = DDP_apex(model)
|
||||||
|
else:
|
||||||
|
model = DDP_th(model, device_ids=[args.rank])
|
||||||
|
|
||||||
if c.noam_schedule:
|
if c.noam_schedule:
|
||||||
scheduler = NoamLR(optimizer,
|
scheduler = NoamLR(optimizer,
|
||||||
|
|
|
@ -38,8 +38,10 @@ from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
|
||||||
gradual_training_scheduler, set_weight_decay,
|
gradual_training_scheduler, set_weight_decay,
|
||||||
setup_torch_training_env)
|
setup_torch_training_env)
|
||||||
|
|
||||||
|
|
||||||
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
||||||
|
|
||||||
|
|
||||||
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
|
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
|
||||||
if is_val and not c.run_eval:
|
if is_val and not c.run_eval:
|
||||||
loader = None
|
loader = None
|
||||||
|
|
|
@ -4,12 +4,9 @@ import os
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from inspect import signature
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
||||||
from torch.utils.data.distributed import DistributedSampler
|
|
||||||
|
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
from TTS.utils.console_logger import ConsoleLogger
|
from TTS.utils.console_logger import ConsoleLogger
|
||||||
|
@ -20,14 +17,18 @@ from TTS.utils.io import copy_config_file, load_config
|
||||||
from TTS.utils.radam import RAdam
|
from TTS.utils.radam import RAdam
|
||||||
from TTS.utils.tensorboard_logger import TensorboardLogger
|
from TTS.utils.tensorboard_logger import TensorboardLogger
|
||||||
from TTS.utils.training import setup_torch_training_env
|
from TTS.utils.training import setup_torch_training_env
|
||||||
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
|
|
||||||
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
|
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
|
||||||
from TTS.utils.distribute import init_distributed, reduce_tensor
|
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
|
||||||
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
|
from TTS.vocoder.utils.generic_utils import plot_results, setup_generator
|
||||||
from TTS.vocoder.utils.generic_utils import (plot_results, setup_discriminator,
|
|
||||||
setup_generator)
|
|
||||||
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
|
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
|
||||||
|
|
||||||
|
# DISTRIBUTED
|
||||||
|
from apex.parallel import DistributedDataParallel as DDP_apex
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP_th
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
from TTS.utils.distribute import init_distributed
|
||||||
|
|
||||||
|
|
||||||
use_cuda, num_gpus = setup_torch_training_env(True, True)
|
use_cuda, num_gpus = setup_torch_training_env(True, True)
|
||||||
|
|
||||||
|
|
||||||
|
@ -111,11 +112,6 @@ def train(model, criterion, optimizer,
|
||||||
else:
|
else:
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
if amp:
|
|
||||||
amp_opt_params = amp.master_params(optimizer)
|
|
||||||
else:
|
|
||||||
amp_opt_params = None
|
|
||||||
|
|
||||||
if c.clip_grad > 0:
|
if c.clip_grad > 0:
|
||||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
|
||||||
c.clip_grad)
|
c.clip_grad)
|
||||||
|
@ -279,7 +275,6 @@ def evaluate(model, criterion, ap, global_step, epoch):
|
||||||
return keep_avg.avg_values
|
return keep_avg.avg_values
|
||||||
|
|
||||||
|
|
||||||
# FIXME: move args definition/parsing inside of main?
|
|
||||||
def main(args): # pylint: disable=redefined-outer-name
|
def main(args): # pylint: disable=redefined-outer-name
|
||||||
# pylint: disable=global-variable-undefined
|
# pylint: disable=global-variable-undefined
|
||||||
global train_data, eval_data
|
global train_data, eval_data
|
||||||
|
@ -305,10 +300,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0)
|
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0)
|
||||||
|
|
||||||
# DISTRIBUTED
|
# DISTRIBUTED
|
||||||
if c.apex_amp_level:
|
if c.apex_amp_level is not None:
|
||||||
# pylint: disable=import-outside-toplevel
|
# pylint: disable=import-outside-toplevel
|
||||||
from apex import amp
|
from apex import amp
|
||||||
from apex.parallel import DistributedDataParallel as DDP
|
|
||||||
model.cuda()
|
model.cuda()
|
||||||
model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level)
|
model, optimizer = amp.initialize(model, optimizer, opt_level=c.apex_amp_level)
|
||||||
else:
|
else:
|
||||||
|
@ -363,7 +357,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
|
|
||||||
# DISTRUBUTED
|
# DISTRUBUTED
|
||||||
if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
model = DDP(model)
|
if c.apex_amp_level is not None:
|
||||||
|
model = DDP_apex(model)
|
||||||
|
else:
|
||||||
|
model = DDP_th(model, device_ids=[args.rank])
|
||||||
|
|
||||||
num_params = count_parameters(model)
|
num_params = count_parameters(model)
|
||||||
print(" > WaveGrad has {} parameters".format(num_params), flush=True)
|
print(" > WaveGrad has {} parameters".format(num_params), flush=True)
|
||||||
|
@ -447,7 +444,7 @@ if __name__ == '__main__':
|
||||||
_ = os.path.dirname(os.path.realpath(__file__))
|
_ = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
|
||||||
# DISTRIBUTED
|
# DISTRIBUTED
|
||||||
if c.apex_amp_level:
|
if c.apex_amp_level is not None:
|
||||||
print(" > apex AMP level: ", c.apex_amp_level)
|
print(" > apex AMP level: ", c.apex_amp_level)
|
||||||
|
|
||||||
OUT_PATH = args.continue_path
|
OUT_PATH = args.continue_path
|
||||||
|
|
|
@ -54,9 +54,10 @@
|
||||||
"add_blank": false, // if true add a new token after each token of the sentence. This increases the size of the input sequence, but has considerably improved the prosody of the GlowTTS model.
|
"add_blank": false, // if true add a new token after each token of the sentence. This increases the size of the input sequence, but has considerably improved the prosody of the GlowTTS model.
|
||||||
|
|
||||||
// DISTRIBUTED TRAINING
|
// DISTRIBUTED TRAINING
|
||||||
|
"apex_amp_level": null, // APEX amp optimization level. "O1" is currently supported.
|
||||||
"distributed":{
|
"distributed":{
|
||||||
"backend": "nccl",
|
"backend": "nccl",
|
||||||
"url": "tcp:\/\/localhost:54321"
|
"url": "tcp:\/\/localhost:54323"
|
||||||
},
|
},
|
||||||
|
|
||||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||||
|
|
|
@ -31,13 +31,13 @@
|
||||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||||
"clip_norm": true, // clip normalized values into the range.
|
"clip_norm": true, // clip normalized values into the range.
|
||||||
"stats_path": "/data/rw/home/Data/LibriTTS/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
"stats_path": "/home/erogol/Data/libritts/LibriTTS/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||||
},
|
},
|
||||||
|
|
||||||
// DISTRIBUTED TRAINING
|
// DISTRIBUTED TRAINING
|
||||||
"distributed":{
|
"distributed":{
|
||||||
"backend": "nccl",
|
"backend": "nccl",
|
||||||
"url": "tcp:\/\/localhost:54321"
|
"url": "tcp:\/\/localhost:54324"
|
||||||
},
|
},
|
||||||
|
|
||||||
// MODEL PARAMETERS
|
// MODEL PARAMETERS
|
||||||
|
@ -83,7 +83,7 @@
|
||||||
},
|
},
|
||||||
|
|
||||||
// DATASET
|
// DATASET
|
||||||
"data_path": "/data5/rw/home/Data/LibriTTS/LibriTTS/train-clean-360/",
|
"data_path": "/home/erogol/Data/libritts/LibriTTS/train-clean-360/",
|
||||||
"feature_path": null,
|
"feature_path": null,
|
||||||
"seq_len": 16384,
|
"seq_len": 16384,
|
||||||
"pad_short": 2000,
|
"pad_short": 2000,
|
||||||
|
@ -132,7 +132,7 @@
|
||||||
"eval_split_size": 10,
|
"eval_split_size": 10,
|
||||||
|
|
||||||
// PATHS
|
// PATHS
|
||||||
"output_path": "/data4/rw/home/Trainings/LJSpeech/"
|
"output_path": "/home/erogol/Models/"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -34,10 +34,10 @@
|
||||||
},
|
},
|
||||||
|
|
||||||
// DISTRIBUTED TRAINING
|
// DISTRIBUTED TRAINING
|
||||||
"apex_amp_level": "O1", // amp optimization level. "O1" is currentl supported.
|
"apex_amp_level": null, // APEX amp optimization level. "O1" is currently supported.
|
||||||
"distributed":{
|
"distributed":{
|
||||||
"backend": "nccl",
|
"backend": "nccl",
|
||||||
"url": "tcp:\/\/localhost:54321"
|
"url": "tcp:\/\/localhost:54322"
|
||||||
},
|
},
|
||||||
|
|
||||||
"target_loss": "avg_wavegrad_loss", // loss value to pick the best model to save after each epoch
|
"target_loss": "avg_wavegrad_loss", // loss value to pick the best model to save after each epoch
|
||||||
|
@ -47,7 +47,7 @@
|
||||||
"model_params":{
|
"model_params":{
|
||||||
"x_conv_channels":32,
|
"x_conv_channels":32,
|
||||||
"c_conv_channels":768,
|
"c_conv_channels":768,
|
||||||
"ublock_out_channels": [768, 512, 512, 256, 128],
|
"ublock_out_channels": [512, 512, 256, 128, 128],
|
||||||
"dblock_out_channels": [128, 128, 256, 512],
|
"dblock_out_channels": [128, 128, 256, 512],
|
||||||
"upsample_factors": [4, 4, 4, 2, 2],
|
"upsample_factors": [4, 4, 4, 2, 2],
|
||||||
"upsample_dilations": [
|
"upsample_dilations": [
|
||||||
|
|
Loading…
Reference in New Issue