mirror of https://github.com/coqui-ai/TTS.git
v0.10.1 (#2242)
* Add Ukrainian LADA (female) voice * Add ca and fa models * Add pth files to manager * Bump up to v0.10.1 Co-authored-by: Yehor Smoliakov <yehors@ukr.net>
This commit is contained in:
parent
a04db8d632
commit
a31af762e8
|
@ -617,6 +617,30 @@
|
|||
"license": "bsd-3-clause"
|
||||
}
|
||||
}
|
||||
},
|
||||
"ca": {
|
||||
"custom": {
|
||||
"vits":{
|
||||
"github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--ca--custom--vits.zip",
|
||||
"default_vocoder": null,
|
||||
"commit": null,
|
||||
"description": " It is trained from zero with 101460 utterances consisting of 257 speakers, approx 138 hours of speech. We used three datasets;\nFestcat and Google Catalan TTS (both TTS datasets) and also a part of Common Voice 8. It is trained with TTS v0.8.0.\nhttps://github.com/coqui-ai/TTS/discussions/930#discussioncomment-4466345",
|
||||
"author": "@gullabi",
|
||||
"license": "CC-BY-4.0"
|
||||
}
|
||||
}
|
||||
},
|
||||
"fa":{
|
||||
"custom":{
|
||||
"glow-tts": {
|
||||
"github_rls_url": "https://coqui.gateway.scarf.sh/v0.10.1_models/tts_models--fa--custom--glow-tts.zip",
|
||||
"default_vocoder": null,
|
||||
"commit": null,
|
||||
"description": "persian-tts-female-glow_tts model for text to speech purposes. Single-speaker female voice Trained on persian-tts-dataset-famale. \nThis model has no compatible vocoder thus the output quality is not very good. \nDataset: https://www.kaggle.com/datasets/magnoliasis/persian-tts-dataset-famale.",
|
||||
"author": "@karim23657",
|
||||
"license": "CC-BY-4.0"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"vocoder_models": {
|
||||
|
|
|
@ -1 +1 @@
|
|||
0.10.0
|
||||
0.10.1
|
|
@ -298,7 +298,9 @@ class ModelManager(object):
|
|||
"""
|
||||
output_stats_path = os.path.join(output_path, "scale_stats.npy")
|
||||
output_d_vector_file_path = os.path.join(output_path, "speakers.json")
|
||||
output_d_vector_file_pth_path = os.path.join(output_path, "speakers.pth")
|
||||
output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json")
|
||||
output_speaker_ids_file_pth_path = os.path.join(output_path, "speaker_ids.pth")
|
||||
speaker_encoder_config_path = os.path.join(output_path, "config_se.json")
|
||||
speaker_encoder_model_path = self._find_speaker_encoder(output_path)
|
||||
|
||||
|
@ -307,11 +309,15 @@ class ModelManager(object):
|
|||
|
||||
# update the speakers.json file path in the model config.json to the current path
|
||||
self._update_path("d_vector_file", output_d_vector_file_path, config_path)
|
||||
self._update_path("d_vector_file", output_d_vector_file_pth_path, config_path)
|
||||
self._update_path("model_args.d_vector_file", output_d_vector_file_path, config_path)
|
||||
self._update_path("model_args.d_vector_file", output_d_vector_file_pth_path, config_path)
|
||||
|
||||
# update the speaker_ids.json file path in the model config.json to the current path
|
||||
self._update_path("speakers_file", output_speaker_ids_file_path, config_path)
|
||||
self._update_path("speakers_file", output_speaker_ids_file_pth_path, config_path)
|
||||
self._update_path("model_args.speakers_file", output_speaker_ids_file_path, config_path)
|
||||
self._update_path("model_args.speakers_file", output_speaker_ids_file_pth_path, config_path)
|
||||
|
||||
# update the speaker_encoder file path in the model config.json to the current path
|
||||
self._update_path("speaker_encoder_model_path", speaker_encoder_model_path, config_path)
|
||||
|
|
|
@ -12,5 +12,6 @@ Some of the known public datasets that we successfully applied 🐸TTS:
|
|||
- [German - Thorsten OGVD](https://github.com/thorstenMueller/deep-learning-german-tts)
|
||||
- [Japanese - Kokoro](https://www.kaggle.com/kaiida/kokoro-speech-dataset-v11-small/version/1)
|
||||
- [Chinese](https://www.data-baker.com/data/index/source/)
|
||||
- [Ukrainian - LADA](https://github.com/egorsmkv/ukrainian-tts-datasets/tree/main/lada)
|
||||
|
||||
Let us know if you use 🐸TTS on a different dataset.
|
||||
Let us know if you use 🐸TTS on a different dataset.
|
||||
|
|
Loading…
Reference in New Issue