docstring for speedyspeech

This commit is contained in:
erogol 2021-01-07 14:35:22 +01:00
parent de2a542f83
commit a6259041d3
4 changed files with 128 additions and 64 deletions

View File

@ -1,7 +1,7 @@
from torch import nn
from TTS.tts.layers.generic.res_conv_bn import ConvBNBlock, ResidualConvBNBlock
from TTS.tts.layers.generic.wavenet import WNBlocks
from TTS.tts.layers.glow_tts.transformer import Transformer
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
class Decoder(nn.Module):
@ -67,7 +67,7 @@ class Decoder(nn.Module):
self.out_channels = out_channels
if decoder_type == 'transformer':
self.decoder = Transformer(self.hidden_channels, **decoder_params)
self.decoder = RelativePositionTransformer(self.hidden_channels, **decoder_params)
elif decoder_type == 'residual_conv_bn':
self.decoder = ResidualConvBNBlock(self.hidden_channels,
**decoder_params)

View File

@ -4,8 +4,20 @@ from TTS.tts.layers.generic.res_conv_bn import ConvBN
class DurationPredictor(nn.Module):
"""Predicts phoneme log durations based on the encoder outputs"""
"""Speedy Speech duration predictor model.
Predicts phoneme durations from encoder outputs.
Note:
Outputs interpreted as log(durations)
To get actual durations, do exp transformation
conv_BN_4x1 -> conv_BN_3x1 -> conv_BN_1x1 -> conv_1x1
Args:
hidden_channels (int): number of channels in the inner layers.
"""
def __init__(self, hidden_channels):
super().__init__()
self.layers = nn.ModuleList([
@ -16,10 +28,10 @@ class DurationPredictor(nn.Module):
])
def forward(self, x, x_mask):
"""Outputs interpreted as log(durations)
To get actual durations, do exp transformation
:param x:
:return:
"""
Shapes:
x: [B, C, T]
x_mask: [B, 1, T]
"""
o = x
for layer in self.layers:

View File

@ -3,7 +3,7 @@ import torch
from torch import nn
from torch.nn import functional as F
from TTS.tts.layers.glow_tts.transformer import Transformer
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.layers.glow_tts.glow import ConvLayerNorm
from TTS.tts.layers.generic.res_conv_bn import ResidualConvBNBlock
@ -12,42 +12,36 @@ class PositionalEncoding(nn.Module):
"""Sinusoidal positional encoding for non-recurrent neural networks.
Implementation based on "Attention Is All You Need"
Args:
channels (int): embedding size
dropout (float): dropout parameter
dim (int): embedding size
"""
def __init__(self, dim, dropout=0.0, max_len=5000):
def __init__(self, channels, dropout=0.0, max_len=5000):
super().__init__()
if dim % 2 != 0:
if channels % 2 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(dim))
pe = torch.zeros(max_len, dim)
"odd channels (got channels={:d})".format(channels))
pe = torch.zeros(max_len, channels)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
-(math.log(10000.0) / dim)))
div_term = torch.exp((torch.arange(0, channels, 2, dtype=torch.float) *
-(math.log(10000.0) / channels)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0).transpose(1, 2)
self.register_buffer('pe', pe)
if dropout > 0:
self.dropout = nn.Dropout(p=dropout)
self.dim = dim
self.channels = channels
def forward(self, x, mask=None, first_idx=None, last_idx=None):
"""Embed inputs.
Args:
x (FloatTensor): Sequence of word vectors
``(seq_len, batch_size, self.dim)``
mask (FloatTensor): Sequence mask.
first_idx (int or NoneType): starting index for taking a
certain part of the embeddings.
last_idx (int or NoneType): ending index for taking a
certain part of the embeddings.
"""
Shapes:
x: B x C x T
x: [B, C, T]
mask: [B, 1, T]
first_idx: int
last_idx: int
"""
x = x * math.sqrt(self.dim)
x = x * math.sqrt(self.channels)
if first_idx is None:
if self.pe.size(2) < x.size(2):
raise RuntimeError(
@ -67,6 +61,38 @@ class PositionalEncoding(nn.Module):
class Encoder(nn.Module):
# pylint: disable=dangerous-default-value
"""Speedy-Speech encoder using Transformers or Residual BN Convs internally.
Args:
num_chars (int): number of characters.
out_channels (int): number of output channels.
in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers.
encoder_type (str): encoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'.
encoder_params (dict): model parameters for specified encoder type.
c_in_channels (int): number of channels for conditional input.
Note:
Default encoder_params...
for 'transformer'
encoder_params={
'hidden_channels_ffn': 128,
'num_heads': 2,
"kernel_size": 3,
"dropout_p": 0.1,
"num_layers": 6,
"rel_attn_window_size": 4,
"input_length": None
},
for 'residual_conv_bn'
encoder_params = {
"kernel_size": 4,
"dilations": 4 * [1, 2, 4] + [1],
"num_conv_blocks": 2,
"num_res_blocks": 13
}
"""
def __init__(
self,
in_hidden_channels,
@ -79,41 +105,6 @@ class Encoder(nn.Module):
"num_res_blocks": 13
},
c_in_channels=0):
"""Speedy-Speech encoder using Transformers or Residual BN Convs internally.
Args:
num_chars (int): number of characters.
out_channels (int): number of output channels.
in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers.
encoder_type (str): encoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'.
encoder_params (dict): model parameters for specified encoder type.
c_in_channels (int): number of channels for conditional input.
Note:
Default encoder_params...
for 'transformer'
encoder_params={
'hidden_channels_ffn': 128,
'num_heads': 2,
"kernel_size": 3,
"dropout_p": 0.1,
"num_layers": 6,
"rel_attn_window_size": 4,
"input_length": None
},
for 'residual_conv_bn'
encoder_params = {
"kernel_size": 4,
"dilations": 4 * [1, 2, 4] + [1],
"num_conv_blocks": 2,
"num_res_blocks": 13
}
Shapes:
- input: (B, C, T)
"""
super().__init__()
self.out_channels = out_channels
self.in_channels = in_hidden_channels
@ -148,6 +139,12 @@ class Encoder(nn.Module):
self.post_conv2 = nn.Conv1d(self.hidden_channels, self.out_channels, 1)
def forward(self, x, x_mask, g=None): # pylint: disable=unused-argument
"""
Shapes:
x: [B, C, T]
x_mask: [B, 1, T]
g: [B, C, 1]
"""
# TODO: implement multi-speaker
if self.encoder_type == 'transformer':
o = self.pre(x, x_mask)

View File

@ -8,7 +8,33 @@ from TTS.tts.layers.glow_tts.monotonic_align import generate_path
class SpeedySpeech(nn.Module):
# pylint: disable=dangerous-default-value
"""Speedy Speech model
https://arxiv.org/abs/2008.03802
Encoder -> DurationPredictor -> Decoder
This model is able to achieve a reasonable performance with only
~3M model parameters and convolutional layers.
This model requires precomputed phoneme durations to train a duration predictor. At inference
it only uses the duration predictor to compute durations and expand encoder outputs respectively.
Args:
num_chars (int): number of unique input to characters
out_channels (int): number of output tensor channels. It is equal to the expected spectrogram size.
hidden_channels (int): number of channels in all the model layers.
positional_encoding (bool, optional): enable/disable Positional encoding on encoder outputs. Defaults to True.
length_scale (int, optional): coefficient to set the speech speed. <1 slower, >1 faster. Defaults to 1.
encoder_type (str, optional): set the encoder type. Defaults to 'residual_conv_bn'.
encoder_params (dict, optional): set encoder parameters depending on 'encoder_type'. Defaults to { "kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13 }.
decoder_type (str, optional): decoder type. Defaults to 'residual_conv_bn'.
decoder_params (dict, optional): set decoder parameters depending on 'decoder_type'. Defaults to { "kernel_size": 4, "dilations": 4 * [1, 2, 4, 8] + [1], "num_conv_blocks": 2, "num_res_blocks": 17 }.
num_speakers (int, optional): number of speakers for multi-speaker training. Defaults to 0.
external_c (bool, optional): enable external speaker embeddings. Defaults to False.
c_in_channels (int, optional): number of channels in speaker embedding vectors. Defaults to 0.
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
num_chars,
@ -33,6 +59,7 @@ class SpeedySpeech(nn.Module):
num_speakers=0,
external_c=False,
c_in_channels=0):
super().__init__()
self.length_scale = float(length_scale) if isinstance(length_scale, int) else length_scale
self.emb = nn.Embedding(num_chars, hidden_channels)
@ -54,6 +81,19 @@ class SpeedySpeech(nn.Module):
@staticmethod
def expand_encoder_outputs(en, dr, x_mask, y_mask):
"""Generate attention alignment map from durations and
expand encoder outputs
Example:
encoder output: [a,b,c,d]
durations: [1, 3, 2, 1]
expanded: [a, b, b, b, c, c, d]
attention map: [[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0]]
"""
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
attn = generate_path(dr, attn_mask.squeeze(1)).to(en.dtype)
o_en_ex = torch.matmul(
@ -121,12 +161,27 @@ class SpeedySpeech(nn.Module):
return o_de, attn.transpose(1, 2)
def forward(self, x, x_lengths, y_lengths, dr, g=None): # pylint: disable=unused-argument
"""
Shapes:
x: [B, T_max]
x_lengths: [B]
y_lengths: [B]
dr: [B, T_max]
g: [B, C]
"""
breakpoint()
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
o_de, attn= self._forward_decoder(o_en, o_en_dp, dr, x_mask, y_lengths, g=g)
return o_de, o_dr_log.squeeze(1), attn
def inference(self, x, x_lengths, g=None): # pylint: disable=unused-argument
"""
Shapes:
x: [B, T_max]
x_lengths: [B]
g: [B, C]
"""
# pad input to prevent dropping the last word
x = torch.nn.functional.pad(x, pad=(0, 5), mode='constant', value=0)
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)