mirror of https://github.com/coqui-ai/TTS.git
Revert random segment
This commit is contained in:
parent
8622226f3f
commit
ab8a4ca2c3
|
@ -656,14 +656,13 @@ class Vits(BaseTTS):
|
|||
logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p])
|
||||
|
||||
# select a random feature segment for the waveform decoder
|
||||
z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size, let_short_samples=True, pad_short=True)
|
||||
z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size)
|
||||
o = self.waveform_decoder(z_slice, g=g)
|
||||
|
||||
wav_seg = segment(
|
||||
waveform,
|
||||
slice_ids * self.config.audio.hop_length,
|
||||
self.args.spec_segment_size * self.config.audio.hop_length,
|
||||
pad_short=True,
|
||||
)
|
||||
|
||||
if self.args.use_speaker_encoder_as_loss and self.speaker_manager.speaker_encoder is not None:
|
||||
|
|
|
@ -57,7 +57,7 @@ def sequence_mask(sequence_length, max_len=None):
|
|||
return mask
|
||||
|
||||
|
||||
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False):
|
||||
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4):
|
||||
"""Segment each sample in a batch based on the provided segment indices
|
||||
|
||||
Args:
|
||||
|
@ -66,25 +66,16 @@ def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_
|
|||
segment_size (int): Expected output segment size.
|
||||
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size.
|
||||
"""
|
||||
# pad the input tensor if it is shorter than the segment size
|
||||
if pad_short and x.shape[-1] < segment_size:
|
||||
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2)))
|
||||
|
||||
segments = torch.zeros_like(x[:, :, :segment_size])
|
||||
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
index_start = segment_indices[i]
|
||||
index_end = index_start + segment_size
|
||||
x_i = x[i]
|
||||
if pad_short and index_end > x.size(2):
|
||||
# pad the sample if it is shorter than the segment size
|
||||
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2)))
|
||||
segments[i] = x_i[:, index_start:index_end]
|
||||
return segments
|
||||
idx_str = segment_indices[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_segments(
|
||||
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False
|
||||
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4
|
||||
):
|
||||
"""Create random segments based on the input lengths.
|
||||
|
||||
|
@ -99,25 +90,15 @@ def rand_segments(
|
|||
- x: :math:`[B, C, T]`
|
||||
- x_lengths: :math:`[B]`
|
||||
"""
|
||||
_x_lenghts = x_lengths.clone()
|
||||
B, _, T = x.size()
|
||||
if pad_short:
|
||||
if T < segment_size:
|
||||
x = torch.nn.functional.pad(x, (0, segment_size - T))
|
||||
T = segment_size
|
||||
if _x_lenghts is None:
|
||||
_x_lenghts = T
|
||||
len_diff = _x_lenghts - segment_size + 1
|
||||
if let_short_samples:
|
||||
_x_lenghts[len_diff < 0] = segment_size
|
||||
len_diff = _x_lenghts - segment_size + 1
|
||||
else:
|
||||
assert all(
|
||||
len_diff > 0
|
||||
), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}"
|
||||
segment_indices = (torch.rand([B]).type_as(x) * len_diff).long()
|
||||
ret = segment(x, segment_indices, segment_size)
|
||||
return ret, segment_indices
|
||||
b, _, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
if (ids_str_max < 0).sum():
|
||||
raise ValueError("Segment size is larger than the input length.")
|
||||
ids_str = (torch.rand([b]).to(x.device) * ids_str_max).long()
|
||||
ret = segment(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def average_over_durations(values, durs):
|
||||
|
|
Loading…
Reference in New Issue