diff --git a/mozilla_voice_tts/speaker_encoder/config.json b/mozilla_voice_tts/speaker_encoder/config.json index 5f72135f..f9166066 100644 --- a/mozilla_voice_tts/speaker_encoder/config.json +++ b/mozilla_voice_tts/speaker_encoder/config.json @@ -1,24 +1,30 @@ + { - "run_name": "libritts_360-half", - "run_description": "train speaker encoder for libritts 360", - "audio": { + "run_name": "libritts_100+360-angleproto", + "run_description": "train speaker encoder for libritts 100 and 360", + "audio":{ // Audio processing parameters - "num_mels": 40, // size of the mel spec frame. - "num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame. - "sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. - "frame_length_ms": 50, // stft window length in ms. - "frame_shift_ms": 12.5, // stft window hop-lengh in ms. - "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. - "min_level_db": -100, // normalization range - "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + "num_mels": 80, // size of the mel spec frame. + "num_freq": 1024, // number of stft frequency levels. Size of the linear spectogram frame. + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. + "win_length": 1024, // stft window length in ms. + "hop_length": 256, // stft window hop-lengh in ms. + "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. + "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. + "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. + "min_level_db": -100, // normalization range + "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. + "power": 1.5, // value to sharpen wav signals after GL algorithm. + "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // Normalization parameters - "signal_norm": true, // normalize the spec values in range [0, 1] + "signal_norm": true, // normalize the spec values in range [0, 1] "symmetric_norm": true, // move normalization to range [-1, 1] - "max_norm": 4, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] - "clip_norm": true, // clip normalized values into the range. - "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! - "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! - "do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "clip_norm": true, // clip normalized values into the range. + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "trim_db": 60 // threshold for timming silence. Set this according to your dataset. }, "reinit_layers": [], "loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA) @@ -34,10 +40,9 @@ "checkpoint": true, // If true, it saves checkpoints per "save_step" "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. "print_step": 1, // Number of steps to log traning on console. - "output_path": "/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs. - "num_loader_workers": 0, // number of training data loader processes. Don't set it too big. 4-8 are good values. + "output_path": "../../checkpoints/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs. "model": { - "input_dim": 40, + "input_dim": 80, // input_dim == num_mels "proj_dim": 128, "lstm_dim": 384, "num_lstm_layers": 3 @@ -46,13 +51,13 @@ [ { "name": "libri_tts", - "path": "/home/erogol/Data/Libri-TTS/train-clean-360/", + "path": "../../datasets/LibriTTS/train-clean-360/", "meta_file_train": null, "meta_file_val": null }, { "name": "libri_tts", - "path": "/home/erogol/Data/Libri-TTS/train-clean-100/", + "path": "../../datasets/LibriTTS/train-clean-100/", "meta_file_train": null, "meta_file_val": null }