mirror of https://github.com/coqui-ai/TTS.git
Implement FastPitchE2E LJSpeech recipe
This commit is contained in:
parent
2a61b8fdaf
commit
aea8cb7668
|
@ -0,0 +1,98 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
from trainer import Trainer, TrainerArgs
|
||||||
|
|
||||||
|
from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig
|
||||||
|
from TTS.tts.configs.fast_pitch_e2e_config import FastPitchE2EConfig
|
||||||
|
from TTS.tts.datasets import load_tts_samples
|
||||||
|
from TTS.tts.models.forward_tts_e2e import ForwardTTSE2E, ForwardTTSE2EArgs
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
|
||||||
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
|
||||||
|
# init configs
|
||||||
|
dataset_config = BaseDatasetConfig(
|
||||||
|
name="ljspeech",
|
||||||
|
meta_file_train="metadata.csv",
|
||||||
|
# meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"),
|
||||||
|
path=os.path.join(output_path, "../LJSpeech-1.1/"),
|
||||||
|
)
|
||||||
|
|
||||||
|
audio_config = BaseAudioConfig(
|
||||||
|
sample_rate=22050,
|
||||||
|
do_trim_silence=True,
|
||||||
|
trim_db=60.0,
|
||||||
|
signal_norm=False,
|
||||||
|
mel_fmin=0.0,
|
||||||
|
mel_fmax=8000,
|
||||||
|
spec_gain=1.0,
|
||||||
|
log_func="np.log",
|
||||||
|
ref_level_db=20,
|
||||||
|
preemphasis=0.0,
|
||||||
|
num_mels=80,
|
||||||
|
)
|
||||||
|
|
||||||
|
# vocoder_config = HifiganConfig()
|
||||||
|
model_args = ForwardTTSE2EArgs()
|
||||||
|
|
||||||
|
config = FastPitchE2EConfig(
|
||||||
|
run_name="fast_pitch_e2e_ljspeech",
|
||||||
|
run_description="don't detach vocoder input.",
|
||||||
|
model_args=model_args,
|
||||||
|
audio=audio_config,
|
||||||
|
batch_size=32,
|
||||||
|
eval_batch_size=16,
|
||||||
|
num_loader_workers=8,
|
||||||
|
num_eval_loader_workers=4,
|
||||||
|
compute_input_seq_cache=True,
|
||||||
|
compute_f0=True,
|
||||||
|
f0_cache_path=os.path.join(output_path, "f0_cache"),
|
||||||
|
run_eval=True,
|
||||||
|
test_delay_epochs=-1,
|
||||||
|
epochs=1000,
|
||||||
|
text_cleaner="english_cleaners",
|
||||||
|
use_phonemes=True,
|
||||||
|
phoneme_language="en-us",
|
||||||
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||||
|
precompute_num_workers=4,
|
||||||
|
print_step=50,
|
||||||
|
print_eval=False,
|
||||||
|
mixed_precision=False,
|
||||||
|
sort_by_audio_len=True,
|
||||||
|
output_path=output_path,
|
||||||
|
datasets=[dataset_config],
|
||||||
|
start_by_longest=False,
|
||||||
|
binary_align_loss_alpha=0.0
|
||||||
|
)
|
||||||
|
|
||||||
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
|
train_samples, eval_samples = load_tts_samples(
|
||||||
|
dataset_config,
|
||||||
|
eval_split=True,
|
||||||
|
eval_split_max_size=config.eval_split_max_size,
|
||||||
|
eval_split_size=config.eval_split_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
# init the model
|
||||||
|
model = ForwardTTSE2E(config, ap, tokenizer, speaker_manager=None)
|
||||||
|
|
||||||
|
# init the trainer and 🚀
|
||||||
|
trainer = Trainer(
|
||||||
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
||||||
|
)
|
||||||
|
trainer.fit()
|
Loading…
Reference in New Issue