Move upsampling tests to test_vits.py

This commit is contained in:
Edresson Casanova 2022-04-25 09:06:40 -03:00
parent f4e53295b1
commit af98ec8eb9
3 changed files with 70 additions and 180 deletions

View File

@ -420,6 +420,76 @@ class TestVits(unittest.TestCase):
# check parameter changes
self._check_parameter_changes(model, model_ref)
def test_train_step_upsampling(self):
# setup the model
with torch.autograd.set_detect_anomaly(True):
model_args = VitsArgs(
num_chars=32,
spec_segment_size=10,
encoder_sample_rate=11025,
interpolate_z=False,
upsample_rates_decoder=[8, 8, 4, 2],
)
config = VitsConfig(model_args=model_args)
model = Vits(config).to(device)
model.train()
# model to train
optimizers = model.get_optimizer()
criterions = model.get_criterion()
criterions = [criterions[0].to(device), criterions[1].to(device)]
# reference model to compare model weights
model_ref = Vits(config).to(device)
# # pass the state to ref model
model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count = count + 1
for _ in range(5):
batch = self._create_batch(config, 2)
for idx in [0, 1]:
outputs, loss_dict = model.train_step(batch, criterions, idx)
self.assertFalse(not outputs)
self.assertFalse(not loss_dict)
loss_dict["loss"].backward()
optimizers[idx].step()
optimizers[idx].zero_grad()
# check parameter changes
self._check_parameter_changes(model, model_ref)
def test_train_step_upsampling_interpolation(self):
# setup the model
with torch.autograd.set_detect_anomaly(True):
model_args = VitsArgs(num_chars=32, spec_segment_size=10, encoder_sample_rate=11025, interpolate_z=True)
config = VitsConfig(model_args=model_args)
model = Vits(config).to(device)
model.train()
# model to train
optimizers = model.get_optimizer()
criterions = model.get_criterion()
criterions = [criterions[0].to(device), criterions[1].to(device)]
# reference model to compare model weights
model_ref = Vits(config).to(device)
# # pass the state to ref model
model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count = count + 1
for _ in range(5):
batch = self._create_batch(config, 2)
for idx in [0, 1]:
outputs, loss_dict = model.train_step(batch, criterions, idx)
self.assertFalse(not outputs)
self.assertFalse(not loss_dict)
loss_dict["loss"].backward()
optimizers[idx].step()
optimizers[idx].zero_grad()
# check parameter changes
self._check_parameter_changes(model, model_ref)
def test_train_eval_log(self):
batch_size = 2
config = VitsConfig(model_args=VitsArgs(num_chars=32, spec_segment_size=10))

View File

@ -1,90 +0,0 @@
import glob
import json
import os
import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = VitsConfig(
batch_size=2,
eval_batch_size=2,
num_loader_workers=0,
num_eval_loader_workers=0,
text_cleaner="english_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
run_eval=True,
test_delay_epochs=-1,
epochs=1,
print_step=1,
print_eval=True,
test_sentences=[
["Be a voice, not an echo.", "ljspeech-1"],
],
)
# set audio config
config.audio.do_trim_silence = True
config.audio.trim_db = 60
# active multispeaker d-vec mode
config.model_args.use_speaker_embedding = True
config.model_args.use_d_vector_file = False
config.model_args.d_vector_file = None
config.model_args.d_vector_dim = 256
# test upsample interpolation approach
config.model_args.encoder_sample_rate = 11025
config.model_args.interpolate_z = True
config.model_args.upsample_rates_decoder = [8, 8, 2, 2]
config.model_args.periods_multi_period_discriminator = [2, 3, 5, 7]
config.save_json(config_path)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
f"--coqpit.output_path {output_path} "
"--coqpit.datasets.0.name ljspeech_test "
"--coqpit.datasets.0.meta_file_train metadata.csv "
"--coqpit.datasets.0.meta_file_val metadata.csv "
"--coqpit.datasets.0.path tests/data/ljspeech "
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
"--coqpit.test_delay_epochs 0"
)
run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
# Check integrity of the config
with open(continue_config_path, "r", encoding="utf-8") as f:
config_loaded = json.load(f)
assert config_loaded["characters"] is not None
assert config_loaded["output_path"] in continue_path
assert config_loaded["test_delay_epochs"] == 0
# Load the model and run inference
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)
shutil.rmtree(continue_path)

View File

@ -1,90 +0,0 @@
import glob
import json
import os
import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = VitsConfig(
batch_size=2,
eval_batch_size=2,
num_loader_workers=0,
num_eval_loader_workers=0,
text_cleaner="english_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
run_eval=True,
test_delay_epochs=-1,
epochs=1,
print_step=1,
print_eval=True,
test_sentences=[
["Be a voice, not an echo.", "ljspeech-1"],
],
)
# set audio config
config.audio.do_trim_silence = True
config.audio.trim_db = 60
# active multispeaker d-vec mode
config.model_args.use_speaker_embedding = True
config.model_args.use_d_vector_file = False
config.model_args.d_vector_file = None
config.model_args.d_vector_dim = 256
# test upsample
config.model_args.encoder_sample_rate = 11025
config.model_args.interpolate_z = False
config.model_args.upsample_rates_decoder = [8, 8, 4, 2]
config.model_args.periods_multi_period_discriminator = [2, 3, 5, 7]
config.save_json(config_path)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
f"--coqpit.output_path {output_path} "
"--coqpit.datasets.0.name ljspeech_test "
"--coqpit.datasets.0.meta_file_train metadata.csv "
"--coqpit.datasets.0.meta_file_val metadata.csv "
"--coqpit.datasets.0.path tests/data/ljspeech "
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
"--coqpit.test_delay_epochs 0"
)
run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
# Check integrity of the config
with open(continue_config_path, "r", encoding="utf-8") as f:
config_loaded = json.load(f)
assert config_loaded["characters"] is not None
assert config_loaded["output_path"] in continue_path
assert config_loaded["test_delay_epochs"] == 0
# Load the model and run inference
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)
shutil.rmtree(continue_path)