mirror of https://github.com/coqui-ai/TTS.git
Add XTTS training unit test
This commit is contained in:
parent
1f92741d6a
commit
affaf11148
|
@ -268,6 +268,7 @@ class GPTTrainer(BaseTTS):
|
||||||
dvae_wav = batch["wav"]
|
dvae_wav = batch["wav"]
|
||||||
dvae_mel_spec = self.torch_mel_spectrogram_dvae(dvae_wav)
|
dvae_mel_spec = self.torch_mel_spectrogram_dvae(dvae_wav)
|
||||||
codes = self.dvae.get_codebook_indices(dvae_mel_spec)
|
codes = self.dvae.get_codebook_indices(dvae_mel_spec)
|
||||||
|
|
||||||
batch["audio_codes"] = codes
|
batch["audio_codes"] = codes
|
||||||
# delete useless batch tensors
|
# delete useless batch tensors
|
||||||
del batch["padded_text"]
|
del batch["padded_text"]
|
||||||
|
@ -454,7 +455,9 @@ class GPTTrainer(BaseTTS):
|
||||||
target_options={"anon": True},
|
target_options={"anon": True},
|
||||||
): # pylint: disable=unused-argument, disable=W0201, disable=W0102, redefined-builtin
|
): # pylint: disable=unused-argument, disable=W0201, disable=W0102, redefined-builtin
|
||||||
"""Load the model checkpoint and setup for training or inference"""
|
"""Load the model checkpoint and setup for training or inference"""
|
||||||
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))["model"]
|
|
||||||
|
state, _ = self.xtts.get_compatible_checkpoint_state(checkpoint_path)
|
||||||
|
|
||||||
# load the model weights
|
# load the model weights
|
||||||
self.xtts.load_state_dict(state, strict=strict)
|
self.xtts.load_state_dict(state, strict=strict)
|
||||||
|
|
||||||
|
|
|
@ -643,6 +643,7 @@ class Xtts(BaseTTS):
|
||||||
expected_output_len = torch.tensor(
|
expected_output_len = torch.tensor(
|
||||||
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device
|
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device
|
||||||
)
|
)
|
||||||
|
|
||||||
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device)
|
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device)
|
||||||
gpt_latents = self.gpt(
|
gpt_latents = self.gpt(
|
||||||
text_tokens,
|
text_tokens,
|
||||||
|
@ -788,6 +789,25 @@ class Xtts(BaseTTS):
|
||||||
self.gpt.init_gpt_for_inference()
|
self.gpt.init_gpt_for_inference()
|
||||||
super().eval()
|
super().eval()
|
||||||
|
|
||||||
|
def get_compatible_checkpoint_state_dict(self, model_path):
|
||||||
|
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
|
||||||
|
ignore_keys = ["diffusion_decoder", "vocoder"] if self.args.use_hifigan or self.args.use_ne_hifigan else []
|
||||||
|
ignore_keys += [] if self.args.use_hifigan else ["hifigan_decoder"]
|
||||||
|
ignore_keys += [] if self.args.use_ne_hifigan else ["ne_hifigan_decoder"]
|
||||||
|
for key in list(checkpoint.keys()):
|
||||||
|
# check if it is from the coqui Trainer if so convert it
|
||||||
|
if key.startswith("xtts."):
|
||||||
|
new_key = key.replace("xtts.", "")
|
||||||
|
checkpoint[new_key] = checkpoint[key]
|
||||||
|
del checkpoint[key]
|
||||||
|
key = new_key
|
||||||
|
|
||||||
|
# remove unused keys
|
||||||
|
if key.split(".")[0] in ignore_keys:
|
||||||
|
del checkpoint[key]
|
||||||
|
|
||||||
|
return checkpoint
|
||||||
|
|
||||||
def load_checkpoint(
|
def load_checkpoint(
|
||||||
self,
|
self,
|
||||||
config,
|
config,
|
||||||
|
@ -821,22 +841,7 @@ class Xtts(BaseTTS):
|
||||||
|
|
||||||
self.init_models()
|
self.init_models()
|
||||||
|
|
||||||
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
|
checkpoint = self.get_compatible_checkpoint_state_dict(model_path)
|
||||||
ignore_keys = ["diffusion_decoder", "vocoder"] if self.args.use_hifigan or self.args.use_ne_hifigan else []
|
|
||||||
ignore_keys += [] if self.args.use_hifigan else ["hifigan_decoder"]
|
|
||||||
ignore_keys += [] if self.args.use_ne_hifigan else ["ne_hifigan_decoder"]
|
|
||||||
for key in list(checkpoint.keys()):
|
|
||||||
# check if it is from the coqui Trainer if so convert it
|
|
||||||
if key.startswith("xtts."):
|
|
||||||
coqui_trainer_checkpoint = True
|
|
||||||
new_key = key.replace("xtts.", "")
|
|
||||||
checkpoint[new_key] = checkpoint[key]
|
|
||||||
del checkpoint[key]
|
|
||||||
key = new_key
|
|
||||||
|
|
||||||
# remove unused keys
|
|
||||||
if key.split(".")[0] in ignore_keys:
|
|
||||||
del checkpoint[key]
|
|
||||||
|
|
||||||
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not
|
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not
|
||||||
try:
|
try:
|
||||||
|
|
|
@ -52,6 +52,7 @@ SPEAKER_REFERENCE = (
|
||||||
)
|
)
|
||||||
LANGUAGE = config_dataset.language
|
LANGUAGE = config_dataset.language
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# init args and config
|
# init args and config
|
||||||
model_args = GPTArgs(
|
model_args = GPTArgs(
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,163 @@
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from trainer import Trainer, TrainerArgs
|
||||||
|
|
||||||
|
from tests import get_tests_output_path
|
||||||
|
from TTS.config.shared_configs import BaseDatasetConfig
|
||||||
|
from TTS.tts.datasets import load_tts_samples
|
||||||
|
from TTS.tts.layers.xtts.dvae import DiscreteVAE
|
||||||
|
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
|
||||||
|
|
||||||
|
config_dataset = BaseDatasetConfig(
|
||||||
|
formatter="ljspeech",
|
||||||
|
dataset_name="ljspeech",
|
||||||
|
path="tests/data/ljspeech/",
|
||||||
|
meta_file_train="metadata.csv",
|
||||||
|
meta_file_val="metadata.csv",
|
||||||
|
language="en",
|
||||||
|
)
|
||||||
|
|
||||||
|
DATASETS_CONFIG_LIST = [config_dataset]
|
||||||
|
|
||||||
|
# Logging parameters
|
||||||
|
RUN_NAME = "GPT_XTTS_LJSpeech_FT"
|
||||||
|
PROJECT_NAME = "XTTS_trainer"
|
||||||
|
DASHBOARD_LOGGER = "tensorboard"
|
||||||
|
LOGGER_URI = None
|
||||||
|
|
||||||
|
# Set here the path that the checkpoints will be saved. Default: ./run/training/
|
||||||
|
OUT_PATH = os.path.join(get_tests_output_path(), "train_outputs", "xtts_tests")
|
||||||
|
os.makedirs(OUT_PATH, exist_ok=True)
|
||||||
|
|
||||||
|
# Create DVAE checkpoint and mel_norms on test time
|
||||||
|
# DVAE parameters: For the training we need the dvae to extract the dvae tokens, given that you must provide the paths for this model
|
||||||
|
DVAE_CHECKPOINT = os.path.join(OUT_PATH, "dvae.pth") # DVAE checkpoint
|
||||||
|
MEL_NORM_FILE = os.path.join(
|
||||||
|
OUT_PATH, "mel_stats.pth"
|
||||||
|
) # Mel spectrogram norms, required for dvae mel spectrogram extraction
|
||||||
|
dvae = DiscreteVAE(
|
||||||
|
channels=80,
|
||||||
|
normalization=None,
|
||||||
|
positional_dims=1,
|
||||||
|
num_tokens=8192,
|
||||||
|
codebook_dim=512,
|
||||||
|
hidden_dim=512,
|
||||||
|
num_resnet_blocks=3,
|
||||||
|
kernel_size=3,
|
||||||
|
num_layers=2,
|
||||||
|
use_transposed_convs=False,
|
||||||
|
)
|
||||||
|
torch.save(dvae.state_dict(), DVAE_CHECKPOINT)
|
||||||
|
mel_stats = torch.ones(80)
|
||||||
|
torch.save(mel_stats, MEL_NORM_FILE)
|
||||||
|
|
||||||
|
|
||||||
|
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
|
||||||
|
TOKENIZER_FILE = "tests/inputs/xtts_vocab.json" # vocab.json file
|
||||||
|
XTTS_CHECKPOINT = None # "/raid/edresson/dev/Checkpoints/XTTS_evaluation/xtts_style_emb_repetition_fix_gt/132500_gpt_ema_coqui_tts_with_enhanced_hifigan.pth" # model.pth file
|
||||||
|
|
||||||
|
|
||||||
|
# Training sentences generations
|
||||||
|
SPEAKER_REFERENCE = "tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
|
||||||
|
LANGUAGE = config_dataset.language
|
||||||
|
|
||||||
|
|
||||||
|
# Training Parameters
|
||||||
|
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
|
||||||
|
START_WITH_EVAL = False # if True it will star with evaluation
|
||||||
|
BATCH_SIZE = 2 # set here the batch size
|
||||||
|
GRAD_ACUMM_STEPS = 1 # set here the grad accumulation steps
|
||||||
|
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
|
||||||
|
|
||||||
|
|
||||||
|
# init args and config
|
||||||
|
model_args = GPTArgs(
|
||||||
|
max_conditioning_length=132300, # 6 secs
|
||||||
|
min_conditioning_length=66150, # 3 secs
|
||||||
|
debug_loading_failures=False,
|
||||||
|
max_wav_length=255995, # ~11.6 seconds
|
||||||
|
max_text_length=200,
|
||||||
|
mel_norm_file=MEL_NORM_FILE,
|
||||||
|
dvae_checkpoint=DVAE_CHECKPOINT,
|
||||||
|
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
|
||||||
|
tokenizer_file=TOKENIZER_FILE,
|
||||||
|
gpt_num_audio_tokens=8194,
|
||||||
|
gpt_start_audio_token=8192,
|
||||||
|
gpt_stop_audio_token=8193,
|
||||||
|
)
|
||||||
|
audio_config = XttsAudioConfig(
|
||||||
|
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
|
||||||
|
)
|
||||||
|
config = GPTTrainerConfig(
|
||||||
|
epochs=1,
|
||||||
|
output_path=OUT_PATH,
|
||||||
|
model_args=model_args,
|
||||||
|
run_name=RUN_NAME,
|
||||||
|
project_name=PROJECT_NAME,
|
||||||
|
run_description="""
|
||||||
|
GPT XTTS training
|
||||||
|
""",
|
||||||
|
dashboard_logger=DASHBOARD_LOGGER,
|
||||||
|
logger_uri=LOGGER_URI,
|
||||||
|
audio=audio_config,
|
||||||
|
batch_size=BATCH_SIZE,
|
||||||
|
batch_group_size=48,
|
||||||
|
eval_batch_size=BATCH_SIZE,
|
||||||
|
num_loader_workers=8,
|
||||||
|
eval_split_max_size=256,
|
||||||
|
print_step=50,
|
||||||
|
plot_step=100,
|
||||||
|
log_model_step=1000,
|
||||||
|
save_step=10000,
|
||||||
|
save_n_checkpoints=1,
|
||||||
|
save_checkpoints=True,
|
||||||
|
# target_loss="loss",
|
||||||
|
print_eval=False,
|
||||||
|
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
|
||||||
|
optimizer="AdamW",
|
||||||
|
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
|
||||||
|
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
|
||||||
|
lr=5e-06, # learning rate
|
||||||
|
lr_scheduler="MultiStepLR",
|
||||||
|
# it was adjusted accordly for the new step scheme
|
||||||
|
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
|
||||||
|
test_sentences=[
|
||||||
|
{
|
||||||
|
"text": "This cake is great. It's so delicious and moist.",
|
||||||
|
"speaker_wav": SPEAKER_REFERENCE,
|
||||||
|
"language": LANGUAGE,
|
||||||
|
},
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# init the model from config
|
||||||
|
model = GPTTrainer.init_from_config(config)
|
||||||
|
|
||||||
|
# load training samples
|
||||||
|
train_samples, eval_samples = load_tts_samples(
|
||||||
|
DATASETS_CONFIG_LIST,
|
||||||
|
eval_split=True,
|
||||||
|
eval_split_max_size=config.eval_split_max_size,
|
||||||
|
eval_split_size=config.eval_split_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
# init the trainer and 🚀
|
||||||
|
trainer = Trainer(
|
||||||
|
TrainerArgs(
|
||||||
|
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
|
||||||
|
skip_train_epoch=False,
|
||||||
|
start_with_eval=True,
|
||||||
|
grad_accum_steps=GRAD_ACUMM_STEPS,
|
||||||
|
),
|
||||||
|
config,
|
||||||
|
output_path=OUT_PATH,
|
||||||
|
model=model,
|
||||||
|
train_samples=train_samples,
|
||||||
|
eval_samples=eval_samples,
|
||||||
|
)
|
||||||
|
trainer.fit()
|
||||||
|
|
||||||
|
# remove output path
|
||||||
|
shutil.rmtree(OUT_PATH)
|
Loading…
Reference in New Issue