tests update

This commit is contained in:
Eren Golge 2018-05-10 16:00:21 -07:00
parent 14c9e9cde9
commit b087c0b5ec
3 changed files with 128 additions and 127 deletions

View File

@ -73,7 +73,7 @@ class L1LossMaskedTests(unittest.TestCase):
dummy_length = (T.ones(4) * 8).long()
output = layer(dummy_input, dummy_target, dummy_length)
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
dummy_input = T.ones(4, 8, 128).float()
dummy_target = T.zeros(4, 8, 128).float()
dummy_length = (T.arange(5, 9)).long()

View File

@ -5,7 +5,7 @@ import numpy as np
from torch.utils.data import DataLoader
from TTS.utils.generic_utils import load_config
from TTS.datasets.LJSpeech import LJSpeechDataset
from TTS.datasets.TWEB import TWEBDataset
# from TTS.datasets.TWEB import TWEBDataset
file_path = os.path.dirname(os.path.realpath(__file__))
@ -19,8 +19,8 @@ class TestLJSpeechDataset(unittest.TestCase):
self.max_loader_iter = 4
def test_loader(self):
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
os.path.join(c.data_path_LJSpeech, 'wavs'),
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
os.path.join(c.data_path, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner,
@ -59,8 +59,8 @@ class TestLJSpeechDataset(unittest.TestCase):
assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
os.path.join(c.data_path_LJSpeech, 'wavs'),
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
os.path.join(c.data_path, 'wavs'),
1,
c.sample_rate,
c.text_cleaner,
@ -144,134 +144,134 @@ class TestLJSpeechDataset(unittest.TestCase):
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
class TestTWEBDataset(unittest.TestCase):
# class TestTWEBDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestTWEBDataset, self).__init__(*args, **kwargs)
self.max_loader_iter = 4
# def __init__(self, *args, **kwargs):
# super(TestTWEBDataset, self).__init__(*args, **kwargs)
# self.max_loader_iter = 4
def test_loader(self):
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
os.path.join(c.data_path_TWEB, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
# def test_loader(self):
# dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
# os.path.join(c.data_path_TWEB, 'wavs'),
# c.r,
# c.sample_rate,
# c.text_cleaner,
# c.num_mels,
# c.min_level_db,
# c.frame_shift_ms,
# c.frame_length_ms,
# c.preemphasis,
# c.ref_level_db,
# c.num_freq,
# c.power
# )
dataloader = DataLoader(dataset, batch_size=2,
shuffle=True, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
# dataloader = DataLoader(dataset, batch_size=2,
# shuffle=True, collate_fn=dataset.collate_fn,
# drop_last=True, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
# for i, data in enumerate(dataloader):
# if i == self.max_loader_iter:
# break
# text_input = data[0]
# text_lengths = data[1]
# linear_input = data[2]
# mel_input = data[3]
# mel_lengths = data[4]
# stop_target = data[5]
# item_idx = data[6]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
assert check_count == 0, \
" !! Negative values in text_input: {}".format(check_count)
# TODO: more assertion here
assert linear_input.shape[0] == c.batch_size
assert mel_input.shape[0] == c.batch_size
assert mel_input.shape[2] == c.num_mels
# neg_values = text_input[text_input < 0]
# check_count = len(neg_values)
# assert check_count == 0, \
# " !! Negative values in text_input: {}".format(check_count)
# # TODO: more assertion here
# assert linear_input.shape[0] == c.batch_size
# assert mel_input.shape[0] == c.batch_size
# assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
os.path.join(c.data_path_TWEB, 'wavs'),
1,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
# def test_padding(self):
# dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
# os.path.join(c.data_path_TWEB, 'wavs'),
# 1,
# c.sample_rate,
# c.text_cleaner,
# c.num_mels,
# c.min_level_db,
# c.frame_shift_ms,
# c.frame_length_ms,
# c.preemphasis,
# c.ref_level_db,
# c.num_freq,
# c.power
# )
# Test for batch size 1
dataloader = DataLoader(dataset, batch_size=1,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=False, num_workers=c.num_loader_workers)
# # Test for batch size 1
# dataloader = DataLoader(dataset, batch_size=1,
# shuffle=False, collate_fn=dataset.collate_fn,
# drop_last=False, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
# for i, data in enumerate(dataloader):
# if i == self.max_loader_iter:
# break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
# text_input = data[0]
# text_lengths = data[1]
# linear_input = data[2]
# mel_input = data[3]
# mel_lengths = data[4]
# stop_target = data[5]
# item_idx = data[6]
# check the last time step to be zero padded
assert mel_input[0, -1].sum() == 0
assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
assert linear_input[0, -1].sum() == 0
assert linear_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target[0, -2] == 0
assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[0] == mel_input[0].shape[0]
# # check the last time step to be zero padded
# assert mel_input[0, -1].sum() == 0
# assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
# assert linear_input[0, -1].sum() == 0
# assert linear_input[0, -2].sum() != 0
# assert stop_target[0, -1] == 1
# assert stop_target[0, -2] == 0
# assert stop_target.sum() == 1
# assert len(mel_lengths.shape) == 1
# assert mel_lengths[0] == mel_input[0].shape[0]
# Test for batch size 2
dataloader = DataLoader(dataset, batch_size=2,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=False, num_workers=c.num_loader_workers)
# # Test for batch size 2
# dataloader = DataLoader(dataset, batch_size=2,
# shuffle=False, collate_fn=dataset.collate_fn,
# drop_last=False, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
# for i, data in enumerate(dataloader):
# if i == self.max_loader_iter:
# break
# text_input = data[0]
# text_lengths = data[1]
# linear_input = data[2]
# mel_input = data[3]
# mel_lengths = data[4]
# stop_target = data[5]
# item_idx = data[6]
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# if mel_lengths[0] > mel_lengths[1]:
# idx = 0
# else:
# idx = 1
# check the first item in the batch
assert mel_input[idx, -1].sum() == 0
assert mel_input[idx, -2].sum() != 0, mel_input
assert linear_input[idx, -1].sum() == 0
assert linear_input[idx, -2].sum() != 0
assert stop_target[idx, -1] == 1
assert stop_target[idx, -2] == 0
assert stop_target[idx].sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[idx] == mel_input[idx].shape[0]
# # check the first item in the batch
# assert mel_input[idx, -1].sum() == 0
# assert mel_input[idx, -2].sum() != 0, mel_input
# assert linear_input[idx, -1].sum() == 0
# assert linear_input[idx, -2].sum() != 0
# assert stop_target[idx, -1] == 1
# assert stop_target[idx, -2] == 0
# assert stop_target[idx].sum() == 1
# assert len(mel_lengths.shape) == 1
# assert mel_lengths[idx] == mel_input[idx].shape[0]
# check the second itme in the batch
assert mel_input[1-idx, -1].sum() == 0
assert linear_input[1-idx, -1].sum() == 0
assert stop_target[1-idx, -1] == 1
assert len(mel_lengths.shape) == 1
# # check the second itme in the batch
# assert mel_input[1-idx, -1].sum() == 0
# assert linear_input[1-idx, -1].sum() == 0
# assert stop_target[1-idx, -1] == 1
# assert len(mel_lengths.shape) == 1
# check batch conditions
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
# # check batch conditions
# assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
# assert (linear_input * stop_target.unsqueeze(2)).sum() == 0

View File

@ -42,20 +42,21 @@ class TacotronTrainTest(unittest.TestCase):
count += 1
optimizer = optim.Adam(model.parameters(), lr=c.lr)
for i in range(5):
mel_out, linear_out, align, stop_tokens = model.forward(input, mel_spec)
assert stop_tokens.data.max() <= 1.0
assert stop_tokens.data.min() >= 0.0
mel_out, linear_out, align = model.forward(input, mel_spec)
# mel_out, linear_out, align, stop_tokens = model.forward(input, mel_spec)
# assert stop_tokens.data.max() <= 1.0
# assert stop_tokens.data.min() >= 0.0
optimizer.zero_grad()
loss = criterion(mel_out, mel_spec, mel_lengths)
stop_loss = criterion_st(stop_tokens, stop_targets)
loss = loss + criterion(linear_out, linear_spec, mel_lengths) + stop_loss
# stop_loss = criterion_st(stop_tokens, stop_targets)
loss = loss + criterion(linear_out, linear_spec, mel_lengths)
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
if count not in [141, 59]:
if count not in [139, 59]:
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(count, param.shape, param, param_ref)
count += 1