mirror of https://github.com/coqui-ai/TTS.git
tests update
This commit is contained in:
parent
14c9e9cde9
commit
b087c0b5ec
|
@ -73,7 +73,7 @@ class L1LossMaskedTests(unittest.TestCase):
|
|||
dummy_length = (T.ones(4) * 8).long()
|
||||
output = layer(dummy_input, dummy_target, dummy_length)
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
|
||||
|
||||
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.zeros(4, 8, 128).float()
|
||||
dummy_length = (T.arange(5, 9)).long()
|
||||
|
|
|
@ -5,7 +5,7 @@ import numpy as np
|
|||
from torch.utils.data import DataLoader
|
||||
from TTS.utils.generic_utils import load_config
|
||||
from TTS.datasets.LJSpeech import LJSpeechDataset
|
||||
from TTS.datasets.TWEB import TWEBDataset
|
||||
# from TTS.datasets.TWEB import TWEBDataset
|
||||
|
||||
|
||||
file_path = os.path.dirname(os.path.realpath(__file__))
|
||||
|
@ -19,8 +19,8 @@ class TestLJSpeechDataset(unittest.TestCase):
|
|||
self.max_loader_iter = 4
|
||||
|
||||
def test_loader(self):
|
||||
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
|
||||
os.path.join(c.data_path_LJSpeech, 'wavs'),
|
||||
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
|
||||
os.path.join(c.data_path, 'wavs'),
|
||||
c.r,
|
||||
c.sample_rate,
|
||||
c.text_cleaner,
|
||||
|
@ -59,8 +59,8 @@ class TestLJSpeechDataset(unittest.TestCase):
|
|||
assert mel_input.shape[2] == c.num_mels
|
||||
|
||||
def test_padding(self):
|
||||
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
|
||||
os.path.join(c.data_path_LJSpeech, 'wavs'),
|
||||
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
|
||||
os.path.join(c.data_path, 'wavs'),
|
||||
1,
|
||||
c.sample_rate,
|
||||
c.text_cleaner,
|
||||
|
@ -144,134 +144,134 @@ class TestLJSpeechDataset(unittest.TestCase):
|
|||
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
||||
|
||||
|
||||
class TestTWEBDataset(unittest.TestCase):
|
||||
# class TestTWEBDataset(unittest.TestCase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TestTWEBDataset, self).__init__(*args, **kwargs)
|
||||
self.max_loader_iter = 4
|
||||
# def __init__(self, *args, **kwargs):
|
||||
# super(TestTWEBDataset, self).__init__(*args, **kwargs)
|
||||
# self.max_loader_iter = 4
|
||||
|
||||
def test_loader(self):
|
||||
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
||||
os.path.join(c.data_path_TWEB, 'wavs'),
|
||||
c.r,
|
||||
c.sample_rate,
|
||||
c.text_cleaner,
|
||||
c.num_mels,
|
||||
c.min_level_db,
|
||||
c.frame_shift_ms,
|
||||
c.frame_length_ms,
|
||||
c.preemphasis,
|
||||
c.ref_level_db,
|
||||
c.num_freq,
|
||||
c.power
|
||||
)
|
||||
# def test_loader(self):
|
||||
# dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
||||
# os.path.join(c.data_path_TWEB, 'wavs'),
|
||||
# c.r,
|
||||
# c.sample_rate,
|
||||
# c.text_cleaner,
|
||||
# c.num_mels,
|
||||
# c.min_level_db,
|
||||
# c.frame_shift_ms,
|
||||
# c.frame_length_ms,
|
||||
# c.preemphasis,
|
||||
# c.ref_level_db,
|
||||
# c.num_freq,
|
||||
# c.power
|
||||
# )
|
||||
|
||||
dataloader = DataLoader(dataset, batch_size=2,
|
||||
shuffle=True, collate_fn=dataset.collate_fn,
|
||||
drop_last=True, num_workers=c.num_loader_workers)
|
||||
# dataloader = DataLoader(dataset, batch_size=2,
|
||||
# shuffle=True, collate_fn=dataset.collate_fn,
|
||||
# drop_last=True, num_workers=c.num_loader_workers)
|
||||
|
||||
for i, data in enumerate(dataloader):
|
||||
if i == self.max_loader_iter:
|
||||
break
|
||||
text_input = data[0]
|
||||
text_lengths = data[1]
|
||||
linear_input = data[2]
|
||||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_target = data[5]
|
||||
item_idx = data[6]
|
||||
# for i, data in enumerate(dataloader):
|
||||
# if i == self.max_loader_iter:
|
||||
# break
|
||||
# text_input = data[0]
|
||||
# text_lengths = data[1]
|
||||
# linear_input = data[2]
|
||||
# mel_input = data[3]
|
||||
# mel_lengths = data[4]
|
||||
# stop_target = data[5]
|
||||
# item_idx = data[6]
|
||||
|
||||
neg_values = text_input[text_input < 0]
|
||||
check_count = len(neg_values)
|
||||
assert check_count == 0, \
|
||||
" !! Negative values in text_input: {}".format(check_count)
|
||||
# TODO: more assertion here
|
||||
assert linear_input.shape[0] == c.batch_size
|
||||
assert mel_input.shape[0] == c.batch_size
|
||||
assert mel_input.shape[2] == c.num_mels
|
||||
# neg_values = text_input[text_input < 0]
|
||||
# check_count = len(neg_values)
|
||||
# assert check_count == 0, \
|
||||
# " !! Negative values in text_input: {}".format(check_count)
|
||||
# # TODO: more assertion here
|
||||
# assert linear_input.shape[0] == c.batch_size
|
||||
# assert mel_input.shape[0] == c.batch_size
|
||||
# assert mel_input.shape[2] == c.num_mels
|
||||
|
||||
def test_padding(self):
|
||||
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
||||
os.path.join(c.data_path_TWEB, 'wavs'),
|
||||
1,
|
||||
c.sample_rate,
|
||||
c.text_cleaner,
|
||||
c.num_mels,
|
||||
c.min_level_db,
|
||||
c.frame_shift_ms,
|
||||
c.frame_length_ms,
|
||||
c.preemphasis,
|
||||
c.ref_level_db,
|
||||
c.num_freq,
|
||||
c.power
|
||||
)
|
||||
# def test_padding(self):
|
||||
# dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
|
||||
# os.path.join(c.data_path_TWEB, 'wavs'),
|
||||
# 1,
|
||||
# c.sample_rate,
|
||||
# c.text_cleaner,
|
||||
# c.num_mels,
|
||||
# c.min_level_db,
|
||||
# c.frame_shift_ms,
|
||||
# c.frame_length_ms,
|
||||
# c.preemphasis,
|
||||
# c.ref_level_db,
|
||||
# c.num_freq,
|
||||
# c.power
|
||||
# )
|
||||
|
||||
# Test for batch size 1
|
||||
dataloader = DataLoader(dataset, batch_size=1,
|
||||
shuffle=False, collate_fn=dataset.collate_fn,
|
||||
drop_last=False, num_workers=c.num_loader_workers)
|
||||
# # Test for batch size 1
|
||||
# dataloader = DataLoader(dataset, batch_size=1,
|
||||
# shuffle=False, collate_fn=dataset.collate_fn,
|
||||
# drop_last=False, num_workers=c.num_loader_workers)
|
||||
|
||||
for i, data in enumerate(dataloader):
|
||||
if i == self.max_loader_iter:
|
||||
break
|
||||
# for i, data in enumerate(dataloader):
|
||||
# if i == self.max_loader_iter:
|
||||
# break
|
||||
|
||||
text_input = data[0]
|
||||
text_lengths = data[1]
|
||||
linear_input = data[2]
|
||||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_target = data[5]
|
||||
item_idx = data[6]
|
||||
# text_input = data[0]
|
||||
# text_lengths = data[1]
|
||||
# linear_input = data[2]
|
||||
# mel_input = data[3]
|
||||
# mel_lengths = data[4]
|
||||
# stop_target = data[5]
|
||||
# item_idx = data[6]
|
||||
|
||||
# check the last time step to be zero padded
|
||||
assert mel_input[0, -1].sum() == 0
|
||||
assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
|
||||
assert linear_input[0, -1].sum() == 0
|
||||
assert linear_input[0, -2].sum() != 0
|
||||
assert stop_target[0, -1] == 1
|
||||
assert stop_target[0, -2] == 0
|
||||
assert stop_target.sum() == 1
|
||||
assert len(mel_lengths.shape) == 1
|
||||
assert mel_lengths[0] == mel_input[0].shape[0]
|
||||
# # check the last time step to be zero padded
|
||||
# assert mel_input[0, -1].sum() == 0
|
||||
# assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
|
||||
# assert linear_input[0, -1].sum() == 0
|
||||
# assert linear_input[0, -2].sum() != 0
|
||||
# assert stop_target[0, -1] == 1
|
||||
# assert stop_target[0, -2] == 0
|
||||
# assert stop_target.sum() == 1
|
||||
# assert len(mel_lengths.shape) == 1
|
||||
# assert mel_lengths[0] == mel_input[0].shape[0]
|
||||
|
||||
# Test for batch size 2
|
||||
dataloader = DataLoader(dataset, batch_size=2,
|
||||
shuffle=False, collate_fn=dataset.collate_fn,
|
||||
drop_last=False, num_workers=c.num_loader_workers)
|
||||
# # Test for batch size 2
|
||||
# dataloader = DataLoader(dataset, batch_size=2,
|
||||
# shuffle=False, collate_fn=dataset.collate_fn,
|
||||
# drop_last=False, num_workers=c.num_loader_workers)
|
||||
|
||||
for i, data in enumerate(dataloader):
|
||||
if i == self.max_loader_iter:
|
||||
break
|
||||
text_input = data[0]
|
||||
text_lengths = data[1]
|
||||
linear_input = data[2]
|
||||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_target = data[5]
|
||||
item_idx = data[6]
|
||||
# for i, data in enumerate(dataloader):
|
||||
# if i == self.max_loader_iter:
|
||||
# break
|
||||
# text_input = data[0]
|
||||
# text_lengths = data[1]
|
||||
# linear_input = data[2]
|
||||
# mel_input = data[3]
|
||||
# mel_lengths = data[4]
|
||||
# stop_target = data[5]
|
||||
# item_idx = data[6]
|
||||
|
||||
if mel_lengths[0] > mel_lengths[1]:
|
||||
idx = 0
|
||||
else:
|
||||
idx = 1
|
||||
# if mel_lengths[0] > mel_lengths[1]:
|
||||
# idx = 0
|
||||
# else:
|
||||
# idx = 1
|
||||
|
||||
# check the first item in the batch
|
||||
assert mel_input[idx, -1].sum() == 0
|
||||
assert mel_input[idx, -2].sum() != 0, mel_input
|
||||
assert linear_input[idx, -1].sum() == 0
|
||||
assert linear_input[idx, -2].sum() != 0
|
||||
assert stop_target[idx, -1] == 1
|
||||
assert stop_target[idx, -2] == 0
|
||||
assert stop_target[idx].sum() == 1
|
||||
assert len(mel_lengths.shape) == 1
|
||||
assert mel_lengths[idx] == mel_input[idx].shape[0]
|
||||
# # check the first item in the batch
|
||||
# assert mel_input[idx, -1].sum() == 0
|
||||
# assert mel_input[idx, -2].sum() != 0, mel_input
|
||||
# assert linear_input[idx, -1].sum() == 0
|
||||
# assert linear_input[idx, -2].sum() != 0
|
||||
# assert stop_target[idx, -1] == 1
|
||||
# assert stop_target[idx, -2] == 0
|
||||
# assert stop_target[idx].sum() == 1
|
||||
# assert len(mel_lengths.shape) == 1
|
||||
# assert mel_lengths[idx] == mel_input[idx].shape[0]
|
||||
|
||||
# check the second itme in the batch
|
||||
assert mel_input[1-idx, -1].sum() == 0
|
||||
assert linear_input[1-idx, -1].sum() == 0
|
||||
assert stop_target[1-idx, -1] == 1
|
||||
assert len(mel_lengths.shape) == 1
|
||||
# # check the second itme in the batch
|
||||
# assert mel_input[1-idx, -1].sum() == 0
|
||||
# assert linear_input[1-idx, -1].sum() == 0
|
||||
# assert stop_target[1-idx, -1] == 1
|
||||
# assert len(mel_lengths.shape) == 1
|
||||
|
||||
# check batch conditions
|
||||
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
||||
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
||||
# # check batch conditions
|
||||
# assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
|
||||
# assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
|
||||
|
|
|
@ -42,20 +42,21 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for i in range(5):
|
||||
mel_out, linear_out, align, stop_tokens = model.forward(input, mel_spec)
|
||||
assert stop_tokens.data.max() <= 1.0
|
||||
assert stop_tokens.data.min() >= 0.0
|
||||
mel_out, linear_out, align = model.forward(input, mel_spec)
|
||||
# mel_out, linear_out, align, stop_tokens = model.forward(input, mel_spec)
|
||||
# assert stop_tokens.data.max() <= 1.0
|
||||
# assert stop_tokens.data.min() >= 0.0
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(linear_out, linear_spec, mel_lengths) + stop_loss
|
||||
# stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(linear_out, linear_spec, mel_lengths)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# check parameter changes
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
if count not in [141, 59]:
|
||||
if count not in [139, 59]:
|
||||
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
|
|
Loading…
Reference in New Issue