new requirements

This commit is contained in:
erogol 2020-07-14 17:47:47 +02:00
parent 3e4305f878
commit b116bdaefa
4 changed files with 69 additions and 0 deletions

View File

@ -19,3 +19,5 @@ soundfile
nose==1.3.7
cardboardlint==1.3.0
pylint==2.5.3
fuzzywuzzy
gdown

View File

@ -98,6 +98,8 @@ requirements = {
"nose==1.3.7",
"cardboardlint==1.3.0",
"pylint==2.5.3",
'fuzzywuzzy',
'gdown'
],
'pip_install':[
'tensorflow>=2.2.0',

View File

@ -0,0 +1,34 @@
# Convert Tensorflow Tacotron2 model to TF-Lite binary
import argparse
from TTS.utils.io import load_config
from TTS.utils.text.symbols import symbols, phonemes
from TTS.vocoder.tf.utils.generic_utils import setup_generator
from TTS.vocoder.tf.utils.io import load_checkpoint
from TTS.vocoder.tf.utils.tflite import convert_melgan_to_tflite
parser = argparse.ArgumentParser()
parser.add_argument('--tf_model',
type=str,
help='Path to target torch model to be converted to TF.')
parser.add_argument('--config_path',
type=str,
help='Path to config file of torch model.')
parser.add_argument('--output_path',
type=str,
help='path to tflite output binary.')
args = parser.parse_args()
# Set constants
CONFIG = load_config(args.config_path)
# load the model
model = setup_generator(CONFIG)
model.build_inference()
model = load_checkpoint(model, args.tf_model)
# create tflite model
tflite_model = convert_melgan_to_tflite(model, output_path=args.output_path)

View File

@ -0,0 +1,31 @@
import tensorflow as tf
def convert_melgan_to_tflite(model,
output_path=None,
experimental_converter=True):
"""Convert Tensorflow MelGAN model to TFLite. Save a binary file if output_path is
provided, else return TFLite model."""
concrete_function = model.inference_tflite.get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions(
[concrete_function])
converter.experimental_new_converter = experimental_converter
converter.optimizations = []
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
]
tflite_model = converter.convert()
print(f'Tflite Model size is {len(tflite_model) / (1024.0 * 1024.0)} MBs.')
if output_path is not None:
# same model binary if outputpath is provided
with open(output_path, 'wb') as f:
f.write(tflite_model)
return None
return tflite_model
def load_tflite_model(tflite_path):
tflite_model = tf.lite.Interpreter(model_path=tflite_path)
tflite_model.allocate_tensors()
return tflite_model