tf bacend for synthesis

This commit is contained in:
erogol 2020-05-06 16:37:30 +02:00
parent d99fda8e42
commit b3ec50b5c4
2 changed files with 70 additions and 22 deletions

View File

@ -1,3 +1,7 @@
import pkg_resources
installed = {pkg.key for pkg in pkg_resources.working_set}
if 'tensorflow' in installed:
import tensorflow as tf
import torch
import numpy as np
from .text import text_to_sequence, phoneme_to_sequence
@ -14,23 +18,32 @@ def text_to_seqvec(text, CONFIG, use_cuda):
dtype=np.int32)
else:
seq = np.asarray(text_to_sequence(text, text_cleaner, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None), dtype=np.int32)
# torch tensor
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda()
return chars_var.long()
return seq
def numpy_to_torch(np_array, dtype, cuda=False):
if np_array is None:
return None
tensor = torch.Tensor(np_array, dtype=dtype)
if cuda:
return tensor.cuda()
return tensor
def numpy_to_tf(np_array, dtype):
if np_array is None:
return None
tensor = tf.convert_to_tensor(np_array, dtype=dtype)
return tensor
def compute_style_mel(style_wav, ap, use_cuda):
print(style_wav)
style_mel = torch.FloatTensor(ap.melspectrogram(
ap.load_wav(style_wav))).unsqueeze(0)
if use_cuda:
return style_mel.cuda()
style_mel = ap.melspectrogram(
ap.load_wav(style_wav)).expand_dims(0)
return style_mel
def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
def run_model_torch(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
if CONFIG.use_gst:
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
inputs, style_mel=style_mel, speaker_ids=speaker_id)
@ -44,11 +57,31 @@ def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None)
return decoder_output, postnet_output, alignments, stop_tokens
def parse_outputs(postnet_output, decoder_output, alignments):
def run_model_tf(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
if CONFIG.use_gst:
raise NotImplemented(' [!] GST inference not implemented for TF')
if truncated:
raise NotImplemented(' [!] Truncated inference not implemented for TF')
# TODO: handle multispeaker case
decoder_output, postnet_output, alignments, stop_tokens = model(
inputs, training=False)
return decoder_output, postnet_output, alignments, stop_tokens
def parse_outputs_torch(postnet_output, decoder_output, alignments, stop_tokens):
postnet_output = postnet_output[0].data.cpu().numpy()
decoder_output = decoder_output[0].data.cpu().numpy()
alignment = alignments[0].cpu().data.numpy()
return postnet_output, decoder_output, alignment
stop_tokens = stop_tokens[0].cpu().numpy()
return postnet_output, decoder_output, alignment, stop_tokens
def parse_outputs_tf(postnet_output, decoder_output, alignments, stop_tokens):
postnet_output = postnet_output[0].numpy()
decoder_output = decoder_output[0].numpy()
alignment = alignments[0].numpy()
stop_tokens = stop_tokens[0].numpy()
return postnet_output, decoder_output, alignment, stop_tokens
def trim_silence(wav, ap):
@ -98,7 +131,8 @@ def synthesis(model,
truncated=False,
enable_eos_bos_chars=False, #pylint: disable=unused-argument
use_griffin_lim=False,
do_trim_silence=False):
do_trim_silence=False,
backend='torch'):
"""Synthesize voice for the given text.
Args:
@ -114,6 +148,7 @@ def synthesis(model,
for continuous inference at long texts.
enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence.
do_trim_silence (bool): trim silence after synthesis.
backend (str): tf or torch
"""
# GST processing
style_mel = None
@ -121,15 +156,29 @@ def synthesis(model,
style_mel = compute_style_mel(style_wav, ap, use_cuda)
# preprocess the given text
inputs = text_to_seqvec(text, CONFIG, use_cuda)
# pass tensors to backend
if backend == 'torch':
speaker_id = id_to_torch(speaker_id)
if speaker_id is not None and use_cuda:
speaker_id = speaker_id.cuda()
style_mel = numpy_to_torch(style_mel, torch.float, cuda=use_cuda)
inputs = numpy_to_torch(inputs, torch.long, cuda=use_cuda)
inputs = inputs.unsqueeze(0)
else:
# TODO: handle speaker id for tf model
style_mel = numpy_to_tf(style_mel, tf.float32)
inputs = numpy_to_tf(inputs, tf.int32)
inputs = tf.expand_dims(inputs, 0)
# synthesize voice
decoder_output, postnet_output, alignments, stop_tokens = run_model(
if backend == 'torch':
decoder_output, postnet_output, alignments, stop_tokens = run_model_torch(
model, inputs, CONFIG, truncated, speaker_id, style_mel)
postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_torch(
postnet_output, decoder_output, alignments, stop_tokens)
else:
decoder_output, postnet_output, alignments, stop_tokens = run_model_tf(
model, inputs, CONFIG, truncated, speaker_id, style_mel)
postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_tf(
postnet_output, decoder_output, alignments, stop_tokens)
# convert outputs to numpy
postnet_output, decoder_output, alignment = parse_outputs(
postnet_output, decoder_output, alignments)
# plot results
wav = None
if use_griffin_lim:

View File

@ -61,7 +61,6 @@ def visualize(alignment, postnet_output, stop_tokens, text, hop_length, CONFIG,
plt.yticks(range(len(text)), list(text))
plt.colorbar()
# plot stopnet predictions
stop_tokens = stop_tokens.squeeze().detach().to('cpu').numpy()
plt.subplot(num_plot, 1, 2)
plt.plot(range(len(stop_tokens)), list(stop_tokens))
# plot postnet spectrogram