diff --git a/vocoder/utils/io.py b/vocoder/utils/io.py index b6ea7484..9d350238 100644 --- a/vocoder/utils/io.py +++ b/vocoder/utils/io.py @@ -2,18 +2,27 @@ import os import torch import datetime -def save_model(model, optimizer, model_disc, optimizer_disc, current_step, - epoch, output_path, **kwargs): + +def save_model(model, optimizer, scheduler, model_disc, optimizer_disc, + scheduler_disc, current_step, epoch, output_path, **kwargs): model_state = model.state_dict() - model_disc_state = model_disc.state_dict() - optimizer_state = optimizer.state_dict() if optimizer is not None else None - optimizer_disc_state = optimizer_disc.state_dict( - ) if optimizer_disc is not None else None + model_disc_state = model_disc.state_dict()\ + if model_disc is not None else None + optimizer_state = optimizer.state_dict()\ + if optimizer is not None else None + optimizer_disc_state = optimizer_disc.state_dict()\ + if optimizer_disc is not None else None + scheduler_state = scheduler.state_dict()\ + if scheduler is not None else None + scheduler_disc_state = scheduler_disc.state_dict()\ + if scheduler_disc is not None else None state = { 'model': model_state, 'optimizer': optimizer_state, + 'scheduler': scheduler_state, 'model_disc': model_disc_state, 'optimizer_disc': optimizer_disc_state, + 'scheduler_disc': scheduler_disc_state, 'step': current_step, 'epoch': epoch, 'date': datetime.date.today().strftime("%B %d, %Y"), @@ -22,26 +31,29 @@ def save_model(model, optimizer, model_disc, optimizer_disc, current_step, torch.save(state, output_path) -def save_checkpoint(model, optimizer, model_disc, optimizer_disc, current_step, - epoch, output_folder, **kwargs): +def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc, + scheduler_disc, current_step, epoch, output_folder, + **kwargs): file_name = 'checkpoint_{}.pth.tar'.format(current_step) checkpoint_path = os.path.join(output_folder, file_name) print(" > CHECKPOINT : {}".format(checkpoint_path)) - save_model(model, optimizer, model_disc, optimizer_disc, current_step, - epoch, checkpoint_path, **kwargs) + save_model(model, optimizer, scheduler, model_disc, optimizer_disc, + scheduler_disc, current_step, epoch, checkpoint_path, **kwargs) -def save_best_model(target_loss, best_loss, model, optimizer, model_disc, - optimizer_disc, current_step, epoch, output_folder, - **kwargs): +def save_best_model(target_loss, best_loss, model, optimizer, scheduler, + model_disc, optimizer_disc, scheduler_disc, current_step, + epoch, output_folder, **kwargs): if target_loss < best_loss: file_name = 'best_model.pth.tar' checkpoint_path = os.path.join(output_folder, file_name) print(" > BEST MODEL : {}".format(checkpoint_path)) save_model(model, optimizer, + scheduler, model_disc, optimizer_disc, + scheduler_disc, current_step, epoch, checkpoint_path,