mirror of https://github.com/coqui-ai/TTS.git
add synthesize.py script to call TTS on terminal
This commit is contained in:
parent
7d45e5d011
commit
b557d32d8c
|
@ -0,0 +1,147 @@
|
|||
import os
|
||||
import time
|
||||
import argparse
|
||||
import torch
|
||||
import string
|
||||
|
||||
from utils.synthesis import synthesis
|
||||
from utils.generic_utils import load_config, setup_model
|
||||
from utils.text.symbols import symbols, phonemes
|
||||
from utils.audio import AudioProcessor
|
||||
|
||||
from WaveRNN.models.wavernn import Model as VocoderModel
|
||||
|
||||
|
||||
def tts(model,
|
||||
vocoder_model,
|
||||
C,
|
||||
VC,
|
||||
text,
|
||||
ap,
|
||||
use_cuda,
|
||||
batched_vocoder,
|
||||
figures=False):
|
||||
t_1 = time.time()
|
||||
use_vocoder_model = vocoder_model is not None
|
||||
waveform, alignment, decoder_outputs, postnet_output, stop_tokens = synthesis(
|
||||
model, text, C, use_cuda, ap, False, C.enable_eos_bos_chars)
|
||||
if C.model == "Tacotron" and use_vocoder_model:
|
||||
postnet_output = ap.out_linear_to_mel(postnet_output.T).T
|
||||
if use_vocoder_model:
|
||||
vocoder_input = torch.FloatTensor(postnet_output.T).unsqueeze(0)
|
||||
waveform = vocoder_model.generate(
|
||||
vocoder_input.cuda() if use_cuda else vocoder_input,
|
||||
batched=batched_vocoder,
|
||||
target=11000,
|
||||
overlap=550)
|
||||
print(" > Run-time: {}".format(time.time() - t_1))
|
||||
return alignment, postnet_output, stop_tokens, waveform
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'text', type=str, help='Text to generate speech.')
|
||||
parser.add_argument(
|
||||
'config_path',
|
||||
type=str,
|
||||
help='Path to model config file.'
|
||||
)
|
||||
parser.add_argument(
|
||||
'model_path',
|
||||
type=str,
|
||||
help='Path to model file.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'out_path',
|
||||
type=str,
|
||||
help='Path to save final wav file.',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--use_cuda', type=bool, help='Run model on CUDA.', default=False)
|
||||
parser.add_argument(
|
||||
'--vocoder_path',
|
||||
type=str,
|
||||
help=
|
||||
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
|
||||
default="",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--vocoder_config_path',
|
||||
type=str,
|
||||
help='Path to vocoder model config file.',
|
||||
default="")
|
||||
parser.add_argument(
|
||||
'--batched_vocoder',
|
||||
type=bool,
|
||||
help="If True, vocoder model uses faster batch processing.",
|
||||
default=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.vocoder_path != "":
|
||||
assert args.use_cuda, " [!] Enable cuda for vocoder."
|
||||
|
||||
# load the config
|
||||
C = load_config(args.config_path)
|
||||
C.forward_attn_mask = True
|
||||
|
||||
# load the audio processor
|
||||
ap = AudioProcessor(**C.audio)
|
||||
|
||||
# load the model
|
||||
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
|
||||
model = setup_model(num_chars, C)
|
||||
cp = torch.load(args.model_path)
|
||||
model.load_state_dict(cp['model'])
|
||||
model.eval()
|
||||
if args.use_cuda:
|
||||
model.cuda()
|
||||
|
||||
# load vocoder model
|
||||
if args.vocoder_path != "":
|
||||
VC = load_config(args.vocoder_config_path)
|
||||
bits = 10
|
||||
vocoder_model = VocoderModel(
|
||||
rnn_dims=512,
|
||||
fc_dims=512,
|
||||
mode=VC.mode,
|
||||
mulaw=VC.mulaw,
|
||||
pad=VC.pad,
|
||||
upsample_factors=VC.upsample_factors,
|
||||
feat_dims=VC.audio["num_mels"],
|
||||
compute_dims=128,
|
||||
res_out_dims=128,
|
||||
res_blocks=10,
|
||||
hop_length=ap.hop_length,
|
||||
sample_rate=ap.sample_rate,
|
||||
)
|
||||
|
||||
check = torch.load(args.vocoder_path)
|
||||
vocoder_model.load_state_dict(check['model'])
|
||||
vocoder_model.eval()
|
||||
if args.use_cuda:
|
||||
vocoder_model.cuda()
|
||||
else:
|
||||
vocoder_model = None
|
||||
VC = None
|
||||
|
||||
# synthesize voice
|
||||
print(" > Text: {}".format(args.text))
|
||||
_, _, _, wav = tts(
|
||||
model,
|
||||
vocoder_model,
|
||||
C,
|
||||
VC,
|
||||
args.text,
|
||||
ap,
|
||||
args.use_cuda,
|
||||
args.batched_vocoder,
|
||||
figures=False)
|
||||
|
||||
# save the results
|
||||
file_name = args.text.replace(" ", "_")
|
||||
file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', '')))+'.wav'
|
||||
out_path = os.path.join(args.out_path, file_name)
|
||||
print(" > Saving output to {}".format(out_path))
|
||||
ap.save_wav(wav, out_path)
|
Loading…
Reference in New Issue