mirror of https://github.com/coqui-ai/TTS.git
Compute embeddings and find characters using config file
This commit is contained in:
parent
14b209c7e9
commit
b74b510d3c
|
@ -3,71 +3,44 @@ import glob
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import numpy as np
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from TTS.speaker_encoder.utils.generic_utils import setup_model
|
from TTS.speaker_encoder.utils.generic_utils import setup_model
|
||||||
from TTS.tts.datasets.preprocess import load_meta_data
|
from TTS.tts.datasets.preprocess import load_meta_data
|
||||||
from TTS.tts.utils.speakers import SpeakerManager
|
from TTS.tts.utils.speakers import SpeakerManager
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
from TTS.config import load_config, BaseDatasetConfig
|
from TTS.config import load_config
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.'
|
description='Compute embedding vectors for each wav file in a dataset.'
|
||||||
)
|
)
|
||||||
parser.add_argument("model_path", type=str, help="Path to model outputs (checkpoint, tensorboard etc.).")
|
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"config_path",
|
"config_path",
|
||||||
type=str,
|
type=str,
|
||||||
help="Path to config file for training.",
|
help="Path to model config file.",
|
||||||
)
|
)
|
||||||
parser.add_argument("data_path", type=str, help="Data path for wav files - directory or CSV file")
|
|
||||||
parser.add_argument("output_path", type=str, help="path for output speakers.json.")
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--target_dataset",
|
"config_dataset_path",
|
||||||
type=str,
|
type=str,
|
||||||
default="",
|
help="Path to dataset config file.",
|
||||||
help="Target dataset to pick a processor from TTS.tts.dataset.preprocess. Necessary to create a speakers.json file.",
|
|
||||||
)
|
)
|
||||||
|
parser.add_argument("output_path", type=str, help="path for output speakers.json and/or speakers.npy.")
|
||||||
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
|
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
|
||||||
parser.add_argument("--separator", type=str, help="Separator used in file if CSV is passed for data_path", default="|")
|
parser.add_argument("--save_npy", type=bool, help="flag to set cuda.", default=False)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
c = load_config(args.config_path)
|
c = load_config(args.config_path)
|
||||||
|
c_dataset = load_config(args.config_dataset_path)
|
||||||
|
|
||||||
ap = AudioProcessor(**c["audio"])
|
ap = AudioProcessor(**c["audio"])
|
||||||
|
|
||||||
data_path = args.data_path
|
train_files, dev_files = load_meta_data(c_dataset.datasets, eval_split=True, ignore_generated_eval=True)
|
||||||
split_ext = os.path.splitext(data_path)
|
|
||||||
sep = args.separator
|
|
||||||
|
|
||||||
if args.target_dataset != "":
|
wav_files = train_files + dev_files
|
||||||
# if target dataset is defined
|
|
||||||
dataset_config = [
|
|
||||||
BaseDatasetConfig(name=args.target_dataset, path=args.data_path, meta_file_train=None, meta_file_val=None),
|
|
||||||
]
|
|
||||||
wav_files, _ = load_meta_data(dataset_config, eval_split=False)
|
|
||||||
else:
|
|
||||||
# if target dataset is not defined
|
|
||||||
if len(split_ext) > 0 and split_ext[1].lower() == ".csv":
|
|
||||||
# Parse CSV
|
|
||||||
print(f"CSV file: {data_path}")
|
|
||||||
with open(data_path) as f:
|
|
||||||
wav_path = os.path.join(os.path.dirname(data_path), "wavs")
|
|
||||||
wav_files = []
|
|
||||||
print(f"Separator is: {sep}")
|
|
||||||
for line in f:
|
|
||||||
components = line.split(sep)
|
|
||||||
if len(components) != 2:
|
|
||||||
print("Invalid line")
|
|
||||||
continue
|
|
||||||
wav_file = os.path.join(wav_path, components[0] + ".wav")
|
|
||||||
# print(f'wav_file: {wav_file}')
|
|
||||||
if os.path.exists(wav_file):
|
|
||||||
wav_files.append(wav_file)
|
|
||||||
print(f"Count of wavs imported: {len(wav_files)}")
|
|
||||||
else:
|
|
||||||
# Parse all wav files in data_path
|
|
||||||
wav_files = glob.glob(data_path + "/**/*.wav", recursive=True)
|
|
||||||
|
|
||||||
# define Encoder model
|
# define Encoder model
|
||||||
model = setup_model(c)
|
model = setup_model(c)
|
||||||
|
@ -100,11 +73,19 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
|
||||||
|
|
||||||
if speaker_mapping:
|
if speaker_mapping:
|
||||||
# save speaker_mapping if target dataset is defined
|
# save speaker_mapping if target dataset is defined
|
||||||
if '.json' not in args.output_path:
|
if '.json' not in args.output_path and '.npy' not in args.output_path:
|
||||||
mapping_file_path = os.path.join(args.output_path, "speakers.json")
|
mapping_file_path = os.path.join(args.output_path, "speakers.json")
|
||||||
|
mapping_npy_file_path = os.path.join(args.output_path, "speakers.npy")
|
||||||
else:
|
else:
|
||||||
mapping_file_path = args.output_path
|
mapping_file_path = args.output_path.replace(".npy", ".json")
|
||||||
|
mapping_npy_file_path = mapping_file_path.replace(".json", ".npy")
|
||||||
|
|
||||||
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
|
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
|
||||||
|
|
||||||
|
if args.save_npy:
|
||||||
|
np.save(mapping_npy_file_path, speaker_mapping)
|
||||||
|
print("Speaker embeddings saved at:", mapping_npy_file_path)
|
||||||
|
|
||||||
speaker_manager = SpeakerManager()
|
speaker_manager = SpeakerManager()
|
||||||
# pylint: disable=W0212
|
# pylint: disable=W0212
|
||||||
speaker_manager._save_json(mapping_file_path, speaker_mapping)
|
speaker_manager._save_json(mapping_file_path, speaker_mapping)
|
||||||
|
|
|
@ -2,40 +2,41 @@
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
from argparse import RawTextHelpFormatter
|
from argparse import RawTextHelpFormatter
|
||||||
|
from TTS.tts.datasets.preprocess import load_meta_data
|
||||||
from TTS.tts.datasets.preprocess import get_preprocessor_by_name
|
from TTS.config import load_config
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# pylint: disable=bad-option-value
|
# pylint: disable=bad-option-value
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description="""Find all the unique characters or phonemes in a dataset.\n\n"""
|
description="""Find all the unique characters or phonemes in a dataset.\n\n"""
|
||||||
"""Target dataset must be defined in TTS.tts.datasets.preprocess\n\n"""
|
"""\n\n"""
|
||||||
"""
|
"""
|
||||||
Example runs:
|
Example runs:
|
||||||
|
|
||||||
python TTS/bin/find_unique_chars.py --dataset ljspeech --meta_file /path/to/LJSpeech/metadata.csv
|
python TTS/bin/find_unique_chars.py --config_path config.json
|
||||||
""",
|
""",
|
||||||
formatter_class=RawTextHelpFormatter,
|
formatter_class=RawTextHelpFormatter,
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--dataset", type=str, default="", help="One of the target dataset names in TTS.tts.datasets.preprocess."
|
"--config_path", type=str, help="Path to dataset config file.", required=True
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument("--meta_file", type=str, default=None, help="Path to the transcriptions file of the dataset.")
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
preprocessor = get_preprocessor_by_name(args.dataset)
|
c = load_config(args.config_path)
|
||||||
items = preprocessor(os.path.dirname(args.meta_file), os.path.basename(args.meta_file))
|
# load all datasets
|
||||||
|
train_items, dev_items = load_meta_data(c.datasets, eval_split=True, ignore_generated_eval=True)
|
||||||
|
items = train_items + dev_items
|
||||||
|
|
||||||
texts = "".join(item[0] for item in items)
|
texts = "".join(item[0] for item in items)
|
||||||
chars = set(texts)
|
chars = set(texts)
|
||||||
lower_chars = filter(lambda c: c.islower(), chars)
|
lower_chars = filter(lambda c: c.islower(), chars)
|
||||||
|
chars_force_lower = set([c.lower() for c in chars])
|
||||||
|
|
||||||
print(f" > Number of unique characters: {len(chars)}")
|
print(f" > Number of unique characters: {len(chars)}")
|
||||||
print(f" > Unique characters: {''.join(sorted(chars))}")
|
print(f" > Unique characters: {''.join(sorted(chars))}")
|
||||||
print(f" > Unique lower characters: {''.join(sorted(lower_chars))}")
|
print(f" > Unique lower characters: {''.join(sorted(lower_chars))}")
|
||||||
|
print(f" > Unique all forced to lower characters: {''.join(sorted(chars_force_lower))}")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
|
@ -37,7 +37,7 @@ def split_dataset(items):
|
||||||
return items[:eval_split_size], items[eval_split_size:]
|
return items[:eval_split_size], items[eval_split_size:]
|
||||||
|
|
||||||
|
|
||||||
def load_meta_data(datasets, eval_split=True):
|
def load_meta_data(datasets, eval_split=True, ignore_generated_eval=False):
|
||||||
meta_data_train_all = []
|
meta_data_train_all = []
|
||||||
meta_data_eval_all = [] if eval_split else None
|
meta_data_eval_all = [] if eval_split else None
|
||||||
for dataset in datasets:
|
for dataset in datasets:
|
||||||
|
@ -54,9 +54,11 @@ def load_meta_data(datasets, eval_split=True):
|
||||||
if eval_split:
|
if eval_split:
|
||||||
if meta_file_val:
|
if meta_file_val:
|
||||||
meta_data_eval = preprocessor(root_path, meta_file_val)
|
meta_data_eval = preprocessor(root_path, meta_file_val)
|
||||||
else:
|
meta_data_eval_all += meta_data_eval
|
||||||
|
elif not ignore_generated_eval:
|
||||||
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
|
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
|
||||||
meta_data_eval_all += meta_data_eval
|
meta_data_eval_all += meta_data_eval
|
||||||
|
|
||||||
meta_data_train_all += meta_data_train
|
meta_data_train_all += meta_data_train
|
||||||
# load attention masks for duration predictor training
|
# load attention masks for duration predictor training
|
||||||
if dataset.meta_file_attn_mask:
|
if dataset.meta_file_attn_mask:
|
||||||
|
@ -270,16 +272,20 @@ def libri_tts(root_path, meta_files=None):
|
||||||
items = []
|
items = []
|
||||||
if meta_files is None:
|
if meta_files is None:
|
||||||
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
|
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
|
||||||
|
else:
|
||||||
|
if isinstance(meta_files, str):
|
||||||
|
meta_files = [os.path.join(root_path, meta_files)]
|
||||||
|
|
||||||
for meta_file in meta_files:
|
for meta_file in meta_files:
|
||||||
_meta_file = os.path.basename(meta_file).split(".")[0]
|
_meta_file = os.path.basename(meta_file).split(".")[0]
|
||||||
speaker_name = _meta_file.split("_")[0]
|
|
||||||
chapter_id = _meta_file.split("_")[1]
|
|
||||||
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
|
|
||||||
with open(meta_file, "r") as ttf:
|
with open(meta_file, "r") as ttf:
|
||||||
for line in ttf:
|
for line in ttf:
|
||||||
cols = line.split("\t")
|
cols = line.split("\t")
|
||||||
wav_file = os.path.join(_root_path, cols[0] + ".wav")
|
file_name = cols[0]
|
||||||
text = cols[1]
|
speaker_name, chapter_id, *_ = cols[0].split("_")
|
||||||
|
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
|
||||||
|
wav_file = os.path.join(_root_path, file_name + ".wav")
|
||||||
|
text = cols[2]
|
||||||
items.append([text, wav_file, "LTTS_" + speaker_name])
|
items.append([text, wav_file, "LTTS_" + speaker_name])
|
||||||
for item in items:
|
for item in items:
|
||||||
assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}"
|
assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}"
|
||||||
|
@ -355,6 +361,18 @@ def vctk_slim(root_path, meta_files=None, wavs_path="wav48"):
|
||||||
|
|
||||||
return items
|
return items
|
||||||
|
|
||||||
|
def mls(root_path, meta_files=None):
|
||||||
|
"""http://www.openslr.org/94/"""
|
||||||
|
items = []
|
||||||
|
with open(os.path.join(root_path, meta_files), "r") as meta:
|
||||||
|
isTrain = "train" in meta_files
|
||||||
|
for line in meta:
|
||||||
|
file, text = line.split('\t')
|
||||||
|
text = text[:-1]
|
||||||
|
speaker, book, no = file.split('_')
|
||||||
|
wav_file = os.path.join(root_path, "train" if isTrain else "dev", 'audio', speaker, book, file + ".wav")
|
||||||
|
items.append([text, wav_file, "MLS_" + speaker])
|
||||||
|
return items
|
||||||
|
|
||||||
# ======================================== VOX CELEB ===========================================
|
# ======================================== VOX CELEB ===========================================
|
||||||
def voxceleb2(root_path, meta_file=None):
|
def voxceleb2(root_path, meta_file=None):
|
||||||
|
|
Loading…
Reference in New Issue