mirror of https://github.com/coqui-ai/TTS.git
Update README.md
This commit is contained in:
parent
6a8aa42d87
commit
b89d04c151
|
@ -4,9 +4,11 @@ This is an implementation of https://arxiv.org/abs/1710.10467. This model can be
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
Download a pretrained model from [Released Models](https://github.com/mozilla/TTS/wiki/Released-Models) page.
|
||||||
|
|
||||||
To run the code, you need to follow the same flow as in TTS.
|
To run the code, you need to follow the same flow as in TTS.
|
||||||
|
|
||||||
- Define 'config.json' for your needs. Note that, audio parameters should match your TTS model.
|
- Define 'config.json' for your needs. Note that, audio parameters should match your TTS model.
|
||||||
- Example training call ```python speaker_encoder/train.py --config_path speaker_encoder/config.json --data_path ~/Data/Libri-TTS/train-clean-360```
|
- Example training call ```python speaker_encoder/train.py --config_path speaker_encoder/config.json --data_path ~/Data/Libri-TTS/train-clean-360```
|
||||||
- Generate embedding vectors ```python speaker_encoder/compute_embeddings.py --use_cuda true /model/path/best_model.pth.tar model/config/path/config.json dataset/path/ output_path``` . This code parses all .wav files at the given dataset path and generates the same folder structure under the output path with the generated embedding files.
|
- Generate embedding vectors ```python speaker_encoder/compute_embeddings.py --use_cuda true /model/path/best_model.pth.tar model/config/path/config.json dataset/path/ output_path``` . This code parses all .wav files at the given dataset path and generates the same folder structure under the output path with the generated embedding files.
|
||||||
- Watch training on Tensorboard as in TTS
|
- Watch training on Tensorboard as in TTS
|
||||||
|
|
Loading…
Reference in New Issue