mirror of https://github.com/coqui-ai/TTS.git
Update toy server for the recent updates
This commit is contained in:
parent
0cca7920fc
commit
b8ca19fd2c
|
@ -2,8 +2,8 @@
|
||||||
Steps to run:
|
Steps to run:
|
||||||
1. Download one of the models given on the main page. Click [here](https://drive.google.com/drive/folders/1Q6BKeEkZyxSGsocK2p_mqgzLwlNvbHFJ?usp=sharing) for the lastest model.
|
1. Download one of the models given on the main page. Click [here](https://drive.google.com/drive/folders/1Q6BKeEkZyxSGsocK2p_mqgzLwlNvbHFJ?usp=sharing) for the lastest model.
|
||||||
2. Checkout the corresponding commit history or use ```server``` branch if you like to use the latest model.
|
2. Checkout the corresponding commit history or use ```server``` branch if you like to use the latest model.
|
||||||
2. Set the paths and the other options in the file ```server/conf.json```.
|
3. Set the paths and the other options in the file ```server/conf.json```.
|
||||||
3. Run the server ```python server/server.py -c server/conf.json```. (Requires Flask)
|
4. Run the server ```python server/server.py -c server/conf.json```. (Requires Flask)
|
||||||
4. Go to ```localhost:[given_port]``` and enjoy.
|
5. Go to ```localhost:[given_port]``` and enjoy.
|
||||||
|
|
||||||
For high quality results, please use the library versions shown in the ```requirements.txt``` file.
|
For high quality results, please use the library versions shown in the ```requirements.txt``` file.
|
|
@ -1,6 +1,6 @@
|
||||||
{
|
{
|
||||||
"model_path":"../models/May-22-2018_03_24PM-e6112f7",
|
"model_path":"/home/erogol/projects/runs/2579/keep/November-04-2018_06+19PM-TTS-master-_tmp-debug/",
|
||||||
"model_name":"checkpoint_272976.pth.tar",
|
"model_name":"best_model.pth.tar",
|
||||||
"model_config":"config.json",
|
"model_config":"config.json",
|
||||||
"port": 5002,
|
"port": 5002,
|
||||||
"use_cuda": true
|
"use_cuda": true
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#!flask/bin/python
|
#!flask/bin/python
|
||||||
import argparse
|
import argparse
|
||||||
from synthesizer import Synthesizer
|
from synthesizer import Synthesizer
|
||||||
from TTS.utils.generic_utils import load_config
|
from utils.generic_utils import load_config
|
||||||
from flask import Flask, Response, request, render_template, send_file
|
from flask import Flask, Response, request, render_template, send_file
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
|
|
@ -5,10 +5,10 @@ import torch
|
||||||
import scipy
|
import scipy
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
from TTS.utils.text import text_to_sequence
|
from utils.text import text_to_sequence
|
||||||
from TTS.utils.generic_utils import load_config
|
from utils.generic_utils import load_config
|
||||||
from TTS.utils.audio import AudioProcessor
|
from utils.audio import AudioProcessor
|
||||||
from TTS.models.tacotron import Tacotron
|
from models.tacotron import Tacotron
|
||||||
from matplotlib import pylab as plt
|
from matplotlib import pylab as plt
|
||||||
|
|
||||||
|
|
||||||
|
@ -22,19 +22,8 @@ class Synthesizer(object):
|
||||||
config = load_config(model_config)
|
config = load_config(model_config)
|
||||||
self.config = config
|
self.config = config
|
||||||
self.use_cuda = use_cuda
|
self.use_cuda = use_cuda
|
||||||
self.model = Tacotron(config.embedding_size, config.num_freq,
|
self.ap = AudioProcessor(**config.audio)
|
||||||
config.num_mels, config.r)
|
self.model = Tacotron(config.embedding_size, self.ap.num_freq, self.ap.num_mels, config.r)
|
||||||
self.ap = AudioProcessor(
|
|
||||||
config.sample_rate,
|
|
||||||
config.num_mels,
|
|
||||||
config.min_level_db,
|
|
||||||
config.frame_shift_ms,
|
|
||||||
config.frame_length_ms,
|
|
||||||
config.preemphasis,
|
|
||||||
config.ref_level_db,
|
|
||||||
config.num_freq,
|
|
||||||
config.power,
|
|
||||||
griffin_lim_iters=60)
|
|
||||||
# load model state
|
# load model state
|
||||||
if use_cuda:
|
if use_cuda:
|
||||||
cp = torch.load(self.model_file)
|
cp = torch.load(self.model_file)
|
||||||
|
@ -48,9 +37,8 @@ class Synthesizer(object):
|
||||||
self.model.eval()
|
self.model.eval()
|
||||||
|
|
||||||
def save_wav(self, wav, path):
|
def save_wav(self, wav, path):
|
||||||
wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
|
# wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
|
||||||
librosa.output.write_wav(path, wav.astype(np.int16),
|
self.ap.save_wav(wav, path)
|
||||||
self.config.sample_rate)
|
|
||||||
|
|
||||||
def tts(self, text):
|
def tts(self, text):
|
||||||
text_cleaner = [self.config.text_cleaner]
|
text_cleaner = [self.config.text_cleaner]
|
||||||
|
@ -70,7 +58,6 @@ class Synthesizer(object):
|
||||||
chars_var)
|
chars_var)
|
||||||
linear_out = linear_out[0].data.cpu().numpy()
|
linear_out = linear_out[0].data.cpu().numpy()
|
||||||
wav = self.ap.inv_spectrogram(linear_out.T)
|
wav = self.ap.inv_spectrogram(linear_out.T)
|
||||||
# wav = wav[:self.ap.find_endpoint(wav)]
|
|
||||||
out = io.BytesIO()
|
out = io.BytesIO()
|
||||||
wavs.append(wav)
|
wavs.append(wav)
|
||||||
wavs.append(np.zeros(10000))
|
wavs.append(np.zeros(10000))
|
||||||
|
|
Loading…
Reference in New Issue