mirror of https://github.com/coqui-ai/TTS.git
replace unidecode with anyascii
This commit is contained in:
parent
5482a0f62d
commit
b8f50d3d86
|
@ -1,18 +1,6 @@
|
|||
"""
|
||||
Cleaners are transformations that run over the input text at both training and eval time.
|
||||
|
||||
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||||
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||||
1. "english_cleaners" for English text
|
||||
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||||
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||||
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||||
the symbols in symbols.py to match your data).
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
from unidecode import unidecode
|
||||
from anyascii import anyascii
|
||||
|
||||
from TTS.tts.utils.text.chinese_mandarin.numbers import replace_numbers_to_characters_in_text
|
||||
|
||||
|
@ -47,7 +35,7 @@ def collapse_whitespace(text):
|
|||
|
||||
|
||||
def convert_to_ascii(text):
|
||||
return unidecode(text)
|
||||
return anyascii(text)
|
||||
|
||||
|
||||
def remove_aux_symbols(text):
|
||||
|
|
|
@ -17,5 +17,5 @@ torch>=1.7
|
|||
tqdm
|
||||
numba==0.52
|
||||
umap-learn==0.4.6
|
||||
unidecode==0.4.20
|
||||
anyascii
|
||||
coqpit
|
||||
|
|
|
@ -17,7 +17,7 @@ config = GlowTTSConfig(
|
|||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="zh-CN",
|
||||
phoneme_cache_path='tests/data/ljspeech/phoneme_cache/',
|
||||
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1,
|
||||
|
|
|
@ -17,7 +17,7 @@ config = SpeedySpeechConfig(
|
|||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="zh-CN",
|
||||
phoneme_cache_path='tests/data/ljspeech/phoneme_cache/',
|
||||
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1,
|
||||
|
|
|
@ -19,6 +19,7 @@ config = MelganConfig(
|
|||
seq_len=2048,
|
||||
eval_split_size=1,
|
||||
print_step=1,
|
||||
discriminator_model_params={"base_channels": 16, "max_channels": 256, "downsample_factors": [4, 4, 4]},
|
||||
print_eval=True,
|
||||
data_path="tests/data/ljspeech",
|
||||
output_path=output_path,
|
||||
|
|
Loading…
Reference in New Issue