diff --git a/config.json b/config.json index 3a2c4549..4fc07476 100644 --- a/config.json +++ b/config.json @@ -76,6 +76,6 @@ "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners", - "num_speakers": 10 // should just be bigger than the actual number of speakers + "num_speakers": 10 // should just be bigger than the actual number of speakers, 0 disables speaker embeddings } diff --git a/config_tacotron.json b/config_tacotron.json index 2f586148..adefe9e4 100644 --- a/config_tacotron.json +++ b/config_tacotron.json @@ -77,6 +77,6 @@ "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners", - "num_speakers": 10 // should just be bigger than the actual number of speakers + "num_speakers": 10 // should just be bigger than the actual number of speakers, 0 disables speaker embeddings } \ No newline at end of file diff --git a/config_tacotron2.json b/config_tacotron2.json index 3873e509..61f612e2 100644 --- a/config_tacotron2.json +++ b/config_tacotron2.json @@ -79,6 +79,6 @@ "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners", - "num_speakers": 10 // should just be bigger than the actual number of speakers + "num_speakers": 10 // should just be bigger than the actual number of speakers, 0 disables speaker embeddings } diff --git a/config_tacotron_de.json b/config_tacotron_de.json index 8029487d..bdde8bdc 100644 --- a/config_tacotron_de.json +++ b/config_tacotron_de.json @@ -77,6 +77,6 @@ "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "de", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners", - "num_speakers": 10 // should just be bigger than the actual number of speakers + "num_speakers": 10 // should just be bigger than the actual number of speakers, 0 disables speaker embeddings } \ No newline at end of file diff --git a/config_tacotron_gst.json b/config_tacotron_gst.json index 67dfb6ab..79b6b30b 100644 --- a/config_tacotron_gst.json +++ b/config_tacotron_gst.json @@ -77,6 +77,6 @@ "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners", - "num_speakers": 10 // should just be bigger than the actual number of speakers + "num_speakers": 10 // should just be bigger than the actual number of speakers, 0 disables speaker embeddings } \ No newline at end of file diff --git a/models/tacotron.py b/models/tacotron.py index bac73ff7..9f432a6c 100644 --- a/models/tacotron.py +++ b/models/tacotron.py @@ -29,9 +29,9 @@ class Tacotron(nn.Module): self.linear_dim = linear_dim self.embedding = nn.Embedding(num_chars, 256) self.embedding.weight.data.normal_(0, 0.3) - self.speaker_embedding = nn.Embedding(num_speakers, - 256) - self.speaker_embedding.weight.data.normal_(0, 0.3) + if num_speakers > 0: + self.speaker_embedding = nn.Embedding(num_speakers, 256) + self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(256) self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win, attn_norm, prenet_type, prenet_dropout, @@ -42,18 +42,13 @@ class Tacotron(nn.Module): nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim), nn.Sigmoid()) - def forward(self, characters, speaker_ids, text_lengths, mel_specs): + def forward(self, characters, text_lengths, mel_specs, speaker_ids=None): B = characters.size(0) mask = sequence_mask(text_lengths).to(characters.device) inputs = self.embedding(characters) encoder_outputs = self.encoder(inputs) - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) - encoder_outputs += speaker_embeddings + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, mask) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) @@ -61,20 +56,26 @@ class Tacotron(nn.Module): linear_outputs = self.last_linear(linear_outputs) return mel_outputs, linear_outputs, alignments, stop_tokens - def inference(self, characters, speaker_ids): + def inference(self, characters, speaker_ids=None): B = characters.size(0) inputs = self.embedding(characters) encoder_outputs = self.encoder(inputs) - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) - encoder_outputs += speaker_embeddings + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) linear_outputs = self.postnet(mel_outputs) linear_outputs = self.last_linear(linear_outputs) - return mel_outputs, linear_outputs, alignments, stop_tokens \ No newline at end of file + return mel_outputs, linear_outputs, alignments, stop_tokens + + def _add_speaker_embedding(self, encoder_outputs, speaker_ids): + if hasattr(self, "speaker_embedding") and speaker_ids is not None: + speaker_embeddings = self.speaker_embedding(speaker_ids) + + speaker_embeddings.unsqueeze_(1) + speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), + encoder_outputs.size(1), + -1) + encoder_outputs += speaker_embeddings + return encoder_outputs diff --git a/models/tacotron2.py b/models/tacotron2.py index ba565e6f..499ec28a 100644 --- a/models/tacotron2.py +++ b/models/tacotron2.py @@ -29,8 +29,9 @@ class Tacotron2(nn.Module): std = sqrt(2.0 / (num_chars + 512)) val = sqrt(3.0) * std # uniform bounds for std self.embedding.weight.data.uniform_(-val, val) - self.speaker_embedding = nn.Embedding(num_speakers, 512) - self.speaker_embedding.weight.data.normal_(0, 0.3) + if num_speakers > 0: + self.speaker_embedding = nn.Embedding(num_speakers, 512) + self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(512) self.decoder = Decoder(512, self.n_mel_channels, r, attn_win, attn_norm, prenet_type, prenet_dropout, @@ -43,19 +44,13 @@ class Tacotron2(nn.Module): mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments - def forward(self, text, speaker_ids, text_lengths, mel_specs=None): + def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None): # compute mask for padding mask = sequence_mask(text_lengths).to(text.device) embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder(embedded_inputs, text_lengths) - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) - - encoder_outputs += speaker_embeddings + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) mel_outputs, stop_tokens, alignments = self.decoder( encoder_outputs, mel_specs, mask) mel_outputs_postnet = self.postnet(mel_outputs) @@ -64,16 +59,11 @@ class Tacotron2(nn.Module): mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens - def inference(self, text, speaker_ids): + def inference(self, text, speaker_ids=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) - encoder_outputs += speaker_embeddings + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) mel_outputs, stop_tokens, alignments = self.decoder.inference( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) @@ -82,23 +72,29 @@ class Tacotron2(nn.Module): mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens - def inference_truncated(self, text, speaker_ids): + def inference_truncated(self, text, speaker_ids=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) - encoder_outputs += speaker_embeddings + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) - return mel_outputs, mel_outputs_postnet, alignments, stop_tokens \ No newline at end of file + return mel_outputs, mel_outputs_postnet, alignments, stop_tokens + + def _add_speaker_embedding(self, encoder_outputs, speaker_ids): + if hasattr(self, "speaker_embedding") and speaker_ids is not None: + speaker_embeddings = self.speaker_embedding(speaker_ids) + + speaker_embeddings.unsqueeze_(1) + speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), + encoder_outputs.size(1), + -1) + encoder_outputs += speaker_embeddings + return encoder_outputs diff --git a/models/tacotrongst.py b/models/tacotrongst.py index 8a75a5fa..b0a14c54 100644 --- a/models/tacotrongst.py +++ b/models/tacotrongst.py @@ -30,8 +30,9 @@ class TacotronGST(nn.Module): self.linear_dim = linear_dim self.embedding = nn.Embedding(num_chars, 256) self.embedding.weight.data.normal_(0, 0.3) - self.speaker_embedding = nn.Embedding(num_speakers, 256) - self.speaker_embedding.weight.data.normal_(0, 0.3) + if num_speakers > 0: + self.speaker_embedding = nn.Embedding(num_speakers, 256) + self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(256) self.gst = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=256) self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win, @@ -43,22 +44,16 @@ class TacotronGST(nn.Module): nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim), nn.Sigmoid()) - def forward(self, characters, speaker_ids, text_lengths, mel_specs): + def forward(self, characters, text_lengths, mel_specs, speaker_ids=None): B = characters.size(0) mask = sequence_mask(text_lengths).to(characters.device) inputs = self.embedding(characters) encoder_outputs = self.encoder(inputs) - - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) - + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) gst_outputs = self.gst(mel_specs) gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1) - encoder_outputs = encoder_outputs + gst_outputs + speaker_embeddings + encoder_outputs = encoder_outputs + gst_outputs mel_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, mask) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) @@ -66,24 +61,30 @@ class TacotronGST(nn.Module): linear_outputs = self.last_linear(linear_outputs) return mel_outputs, linear_outputs, alignments, stop_tokens - def inference(self, characters, speaker_ids, style_mel=None): + def inference(self, characters, speaker_ids=None, style_mel=None): B = characters.size(0) inputs = self.embedding(characters) encoder_outputs = self.encoder(inputs) - speaker_embeddings = self.speaker_embedding(speaker_ids) - - speaker_embeddings.unsqueeze_(1) - speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), - encoder_outputs.size(1), - -1) + encoder_outputs = self._add_speaker_embedding(encoder_outputs, + speaker_ids) if style_mel is not None: gst_outputs = self.gst(style_mel) gst_outputs = gst_outputs.expand(-1, encoder_outputs.size(1), -1) encoder_outputs = encoder_outputs + gst_outputs - encoder_outputs += speaker_embeddings mel_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) mel_outputs = mel_outputs.view(B, -1, self.mel_dim) linear_outputs = self.postnet(mel_outputs) linear_outputs = self.last_linear(linear_outputs) - return mel_outputs, linear_outputs, alignments, stop_tokens \ No newline at end of file + return mel_outputs, linear_outputs, alignments, stop_tokens + + def _add_speaker_embedding(self, encoder_outputs, speaker_ids): + if hasattr(self, "speaker_embedding") and speaker_ids is not None: + speaker_embeddings = self.speaker_embedding(speaker_ids) + + speaker_embeddings.unsqueeze_(1) + speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), + encoder_outputs.size(1), + -1) + encoder_outputs += speaker_embeddings + return encoder_outputs diff --git a/notebooks/Benchmark.ipynb b/notebooks/Benchmark.ipynb index bacd3f42..f06aca80 100644 --- a/notebooks/Benchmark.ipynb +++ b/notebooks/Benchmark.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "collapsed": true }, @@ -31,30 +31,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { + "collapsed": true, "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n", - "Populating the interactive namespace from numpy and matplotlib\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/thomas/miniconda2/envs/mztts/lib/python3.6/site-packages/IPython/core/magics/pylab.py:160: UserWarning: pylab import has clobbered these variables: ['plt']\n", - "`%matplotlib` prevents importing * from pylab and numpy\n", - " \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n" - ] - } - ], + "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", @@ -96,15 +78,15 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "def tts(model, text, speaker_id, CONFIG, use_cuda, ap, use_gl, figures=True):\n", + "def tts(model, text, CONFIG, use_cuda, ap, use_gl, speaker_id=None, figures=True):\n", " t_1 = time.time()\n", - " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, speaker_id, CONFIG, use_cuda, ap, truncated=False, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars)\n", + " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, truncated=False, speaker_id=speaker_id, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars)\n", " if CONFIG.model == \"Tacotron\" and not use_gl:\n", " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", " if not use_gl:\n", @@ -123,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "collapsed": true }, @@ -153,39 +135,11 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " > Using model: TacotronGST\n", - " > Setting up Audio Processor...\n", - " | > sample_rate:16000\n", - " | > num_mels:80\n", - " | > min_level_db:-100\n", - " | > frame_shift_ms:12.5\n", - " | > frame_length_ms:50\n", - " | > ref_level_db:20\n", - " | > num_freq:1025\n", - " | > power:1.5\n", - " | > preemphasis:0.98\n", - " | > griffin_lim_iters:60\n", - " | > signal_norm:True\n", - " | > symmetric_norm:False\n", - " | > mel_fmin:0.0\n", - " | > mel_fmax:8000.0\n", - " | > max_norm:1.0\n", - " | > clip_norm:True\n", - " | > do_trim_silence:False\n", - " | > n_fft:2048\n", - " | > hop_length:200\n", - " | > win_length:800\n", - "5000\n" - ] - } - ], + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], "source": [ "# LOAD TTS MODEL\n", "from utils.text.symbols import symbols, phonemes\n", @@ -214,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "collapsed": true }, @@ -257,71 +211,18 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": { + "collapsed": true, "scrolled": false }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/thomas/miniconda2/envs/mztts/lib/python3.6/site-packages/librosa/util/utils.py:1725: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", - " if np.issubdtype(x.dtype, float) or np.issubdtype(x.dtype, complex):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " > Run-time: 2.2084879875183105\n", - "bɪl ɡoːt ɪn ðə habɪt oːf askɪŋ hɪmzɛlf iːs tɑːt (en)θɔːt(de) tɾuːə? ant iːf heː vasnt apzoːluːtɛliː kɛɾtaɪn iːt vas, heː jʊst leːt iːt ɡoː.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/thomas/miniconda2/envs/mztts/lib/python3.6/site-packages/librosa/display.py:656: FutureWarning: Conversion of the second argument of issubdtype from `complex` to `np.complexfloating` is deprecated. In future, it will be treated as `np.complex128 == np.dtype(complex).type`.\n", - " if np.issubdtype(data.dtype, np.complex):\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAa4CAYAAACNiqM9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcZGV59//Pd3o2BGQZ1CCLoCAIow/KACq4oEEgLmjUgKjhUQxxIcaNhKgPIsbHHeJu5qdE3H6iJBpCUDDiShAYWWRR4wgoIIIzILLIMNN9PX+c6qG6puuc7jpLnbvq+3696jXTde46dbp6qavv676vSxGBmZmZ2ShZMOwLMDMzM6uaAxwzMzMbOQ5wzMzMbOQ4wDEzM7OR4wDHzMzMRo4DHDMzMxs5DnDMzMxs5DjAMTMzs5HjAMfMzMxGzsJhX0BTFi9YGpst2KL/ABd0NquHhvbgFj93wbkLnzpnQNFjVeLzKnhsFJ276E/qnMdH4eeVfzj/8fkPvuf3N62JiIcUXEEphx68eay9fbKSc/34J+vOi4jDKjlZwkY6wJF0HHAcwFJtzpO2OKLv2NiwoanLsnFW5s2lTgvqm8xVmc95QVEgUHDdhY/PCxTKnVt5r2nR6110fKL/8Vg4UfDYguM5j49F+Y8tOj61uOD4ov6f19Ti/NdkamH+12NqUU7wNJH/2P/+1xN+lTugAmtvn+SS83au5FwT2/9iu0pOlLiRDnAiYiWwEmCrhdt5jsbMzFopgCmmhn0ZIyX5AEfSfsC3gV0jYm2/cTEVTK1bl3ee/k9S41+3Nmba2tx2spqp8dm09DOu3Uh+3gWzcUVzdQVzR4XHR1swGQ5wqpR8gBMRl0p64WzBzYwUFQ9q/NrMzMxsOJIOcCS9CXgl8AhJH4iIU7qPd6eoHrxg28j9K3Vh0i9Ff1P+i8DaLdo6q1VkqqXX3eJZgBjma9bi1wWmU1Qt/Z5KVLLv6pL2BV4BHEA2M3qxpP+IiMuHe2VmZmbz5zU41Up5cclBwNci4h7gScC/AU/pHiDpOEmrJK1aH/3X35iZmdloSXYGBzgUWCHpSGB34PtkQc5Gm6So8ozqQuJR/bxS5ZThJkptIx+mgq3Fw9Pin/lU05H31f8UQTCZ6uvTUi3+SehP0hOBHYHfAo8H3gPsAfygZ5xncMzMLAlTRCU3y6Q6g/Nk4CzgbuAS4KHARb3rb+Y1g2NmZmYjI9UAZwOwKCJOBU6V9E/ATbmPiPwV/G2dbB5bTuWY2RgJYNKzL5VKMkVFlop6rqSlknYEjp5t0IwUFU5RmZlZezlFVa0kZ3Ai4nJJXwWuBH4PLAHunGXcAykqOUVlZmY2LpIMcDo+HBHv7gQ6+wFvkfToiDhhoLPlpUS8E2n+nGIyGz0lfxd6KUB/Ad5FVbGUA5yVkvYCtgRui4g9ege4VYOZmaXCfxZWK9kAJyKOBpD0POBrkpb19qPq3UWlBW6o2Ziyr6dngKzlkm0xUSSvncLkEH8uW95qwdon2QCny0+A9W62aWZmqQrCu6gqNgoBzl3ArbMdcB0cMzNLQsCk36UqlXyAExFrJT1c0tXANwZeZGztUmfK0Okvs3YaUhpqqF3OrTbJBzgdGyJiee+dTlGZmVkKAi8yrlryAY6k/YClc1lkPIzrMzMzKyYmvZG+UskHOMAvgHWzLTKeoahVw6jWwXE6xszmI2+3ae0mhvKsKnrayUYuwyo2CgHO1sCi2Q44RWVmZikI8nfo2/yNQoDzXmCBpCuAb3UvMq6sVYNnQcxaaWRr0RSQEk1lDHM2PIHXzCmqao1CgHMisDwi9hn2hZiZmVk7jEKA05dTVGZmloLAMzhVG4UA53HAYwp3UdXZTbzMtKvTX5a4VqeJhrmoocaaLnmf1VBrugyznUKbvw/naCoc4FRpFAKcC4E1btVgZmap8gxO9RLe/5zpBDbflnS1pA/0HFsZESsiYsUilgzpCs3MzKxpSc/gSHoZ8HpgMdlMzon9B0Mru4mnXGOnTk7dJaPVO3om8q+t3vRaiZouJdJMhTVdipRKM+U/eb3psxLX3YL0ViAm059zaJVkX01JjwGOBA4E9iArxfTSnjHHSVoladX6WDeEqzQzM5ubqVAlN8ukPIPzTGBf4GpgKXAIcFv3gN5FxrmVjGu7TBuIZ7asAa39uR9OQd9MjTNyhWce1kxK0YzxH5u5DKtWyu8iAs6IiD2AeyJi94g4ecjXZGZmNm/Ti4yruM2FpMMk/VzSakmbLO+QtETSmZ3jF0vapXP/SyVd0XWbktTKOnQpBzjfBl4k6aEAkraV9IjuATNSVDhFZWZmbSUmY0Elt8JnkiaAjwOHA3sBL5G0V8+wY4E7ImI34DTgfQAR8cWI2KdTXPflwPURcUWFL0Rlkk1RRcS1kt4OnA9sBnwLeB3wq64xzdTBMZvmxdHNciqzei1YcFsL/2x22x9YHRHXAUj6MnAEcG3XmCOAkzv/Pwv4mCTFzJX5LwG+XP/lDibZAAcgIs6UdB7w24jYt/e46+CYmVkKApiqLqmynaRVXR+v7PzBP20H4Mauj28CDug5x8YxEbFB0p3AMmBN15gjyQKhVko6wOno203cMzhmZpaKCgv9rYmIFVWdbDaSDgDujYir63yeMkYhwOnbTXyGojo4edOX4zoN7ildazt/j1oFWt1upB43Azt1fbxj577ZxtwkaSGwFdDdMeAo4P+v8yLLGoUAp283caeozMwsBRGa0wLhilwK7C5pV7JA5ijg6J4xZwPHABcBLwIumF5/I2kB8BfAU5q64EGMQoDT14wU1QKnqMzMrL2mGqrM1FlTczxwHlnVpdMj4hpJpwCrIuJs4DPA5yWtBm4nC4KmPRW4cXqRclslHeBI2hw4HXiUpKuBd0XEmX1Gg8Y01TSoOlNzTi2YWYPGMA2VKyLOBc7tue+krv/fB7y4z2O/CzyxzuurQtIBDnAY2erv2yJiuaStug86RWVmZinICv35j/AqJRvgSHop8H5gW+APkiaBy4GNK8dnpqiW5Yfv47qQeFja+np7ZsnmqLUzArU2tCxQqlFn0alLfl41Xls1Gl2DMxZSfjW/QpYXPIGsyqKA7w/1iszMzKwVkp3BAQ4G7gA+HRH3SdobeDbwpukBTlGZmVkKKi70Z6Qd4GwJ3AtcImkKeBzZrM5Gm+yiav0UpW3kVJG1nGrsul3GcLMc9bVBV9GpC1NYJa7t/sEfOh+T0c7vqVSlHC5eAjwSeBrwBGCKrF/GRjOabYabbZqZmY2LZGdwIuJGSScB3yUL1KYi4qyeMa6DY2ZmrRfIu6gqlmyAAxARX6bTyVTS3fmD81fhaxxbNTgNZG03qj97NRpq6qzFX6+816VwR1xDKaop76KqVNIBThEvMjYzMxtPyQc4kvYDvk22CH0GdxPHszSWtpLfv62tVVOnYdbBGaaCTSRtf1Vc6K96yb+aEXEp8L/JauKYmZklJxCTUc3NMqMwg/Nw4L3AB2c55hSVmZnZGEo6wJH0MuD1ZPVwlkuaiIjJ6eO9rRo0kVMHocWL40oZ1c/LqjWiqcy21qopKzf1tqDGzznhNhClWz00wIX+qpVsgCPpmcAngGXA04EXAC8FPtc1xjM4ZmbWehG4F1XFkg1wgAOBzYCrgd2A64DbugfMq9mmmZmZjYyUAxwBd5I12NwA3Ay8r//wSKCbrNmQOJWZlNwk1DDTci3etZb7qhSlaP9Y5ZX0I6byr9LmKeXfaheSpae+FBF7k63DOa57gFs1mJlZCoIsRVXFzTIpz+CsBn4LnCZpAbBt5+ON3KrBzMxsPKUc4ACsjYh9ACS9Bdii78iiVg2VX5qZ2RC0OE00VAnsFHShv2qlHuDk8i4qMzNLQSCmXKSvUiMd4PSmqFRnfQgzGy0jWkOnlDYvRi+aocmrg2YjKdkAJyJuAJZ3fexKxmZmliynqKqVbIAzF15kbGZmKQhgyjugKpV0gCNpc+ArwI7ABPCuiDizz2hPUZqNmwQWlg6i1i7pZVoaDLOdQtFzt37xtZj0dpdKpR4uHgb8JiL+F3ArcGX3wZl1cO4bygWamZlZ85KewQGuAj4k6X3A3sCvug+6VYOZmaXAKarqpR7gvB/4PXAMsAQ4AThlqFdkZu3R5l0/JZRKZBTuNup/9uLUWMEygIIUlPIeXpCCiqmCr3Xei1aY3so/XBWnqKqVeoDzVrImmwJ+BhzQfdC7qMzMzMZTsgGOpPcCBwOP69y1BLioe8wmKaq8vx68/tisHqnWk2nx7I+G9JomXUuszALmO6u7jH4i5BRVxZINcMh6Ub0GWBYR90q6B/jXIV+TmZnZQNwos1opBzi/I9sFtrWkQ4DNOvdt5BSVmZnZeEo5wPkm2dbwy8gmEH/ZO2CTQn8lazSY2QBaX3+kj8nJ/ONDTL0N7RVt8wxD4jWPApjyIuNKJRvgRMQ6SUcApwO7APtExC3dYzyDY2ZmaZBTVBVL+tWMiGuArYDNe4ObzvGVEbEiIlYs0pLmL9DMzMyGItkZnC5XAI+QdAXwrYg4YdgXZC2X+FS22bDEhg3DvoSRlRX6c4qqSqMQ4JwILI+IfXoPOEVlZmapcDfxao3Cq/k44DGSlvUecIrKzMxsPI3CDM5PgPURsXbYF2KJyCvg5vSVddTasbusMkXryqh5J2qpbuLFJ6/v3BUI5BRVxUYhwLmLbLv4JpyiMjOzVEyNRFKlPZIPcCJiraSHS7oa+Eb3IuNN6uCYFWlxef6hGsOZrbLtEGqdASrTMmFYsz91KzND0+bZOhtY8gFOx4aIWN57p2dwzMwsBREw6RRVpZIPcCTtByyVtKx3HY5ncMzMLBVeg1Ot5AOciLhU0j2Fi4wjfwGbv63McrQ1ddfi1NmwOn4XKVcsd6Lckxekx5R3+sIU1ODXVri4uaBrh7VT8gFOHqeozMwsBdkuqpb+IZGokX41Z9TBwXVwzMysvSZRJbe5kHSYpJ9LWi3pxFmOL5F0Zuf4xZJ26Tr2OEkXSbpG0lWSllb2IlQo2Rmczov9DeCHwK8knQ8cERF/nP0BoDI7D8ysfdqaOmuxof4WLJnhylUiXVn4msz+rpIsSRPAx4FDgJuASyWdHRHXdg07FrgjInaTdBTwPuBISQuBLwAvj4grO0V21zf8KcxJ6r8ddgc+HhF7A78HXth9UNJxklZJWrU+1g3lAs3MzIpM96Kq4jYH+wOrI+K6iLgf+DJwRM+YI4AzOv8/C3imsoVlzwJ+EhFXQlaqJSJauUop2RmcjuuBFZIu6Hx8Q/fBGbuotG14kbGZJaGli6dL1/YpU4OnZCXiWqskV6LSNTjbSVrV9fHKzvvhtB2AG7s+vgk4oOccG8dExAZJdwLLgEcDIek84CHAlyPi/VVdeJVSD3DWRcSnJR1EFqPc233Qi4zNzGwMrYmIFTWdeyFwELAf2XvutyX9OCK+XdPzDSz1FFUuLzI2M7NUTKFKbnNwM7BT18c7du6bdUxn3c1WwFqy2Z7vR8SaiLgXOBd4QslPvRapz+DsLOnHwCOBn5GlrGbnRcZm6WlpLZnaTZRYjVvjwmu1NHUGFLZbyP1OKvq8Glhk3HAl40uB3SXtShbIHAUc3TPmbOAY4CLgRcAFETGdmvo7SQ8C7geeBpzW1IXPR7IBTkTc0NlJNQWcR5Yv/Gj3GKeozMzMZuqsqTme7L1zAjg9Iq6RdAqwKiLOBj4DfF7SauB2siCIiLhD0qlkQVIA50bEfw7lEymQbIDT8XqyAGZ7shf6QLKoE3CrBjMzS0eThf4i4lyy9FL3fSd1/f8+4MV9HvsFsq3irZZsgCPp6cCfAhcCzyErpn00XQGOmSVumF2eU02PtTmNZH1llYwT/Z5rqZQXGW8F3AGcQLaVbSHwqe4BroNjZmY2nlIOcL5JFtR8B3gUsAE4rHvAjF1UWgpa0P9mZmbjacGC/FtDGtxFNRaSTVFFxDrgcEnvAF4XEQ8d9jWZmZkNYrqSsVUn2QCny2bAotkOeBeVmZmlwt3Eq5VsgNNpFvYvwOHAYkm3AF+IiBOmx8zcRbXMu6jMbO6GucC5rWpewFy6FUSevFYNJdtAWDslG+AAzwCOJOtw+oeI+GDvAM/gmJlZEubeKNPmKOUAZzVZi/a3A/dK+m5EdDcX8wyOmZklIcALhCuWcoDzKLLvic3Iqhj/q6TjIuLS2YeHpyHNbO5SrYNTpzItJKBcO4WylPf7v2Dty/pKr8QaknKA8wiyn4dHAl8C/qY3uHGKyszMUuEUVbVSXrL9PbIeGleQzeIc0ztgZh0cdxM3M7N2mt4mXsXNMinP4Gwgq2B8A3BWZ71NfwGRs4re3xJmIyjVNFODxeV6KdXXrE4NdBO36qUc4EDWqv0FwHmS7o6IL3UfdIrKzMxS4dmXaqUe4ADsBTwOeEsnyJm9m7jcTdxGnJssjo7JyaE9dZlflLXWsSmSV+cmAW62Wb1kA5yIuAFYDiDpxoh4Qu8Yz+CYmZmNp2QDnG4RsXef+z2DY2ZmSXAdnGqNRIDTSU1tMezrMBuqvIWpTl8lZWRTPTXWIsvbRDKHB1d3IQNfg9fgVG0kAhxg89nudIrKzMxsPDUa4EjaDdifrPLwzcDFEfHLkufcr/PvsohY233MKSozM0vBdB0cq04jAY6kpcAngJeTFeebNinpDOB1EbFukHNHxKWS6A1uNr0I0AJ/89iYGmJdFZu/of6mKtmNoTYFadYyr1lhSvC+EiefBwc41Wrqt94HgZcC7wB2A7bs/HsyWdDzgTqeVNJxklZJWrV+sPjJzMzMEtRUiuoo4J0R8X+77rsOeHenauYbgdfP54SSJoB/AVZ0Pn5zRHyoe8zMbuJOUZmZlVJ3leO8mZQaZyHbMG/iOjjVayrAWQJc0ufYxcDiAc65J9l6noOAm3qDGzMzs5SEA5xKNZWi+i/gWX2OPQu4YIBz/hS4CvglWQC1CaeozMzMxlNTMzinAp+XtDnwVeBW4GHAXwB/BrxM0iOnB0fEdXM4557AVsB5wIslXQF8KyJO6DrPjF1Uuc028xaweYHm/Lnuio27Ufy9UXd9nmE1+hxm3aEuLvRXraYCnO91/n0N8Oqu+9VzfNpc1vE/ClgEnEjWj+rgiLije4Dr4JiZWQrChf4q11SA84oazvlN4PnAt4CHA+8H/qp7gOvgmJmZjadGApyIOKOGc64HjpX0POBrZDM5BQ9y2mRenGYy66uwdsoQO4LXJuWO3Qn8/vci42qNQquGC4E1sxX6c4rKzMzS4G3iVWsswJF0GPBiYCdgac/hiIinzfN8uwDnRMRySd+WdAtwXUQc2HVSp6jMzMzGUFOtGv4OeC/wO2A1cH/FT/E8sqrI+R3FlbOrYRR3PJTV1tfEqTObo6F25c4zzFRPWzt6Zyeo5kJmPXdLvxe6OEVVraZmcI4H/hk4PiLqSEzPuuvKKSozM0uBm21Wr6kA58HAVysObjYACzrdxJcC2wDruwf0tmpws80R0daZJWud3PpWwzQxzN9F+T8/ZWa9VLZRZ5kZoDpnf9YXD7H2aeqd4jzgiRWf81bgoWQ9re4Bntk7wJWMzcwsCZFl0aq4WabJFNXXJAVwPnBH74A5Vi/uHr9e0ilkPa42A342yxg32zQzsyS4knG1mgpwArgLeDfwj33GzHtyMyI+IukisiDnzbNtFe++ArdqSEhbUwtmc5Xo742hvsUubGmrBqeoktRUgPNZ4MnAaWQzLZXtooqISyXd5zo4ZmaWqsC7qKrWVIBzMPC6iPhsTeefdfGy6+CYmVkaXOivak0FOL8jWxRcKUlvAl4J3CDpDRHxT/0Hw1juonKqx2wgpWvojGKrhlGVcgsK66upJPFHgNdKeZX25kfSvmRNPA8A/gH4K0mP7xnjXVRmZpYE76KqVlMzONsAy4FrJX2LTXdRRUS8Y57nPAj4NXAZsBvZIuYzgUd3nXTuu6gSXRBYaFQ/rzyetbI5Glql40QrGZeuVFz8BCUem/47u9fgVKupAOdtXf9/9CzHA5hvgAPw44h4tqRFwC+B73Qf9CJjMzNLQTb74gCnSo38eR8RCwpug9S//AHwfEkPAj5OVs34Uz3PuzIiVkTEikVaUsFnYmZmZilorJt4DW4HHgasAZYAVwE/7z9c+c02bXSMY1rOBlLr38t5qdIaWzUUp90G76eQ1WrNe/Jy6eGYKvOzW/DcCaSwmtxFJekw4MNk3xCfjoj39hxfAnwO2BdYCxwZETdI2gX4KQ+83/4oIl7d1HXPR+rvBA8FfgtsR7YW57XdB2cuMr5vGNdnZmY2J00tMpY0QZb5OBzYC3iJpL16hh0L3BERu5HVsHtf17FfRsQ+nVsrgxtoMMDpBBuXS7pX0mTvbcDT3kOWmvoO8FSylhAbzUxRLS35GZiZmY2E/YHVEXFdRNwPfBk4omfMEcAZnf+fBTxTUlKLhBpJUUn6S+CjZC/W/wJOBxYBzyOrkfPFAU+9ALiFLMj5d+CR+aOT+tqYjYe0fmfO3UTZ1tqDafWrWTC9UOraC3ZPltox11ACoMFFxjsAN3Z9fBNZyZVZx0TEBkl3Ass6x3aVdDnwB+DtEfGDmq93IE2twXkD8B7gXcCrgE9ExGWStgG+S5bfG8RmZLM2VwA3k02jbeRdVGZmloJAVQY420la1fXxyk7ZlCrcAuwcEWs79ei+LmnviPhDReevTFMBzu7A98lWgU0BiwEi4g5J7yZrwvmxAc67FjiXLNCZ6DzHRpvUwcmrLDqkv7bMxl7eX9ajOrtTxAvl56/geyX3aAILkOdpTUSsyDl+M7BT18c7du6bbcxNkhYCWwFrI5sKWwcQET+W9Euy8i+raJmmfor+CCzovDC/ZWYq6W7g4QOc84lkgc1ewJuAC2n57KyZmVk/UdFtDi4Fdpe0q6TFwFHA2T1jzgaO6fz/RcAFERGSHtJZpIykR5JNYFw3/8+2fk3N4FxFVm34v8jq17xV0vXABuBksg7j87UlWZPNJWQpsJ17BzhFZWZmSWiw0F9nTc3xwHlk2Y/TI+IaSacAqyLibOAzwOclrSYry3JU5+FPBU6RtJ4sI/PqiLi9kQufp6YCnJU8MGvzf8gCnR92Pr4LeP4A5/wc8OfAlcAWZLNEryZb0wPMs1WDmbXP6KUO5qbORp2jmvYb1++VAUXEuWRLPLrvO6nr//cBL57lcf8K/GvtF1iBRgKciDiz6/+rJe0NPAl4EPDfEbFmgHOuAw7vFB06JyKW947xDI6ZmSXDMVqlmtom/lTgsoi4GyAi7iGbxUHS5pKeGhHfzzvHIDyDY2ZmqXAvqmo1laL6DtmMzSWzHNuzc3xe25g6MzffINsivpuk84EjIuKPfR7hVg1mNnejmsopMqo7uArq5Njoaeo7Oe83xRKyxcKD2J2sweatwO+BF854UrdqMDOzRDTVqmFc1DaD05lh6d4OvkLSFj3DNgNeCfx6wKe5PiK+J+lC4BnA9sAXpg/OTFEt85fdzMxaKXCKqmp1pqiOAd7BA1vzP8rMmZzofLwBeN2Az3G/pP8kK1I0XWNnVgI0MaJTr2ajakzTCqXaChSZqvHcpbuJ51xbyXN7amP81BngfJZsy7aAC8iCmGt7xqwD/qfEHvotgd9ExLMlvYUH+mQAPbuotPmAT2FmZlazADyDU6naApyI+BXwKwBJBwM/nt5FVaFtgb+U9AKyYoLf67mGGSmqvL+K/G1l1kJtXvBa4+xSmabNhbM/ZZoOF83+FG3kKJiFUc61xVS5c+cuGm/J7E5LLmNkNPXb4xqyYGQjSX8t6aOSnjPICSPiBrLqxdsDJ5C1f1/S8xxeZGxmZjaGmtomfjpZO/bXAkj6P8A7gTuA10o6ursY4Dy8DTiEB8ojPbn7oBcZm5lZMvwuVammApwVwBldH78a+L8R8XZJHyFrljmvAEfSl4Cnk3UUnyL7XH7X/xGRX/7c3cTNbD5a+jujMAE1xLRfmdTbUN3ZxJPIu6gq1tR3+rZktWqQtBz4Ex4IeL4O7DHAOS8BlkTEY8magC2iJ0iamaJaN+i1m5mZWWKaCnDWkm3lhqxezW8i4hedjxcNeB2fBJZI+gXwCbKmnTNmcCJiZUSsiIgVi7RktnOYmZm1Q1R0M6C5FNV/ASdL2g54M9mszbQ96ey2mo+IWCfpVGAN2YzQ1yPiu/0fkF9jQXk7Ioa5k2NM64CYzckwfzaHueWlTKqnzO+UNu9qK7M7rA3Chf6q1tR3698BNwLvAX5JtsB42kuBHw543jPJ0lMvAr7ae3BGigqnqMzMzMZFIzM4EXEr2W6n2fwpMNAe7oi4RtJDgV2A+2c5/sAuKpXoJl70F0/RXzWehbERVmvV3SJ5Gwfmos6qvmWUrdrbUlNtfb3bwi9PpZpKUQEgaQGwF1nF4VURcU9E/KHMOSNiN0mHRMTaSi7SzMxsKJyiqlJjCVVJryPrFfUTstYNe3Tu/7qk15c5d0R8q89zOkVlZmY2hhqZwZH0V8CHyQr+nQ98pevwD4AXAh8Z4LwvA14PLAYuBl4bERvnrGcW+ts28sqA17p4rs0L8/I4tWZzUGdtk9rTX3UuTC2TjilqeVDGENNfub+DKWi2Wae2pASdoqpUU++8bwI+FBHHAV/rOfYzBqiDI+mZZNvDDyRr1TBJtmC5e4zr4JiZWRq8TbxSTa3B2RU4r8+xe4CtBzjngcBmwNXAbsB1wG3dA3pncAZ4DjMzM0tQUwHOGrKdTrPZA7h5gHOKrID294ENnXO8r+/oojo4A1yAmdWr7tL+tabAWluXpUSLiZpTSBpW94ui+jNNZLBiDtdh89JUiuoc4CRJj+y6LzqF/97IzMJ/c3Uh2W6sL0XE3sC9wHHdA7zI2MzMUhFRzc0yTc3gvB04mCyddDFZrPoRsirGtwGnDHDO1WS7sk7rbD/ftvPxRpXVwTEzM6ub36Uq1VShvzWSVgBvAA4lq2a8EPgYcFqJWjhrI2KfzjbztwFPzr+QnHnGtrZqqJN3SdmYS7a79bBMjOrrVfA7fn0zV2HVaqzQX0TcBbyrc6vaa8lmamaUNZV0HJ201VIeVMPTmpmZVcRrcCrVaCXjOkj6FPBI4FXAld3HNqlJ/i5dAAAgAElEQVSDM5Gzgm1UZ2nytPlz9uySJW6oLSyGpc2tGNpS6yaHWvzypaipQn8LyGZSXgzsBCztGRIR8Yj5nDMibgCWd85/GLAiItb0PK9ncMzMzMZQUzM47ycr9nc5cCmzNMasg+vgmJlZElykr3JNBTgvA94VEe+o+sSS9gN2BrYhq7fTbyTkpaisXdqcPhsWp+1aZagpqDpTQSVSObW2WiibYmp9ylBeg1OxpgKchWQF+SoXEZdK2gDc0XvMKSozM7Px1NSfyWeRbQ+vy29muzMiVkbEiohYsUi9y37MzMxaxL2oKtXUDM6bgC9KWknWk2qT2ZaIuKDE+bfrXWBsNnKctqteibTfUGvo1FqPpv/3WVFartZWC8NMfzVVB8fBSaWaCnC2J9vKfQTZdu5pQdYGKijVIGX2xzpFZWZmNp6aCnD+BdgO+FvgZ1S4i6qzyHippGURsbb72MxdVMsi9y8Arz8eHV6Ma1aL2met8mYpi35Hl/q5b0klY8/gVKqpAGcF8JcRcVYN5/4FsK43uAHP4JiZWSLcTbxyTSX1f019tW+2BhbNdsCLjM3MzMZTUzM4/wj8vaQLIuLuis/9XmCBpCuAb0XECQOdpcz0ZtHiT6dMzPoay5YGNrvJyb6HxqExqls1VKupAOdQYEfgBkkXsekuqoiIYwY894nA8ojYp/eAU1RmZpYMBziVairAOQiYAu6i0z+qRy1f1k0WGZuZmdlYaCTAiYhdqz6npF2AbwBXALtJOh84IiL+OOt4QBMDLjkqW39kmPVLnB4zq0ebO2fnaXFX7bxWD7W+2i1+TWxwqVcO2x34FHAr8Hvghd0HJR0naZWkVfezbhjXZ2ZmNieKam6WqW0GR9LOwC0Rsb7z/1wR8esBnuY+4FRgK7J1PtsDX+g658YU1VZOUZmZmY2NOlNU1wNPAi4BbqB4hnGQUns3RsS+kjYDrgP+u9/AIH+3hka107jL+8+PU3qNS3Z3TI3tEurdWTbE33UFab1aWz3kKao/09SvBdfBqVSdAc4rgV92/b+On9hlkq7s/H9rYFn3Qe+iMjOzJDTcKFPSYcCHySLeT0fEe3uOLwE+B+wLrAWOjIgbuo7vDFwLnBwRH2zquuejtgAnIs7o+v9na3iKJwKbA0+KiHsl/ZKez2fmLqptI6/GAqM6g2Pz4xkva4Gh/h2f6oxanZpq1dAQSRPAx4FDgJuASyWdHRHXdg07FrgjInaTdBTwPuDIruOnkm30aa1GfptLukDSnn2OPVrSIJ3E/whc0Alu9gR2AD7bc+6Ni4zXhxcZm5lZi0VFt2L7A6sj4rqIuB/4Mlkz7G5HANMTFWcBz1Qnnyzp+WTLUK4Z4LNsTFN/rj4deHCfY1sCTxvgnN8EFkr6KVk14x/1DpjZqmHJAE9hZmbWjAp3UW03/cd953Zcz1PtANzY9fFNnftmHRMRG4A7yZaFbAH8PfDOGl6CSjVV6A/6x5WPAubdviEi1kl6I3B65xy3A1fnPXtejQXlLS512qJ6XsxrZg0as5YgayJiRU3nPhk4LSLubvsGgTq3ib8CeEXnwwBWSrqrZ9hmZJWNv13iqV4WEddJeg/warK+V9PX4EXGZmaWhuZisJuBnbo+3rFz32xjbpK0kKwcy1rgAOBFkt5PtrlnStJ9EfGx+i97fuqcwZkCplf1qufjaWuBT5ItXpq3iPhZ14dLOufrPv7AImNtO1bhu5mZJaa5d6lLgd0l7UoWyBwFHN0z5mzgGOAi4EVka14DeMr0AEknA3e3MbiB+ndRnQEg6TvAa3oCkspIOhQ4nKzujlXFaSRruWTTDm1u89DStgV5SwwqOHl9526hiNgg6XjgPLJt4qdHxDWSTgFWRcTZwGeAz0taTbYE5KjhXfFgmupFdXBd55a0gOwLcXBE/L7nmFNUZmbWek23WYiIc4Fze+47qev/9wEvLjjHybVcXEWaXGRcKUl7kW0L3xLYjmyn1i+6x/TWwdGCdi+Iap2ixdWe4bEha/six75qrIJcXjs3VQz1FZu1hXMNXMm4UskGOMAdwHPJdmAdDrxT0rURceH0AM/gmJmZjad2hupzEBG3RMStZCu7jyKbzTm0Z4zr4JiZWRqaK/Q3FpKdwZH0t8DxZLuzdiNr3bCylicrSsU4lWNjLNmFvtDuxb55xmxR7FzUugi5IU2uwRkHtc/gSFos6WuSnlrxqX8JrAL2JEtRfYdsRXj3c7tVg5mZ2RiqPcDp9Ln406qfKyLOAW4BriAr7ndRRFzcM8YpKjMzS4NTVJVqKkV1IVkK6btVnVDSLsCzImJ55+O3SDq577a1olYNZS7GKShLXLJppmGmJRJNE41CKmckNbxNfBw0FeC8Gfi6pLuBr5PNvMz4UkYM/ttC0iF97vcuKjMzS4MDnEo1FeBc1fn3w51brxj0WiQdDpwD3AZskqLCrRrMRldRbas6ZyuU5iZULSj4WzLRz6tWvU2GLAlNBTinUH1suoFsXc9jgfPJ0mAzPh/P4JiZWTL8Z3ilmmrVcHINp70VeCiwK7APsA3wzZ7n9QyOmZklwWtwqtV4HRxJWwDLgN9ExPpBzxMR6zuNwT4ALCLrJj4JnFzFdZqNkmQXERcZ1QWzw1zAXOa5nd6yFmnsu1HScyRdBtwJXEeWWkLSpyX1tmmfk4j4CPBJ4NaI2DYiDux5zgfq4OA6OGZmZuOikQBH0vOBfwfWAH/PzF3Z1wPHDHjepwAvBbaTtKL3+Iw6OLgOjpmZtZjr4FSqqRTVO4B/iYhXSVoIvL/r2NXAawc5aUT8QNJ+wDkRsar4AQNOvRa1YijDNXSsAXV23R5q+qtoF1UZw0x/FaV62lqDp+R1uUaPVampFNVjgDM7/+/9Dr6DbE3OoO4DdusETjM4RWVmZknoFPqr4maZpgKcPwDb9Tm2C/C7QU8cEb8F/ge4XtIHeo45RWVmZmlwiqpSTaWovgX8g6RvAHd17gtJS8g6gn+j5PlfDrwnIk7IHZU37VtnGirPsJ637Zy6S0ad6a+65abX6kx/FSlK1dS5W6lEmqnWFFPZtNyo7iS0vpoKcN4GXAL8HDiXLMY8EXgcsBXw/JLnvxrYr/dOF/ozM7NkOAarVFOF/m6Q9ATgncChZPVqnkpWmO+kiPjNIOeV9DLg9cBi4EGStoqIO7ue14X+UuWZLWtAa+eeJgqO1zrD2f9nr2hBuQqvu8Sv4Sj31So1u9RAqwbh9TNVa+xdJCJuiohjI2LHiFgcEdtHxCsi4sZBzifpMcCRwIFkDTwXA3/eM8aLjM3MzMZQ45WMK/RMYF/gUmB7sgD4Ed0DPINjZmbJ8LtUpWoLcCSdPo/hERHHzvMpDgWWAncDvwB+VlPPKzOrU8KLlIdmoigXVI+hfqVKLhJWTlqvsJZTE93EvcW7cnXO4DyDmfHo1mQLijcAa8lq3ywka91wx3xOLGlfYA/gduAvgZ8Ad0jaNSKu7xrnRcZmZmZjqLY1OBGxS0TsGhG7km3jvhs4CtgsIrYHNgNeQrZt/GXzPP1TgC+T7c76GtmSvC2Bh/Vcg+vgmJlZGlwHp1JNrcE5laxOzVem74iISeBMSdsB/wTsP9+TRsSZks4DbgA+HhE/6jtYQotSXnJkNqKGWZ9kFNNj3oE4u5y0Xl76qlEOTirV1E/CY4HVfY79Alg+z/N9H3i+pM3IKiFvxSxprhm7qOK+eT6FmZmZpaqpKY3fAn8BnD/LsaOAW+dzsoi4TNKZwJU80MfqjZIe1l3NeMYuqgXLHBs3qS1/EZkNyVCbkNr8tKTJpxcZV6upAOefgNMkbQ98lSygeRhZ0HMo8Ib5njAi3g28W9LjgFURsUPvGC8yNjOzZDjAqVRTlYw/LOlu4B3A4V2HbgT+KiLms6W81x8ASVoaMTMP5RkcMzOz8dTYqtuI+EynNs6OZIX5bgFuivLzuI8j20V1ONmOqsHkpVTavGjPqSBruZFN1bQkrTFvZZtWJqrWRqBV8A6oyjW6ragTzNzYuVXlQrIFxn9OT4DjFJWZmaXCa3Cq1djUhKTHSjpL0u8kbej8+xVJjy1z3ohYC5wHHCzpgz3HHqiDo6VlnsbMzMwS0sgMjqT9gO8BfwTOJttV9SfAc4FnS3pqRPx4nud8BnB65zz3A6+PiM/2HZ89ZqDrb7Uy6TOnt6wBdf7cDTX9taDG3yd1plM0xJT7ENNjyvl6tSZ91ZLLGBVNpajeA1wNPDMi7pq+U9KWwH91jj9rnuf8H7KWD8uBTwEflHRWRNzddf4HUlTavNQnYGZmVienqKrVVCj/RLJKxnd139n5+H3AkwY455OAbwCPAZ4HLGbmDq0ZKarFbtVgZmY2NpqawSmKSweJW3cGXgE8B/gVWaCzc94TxGT/6VFNtHinVB6nmSxx3mWVkDHdgdWYEfyWGaam3tUvBt7aSUltJGlz4O+B/j2k+ltKlpran6zR5pW9A9yqwczMklBVo00HSRs1NYPzVuC7wK8knUNWA+dPgD8DHgQ8fYBzLgFeR1YN+W7gHrKZnI1mFPrTthGTk31PljuDUzRLUrTQ17MsZn3lLUJOenanzkXIQ9O/YWXKVPRp9X/rsBZrqpLxJZKeCJxE1pphW+B24DvAuyLiqgFO+36y4ObpZAuNzwW+2T3AdXDMzCwF6tysOk1WMv4J8KIKz3e3pLfzQHprQ/cOqs6YGTM4VT23mZlZ5fwuVamm6uA8BNgmIv5nlmOPBm6PiDXzPOcuwLvIUl9PBpZIekhE/K7PA9BEzjxkne0Y2tzqYVictrM5GGbtqmTTY21e3DzERcqtqXWTw9vEq9XUO+8ngDf3OfbGzvFB7A58PCL2Jpvd+7Pug15kbGZmNp6aCnAOImunMJvzgQMHPO8aYKWkq4AperaJu1WDmZklw7uoKtXUGpxtgDv7HPsDsGyAcz6KbAfWgcARwIeBJwx0ddY8p+1Gx4imG1Nt7RJt/tGaqvHiCtJfbtUwk6TDyN43J4BPR8R7e44vAT4H7EvWNeDIiLhB0v501raSZU5OjogZja7boqkfhZuAA/ocO4Bs2/h8HQhsBlwKfBp4CFkgtZFTVGZmZjNJmgA+Tlb9fy/gJZL26hl2LHBHROwGnEbWdQCytksrImIf4DDgnyU1tmFpPpq6qLOAf5B0ZUT85/Sdkp4NnAh8coBzCvg9WaG//w/YCriie8CMXVQLtg1X4TSrwbjOxrV0hqfwqsb165Wj8DX7QwMXEY0uMt4fWB0R1wFI+jJZJuTarjFHACd3/n8W8DFJioh7u8YspcVJsaYCnFOApwJnS/otcDOwA1mxvx8B7xzgnF8FXgZsTbbY+DVkAc9GroNjZmbJqC5U2E7Sqq6PV3b+4J+2A3Bj18ezZVk2jomIDZLuJFtOskbSAcDpwCOAl0fEhsquvEJNFfq7V9LTgJcDh5C9SKvJFhh/YZAXJyKu7dTB+RbZFNvpZJWNf9U1ZuYMjpmZ2ehbExEr6jp5RFwM7C3pMcAZkr4R0b51IE0W+ltPFoScXuE5z5T0A+CCiNg3f3D+QjLlLZT0lG71RnRhqo2RVH8v5LSsGVst+X3UYIrqZmCnro937Nw325ibOmtstiJbbLxRRPxU0t1k3QRW0TKJ/oTOsIhsgfEmZiwyZl3Dl2VmZjYPzW0TvxTYXdKukhYDRwFn94w5Gzim8/8XkU0kROcxCwEkPQLYE7hh/p9s/ZqqZLwY+AfgJWS1apb0DImIGPRaBDxY0tLeKTK3ajAzM5ups6bmeLL6dBPA6RFxjaRTgFURcTbwGeDzklaT9Y48qvPwg4ATJa0nqz/32vl2ImhKUymqD5Ctj/kG8G9Q6XTKe8mCnKslfS0iTqjw3KOtJdOyZkkq8fOTbBsIq1WTrRoi4lyyJtXd953U9f/7gBfP8rjPA5+v/QIr0FSA8yLgHRHx7hrOfSKwArioN7jxLiozM0uCqxBXrqkAZwvgoprO/ThgV+DDkiYiYuMKunmlqFJdMFhGmz9nzy5Zy43sLMwwq/rWWKusNdWKrTFNvcP9B1kdnDr8BPh1RHy0O7gBLzI2M7OEuBdVpZqawfko8DlJU2Q5v9t7B0xXVBzAXfQJ1LzI2MzMUiCaXYMzDpoKcKbTUycD7+gzZmI+J5T0NrItbLcBIekWsqKBsy8yVn6zNWuZNqfPrFqJpiPrbMaZbPqrZIqpVBqpzHOn+npbrqYCnFdS4cSZpH3JtqztQ1YV+SfAuyPigz3jvMjYzMzS4DirUk21avhsxad8CvC1TguIPyWrsLhJBONWDWZmlgp5JqlSQ29xLmkBsHVEbLIuZ46OBiaBv5a0Zd8UVVGrhgGf3BKUaErExked6a9CE2Weu1xqucwz15rWa12XJZuL2hY6SLpd0hO6PpaksyU9smfofsDv5nn67wPPl7QZ8C6yaoqnzVYHx7uozMys9araQeVJoI3qXMm5NTNniBYAz+ncX0pEXAacCVwJfBb4Y59xKyNiRUSsWLRJdwgzM7P2UFRzs8zQU1SD6lRFfrekXYBzehcYz5u7iVfLaSBrA//szt8w02MlqMzX2r+vRlKyAU6Xu4AtZzvgXVRmZpYMz75UKukAR9LmwOfIuonfB5wfEc+bPt67i2os6+D4LxMbYYULSycn84+3VaptBWpstVBWCq0anF6qVt0Bzg5di4onuu77fdeYHUuc/zDgNxGxDYCkrboPegbHzMxsPNUd4Jw1y31f7/lYDD4xdxXwIUnvI1uH84Pug66DY2ZmyfC7VKXqDHBeUeO5AYiI/5F0LHA+cJCk8yLilNkHQ+RMV2th0tm6/vIW3jl9ZS2XbMsCaG+aaYhppFrTRC1Oj82Jd0BVrrZ39Yg4o65zT5P0cOBCslTVEuBVPcedojIzMxtDqU9bPBb4ALA3cBnwmu6D7iZuZmbJ8LtUpZIOcCLiPOA8SXdHxH7Dvp7k1FkjxOkvq8BQWxaUVarlQZ0G/7kvmzLURPGYVmqgVYNwiqpqSQc4XWb9sXGKyszMbDwlH+BI2g9YKmlZRKztPjavFJUrnlar6PX0DI8lLukF0HmGuTi6xoXCKdTBYVS/p4Yk+Xf1iLgUuB/4oaQvdh9zs00zM0uFe1FVK/kZnI5FwCERcVP3nV5kbGZmSXAn8MolH+BI+hSwAfiGpNMj4rRhX5PNgVOC1XPar1HDXABda3osr6VN3Wke5fxeSL3OjTUu+QAnIl7dWUx8cESs6T7mRcZmZpYKOYarVPIBTh6nqMzMLBl+l6rUSAc4m8ib/jRLndN+Y2NoybGiOjY1pkkjyn3WKrP6NtGm9ONupAMcp6jMzCwV3gFVrWT/5JM0Ielzkq4l+4Pmtb1jImJlRKyIiBWLWNL8RZqZmc1FkNXBqeJmQNozOHsC+5P1o7qjbxfxaQLl7Q4ws/Sk3MphFE3U14tBZd+4vYJ37KQc4PwUuAq4DVg82wCnqMzMLBVOUVUr5QBnT7Iu4r8Glku6HrghIg6eHtC7iyom+68U89+BZgkq/Ve9f/KTUfZrlcIifAc4lUrgK97Xo4BbgScAS4HfAqd2D3CrBjMzs/GUcoDzTeA64FrgFmBxRPxH9wAvMjYzsxQI96KqWlIpKkm7kAU2PwKeDFwK/DvwKuDBkvaPiEv6nyDleM7MKucdJ5uqtZZNja93URuJtrd68A6oyqX4jr8b8CGyNThPAP6KLF31FuCt3QOdojIzMxtPSc3gdFwfEVcBSFpEtoPqd8AUcE/3QLdqMDOzVDi9VK0UA5x1sDFdtQw4BngOcDHwutxHtn2K0szMZldjCirq7pI+Vy25jFGRYoAzZ66DY2ZmNp5SD3AEvBrYl6yq8Yz4d0aKasG2oRqrbJpZH641k5YyvycLFskWfifkLXCeyH90mWachY04G2q26RRVtZIKcCLiBmB5111bkC0ufgPwaOAT3eM9g2NmZkkIitNwNi9JBTizuB5YATyv8/Hjug/2zuA0e2lmZmY2LKkHOOsi4tPApyW9hWxGx8yqNqppphTK989CQ/p61FrHBkp9n5VqxtmWRpz+M7xSqQc4uZyiMjOzVHgNTrXS/PNljma0apBbNZiZmQFIOkzSzyWtlnTiLMeXSDqzc/ziTmkWJB0i6ceSrur8+4ymr32uUp/BmZD0GeCJZM02n9d/qNyqwayfVFNQNaaYhpUGAmBBO78eKt4HVc5Eztez5ALc3PRaW77/G2rVIGkC+DhwCHATcKmksyPi2q5hxwJ3RMRuko4C3gccCawBnhsRv5G0HDgP2KGRC5+n1N/xdwc+GhF7k1UzflH3wRmtGuK+oVygmZnZXDTYbHN/YHVEXBcR9wNfBo7oGXMEcEbn/2cBz5SkiLg8In7Tuf8aYDOpnSmS1GdwrgdWSLqg8/GN3Qd7WzXEZP9iBlqU+kthVkKpBZpD/Ou3bGPInBmg2hfU5pkc/LnLzjwN9fMu8/Usuu4am4i20HaSVnV9vLLzfjhtB2a+X94EHNBzjo1jImKDpDvJuges6RrzQuCyiGhls8eU39V3BHaKiE9LOoishtSMXlReZGxmZkkIqtxFtSYiVlR2tllI2pssbfWsOp+njJQDnEJutmlmZikQJbe6z8/NwE5dH+/YuW+2MTdJWghsBawFkLQj8DXgLyPil/Vf7mBGJcDZAjiYLE84Owm3ajAbUFsWYfZqcR2boS5SLmGY1x1lvp5FKagWf68MwaXA7pJ2JQtkjgKO7hlzNlkz64vI1rdeEBEhaWvgP4ETI+LCBq953lL+it8ErJa0B1lwcznQvQLci4zNzCwdUxXdCkTEBuB4sh1QPwW+EhHXSDpF0vRu5M8AyyStBt4ETG8lPx7YDThJ0hWd20PLfeL1SH0G5yHAj4AHA08B3tp9cGarhmVOUZmZWWs1mKIiIs4Fzu2576Su/98HvHiWx/0j8I+1X2AFUg9w/gBsDfwGuBPYFbik7+iW1pYwswHVuIuqrKHuRhqWsl+PMq9ZwXOP5ddjzKUe4CwBziGrh/MJ4JvdB72LyszMklDtLioj/QBnW7KFUXcDH+r8e/b0QaeozMwsDdFYJeNxkewi44i4AdgZ2B54C9k6nCcN85rMRlZE/1vKpqb632xTea9X3a9Znc89Ffk3S1LqMzhvI+ulMf0d+OTug05RmZlZKtxNvFrJBjiSng4cShbcTAGTwJe6x8xMUW0b5LRqwDVyzAZT5yxOym0gymhrzZa6ryvvNS/5Ozp3h1LRqe8v9dRzl/qMaMu09KdoTrYCro+Ix5ItNN6C3GabrWyVYWZmBgGaquZmmZQDnG8CCyX9FPhb4GLg3d0DImJlRKyIiBWL2tns1MzMzGqQbIqq0730cEmfAl5JNoPzeOC7sz8AImexmCvkmLVQ3VP2bW2nUCY91tb01hzU2U4niTo4KVxjQpINcKZFxKslHQYcHBHdbdy9yNjMzNLh+KZS6Yb6HZL2I9suvk3vsRkpKpyiMjMzGxejMINzqaTbgDtyBwrkVg1WxPVPbI5am/IYZt2WKPfzU+bK85YgpKLJXlTjIPkAp2PWVuFOUZmZWTIc4FQq6QBH0pvIFhg/HPhrZtlFRXerBiWfkTPwLItVxrMwsyg5C5N/6ho/rxqv29KU7Du+pH2BVwAHAC8Ejpb0+J4xXXVwZp3kMTMzG77pkrVV3AxIOMABDgK+BuwFfBH4BvCU7gEz6+AsHcIlmpmZFROBopqbZZJOUUG2yBh4sKR3FYz0FOaoKKrz4RSWzZGGVAenMDU21A0R9dWiUa3Nlkpcd9F7g3+lJCnlGZwfAM+XtL2kNwAv6Ny3kVs1mJlZMiKquRmQ8AxORFwm6bNklYsfAZwYEZf3jJnZbNPMzKytHJxUKtkAByAiTpW0P1mhv/8taYeIOGGgk+WlNYZZ+tzpFrORM6zU2NAtqi/9Vav1w74AG0TSAU7HicDyiNin94Dr4JiZWRKmd1FZZVJegzPtSGBPSddL2qn7gLuJm5lZKryLqlrJzuBI2gU4B3gO2SzOCRFxY8+Y9Gdw6kyPOf1lLdfaQnxzMaxifUPcLTrUdgneJWs9kg1wutwFLJrtgBcZm5lZMlIO6Fso9QBnIfARYDHwOUkHRsQbZxsohBbmfLrDXEg8LOP4OdfNs2KVavNi3NbWspmq8ee6YJakbEPjUjNARa14Wj/D4y3eVUs9wNkDOJZsjfvOwM3dB2ekqLR54xdnZmZmw5H6n/A3Ao8Bntf595Dug92LjBfjRcZmZtZSgQv9VSzlGZwdO7fXALcA3wQe2W9w9r3T/wvf3olwS4rTfmOjtb8zEi01Ay1+Te9p6HnankVLTMoBDmQ/D8cDV5Clp06bcXAUdlGZmZnZvKUe4EyStWqY3kV1cffBmbuolnnezszMWss1bKqVcoCzI9lk7EER8SNJtwFPA87v+4i8FfpqaauGNvOOIbP2Sfn3VYt3zTXCAU6lUg5wtgTu6QQ3ewLbAH/SPcApKjMzs/GUcoDzPSAk/RT4OfBrepbXbVLoL7cOQs5fPUUzFWX+YvIsiI24pKsR5xlm1d48k0P8ndL6WjMtFrT3eypRKQc49wO/iojlAJLeAmzRPcAzOGZmlgZv8a5awsnaYm62aWZmNp5SnsF5EHCvpKvIJvc+GhEf7Ds68suA17q0zWkoG2NF7RaSTWENqxVDqyVchCfP+oaeJ9WfhZZKeQbnDuBvyGKTM4F3Sjqwe4Ck4yStkrRqPeuGcY1mZmZz40rGlUo2wImIW4AnAR8Ang38M3Boz5gHUlRu1WBmZjY2kk1RSfpb4K3Ag8lmcR4PvGeoF2Vmm0g2BVUn75axXt5FVblkAxyyKsZLgIcCdwO/IWu+uZF3UZmZWRrC2+wrlnKAswD4KfADYB1wGVmxv41m1MHRtg6NzcysvTzbWamUAxyA8yPiJABJp5DN6my0yQzOoNFx2dLnwyyd7h1cNmRFu6iGaWjpszbvwKasgqkAACAASURBVBrVNIlnR8ZOsouMgW8Dz5e0uaTNgReQVTfeyIuMzcwsCdNrcKq4GZD2DM49wEPI1t08CLierGXD7ASayKnRkHKDujyj+nmZzUXBDGabZ5eGZmLw12SoC8qL3tiV87uwLbM7TlFVKvV3v4cAz4iIpcBVwAu7D86ogxOug2NmZgYg6TBJP5e0WtKJsxxfIunMzvGLJe3SuX+ZpO9IulvSx5q+7vlIPcC5PiKu6Pz/x8Au3QfdqsHMzJLRUKE/SRPAx4HDgb2Al0jaq2fYscAdEbEbcBrwvs799wH/B3hLVZ92XVJOUQGsk/Qq4P1kGcwz+o4MiMnJvoc9UW02grzAf95qTTOVWR9SMo2U16qnHRqtQrw/sDoirgOQ9GXgCODarjFHACd3/n8W8DFJioh7gB9K2q2pix1U6gEOEfFpSQeRxSh/6D7mOjhmZjaGtpO0quvjlZ2yKdN2YGbduJuAA3rOsXFMRGyQdCewDFhTw/XWIvkAJ4/r4JiZWRKCKmf91kTEiqpOlqpkA5yIuAFYLmlrYA/gQxFxVt8HFO2iMjOr0rDSYyXfJMvsLCtMb5Wp/zNV7vVU3q//ovRX/9UN1WouRXUzsFPXxzt27pttzE2SFgJbAWububxqpL7IGGBrYM/ZDngXlZmZ2SYuBXaXtKukxcBRwNk9Y84Gjun8/0XABZFYY7lkZ3C6fIUsyPmipD+NiFdPH5iRolqwLHLrIJiZNSXRBchFaq0rVKI+DxTNLhXM7q8v9dRz11D80FlTczxwHtknf3pEXNPpCLAqIs4GPgN8XtJq4HayIAgASTeQNbpeLOn5wLMi4tre5xm2UQhw/gI4JyKW9x7wImMzM0tDs1WII+Jc4Nye+07q+v99wIv7PHaXWi+uIiM9pTGzDs7SYV+OmZmZNWQUZnAeBzxG0rKI6LsAShJaNAqfrplVZgRTRa1ul1CntrRbGFRApP45tMwovONfSLYlbpPgZkaKSps3fV1mZmZz1/pihGlJOkUl6U1kHcSXSLpF0ge6j3enqBY7RWVmZjY2kp3BkbQv8Aqy6osCLga+1PcBCydY8JBlfQ9P/S6p7f1m6Whzx+5h1caqMY1U+GqXSMuVrnNTY6uGUq0Y2pIaSmsXduslG+AABwFfi4h7JB0C/BvwFODy6QEzUlQTWw7lIs3MzApFjOSasGFKOcA5FFgh6Uhgd+D7ZEHORjPq4Gy5Q9y/U/8ZnIWewbG2a/NMSJ4hNrystS5Lmaq8iSqeHSo3A5E7Q1Tw5l94bSXOzR+LTm5tlOQaHElPJCst/Vvg8cB7yNo1/KBn3MZKxvevv6f5CzUzM5uriGpuBqQ7g/NksvbtdwOXAA8FLoqIy7sH9c7gNH2RZmZmcxVOUVUq1QBnA7AoIk4FTpX0T2Tt3vuaXLyAu3fuv5Nq68uqvUCzeXMKat5Kp6DqTDOVaQ1T5rqG+X1Ush2O6lzsW2ZmwymqJCWZoiJLRT1X0lJJWwKvn21Qd4pqw31OUZmZWVtVlJ5yimqjJGdwIuJySV8FrgRuBaaAO2cZtzFFtfmynfxVNzOzdgpc6K9iSQY4HR+OiHdLehBwF/DjvMGTS+GOPfpPWG1d8cWZzVub//LKS3vUuW6gIP1Vti2B6lzysKDEyafKpLcKjpdJYZVMQRWn3mqsS+TgYeykHOCslLQXsBTYEBGbrKLproOzcKttGr48MzOzeWhLwcERkeoaHCLi6IjYB/ggsFjS9ZJ26hmzsVXDxObuRWVmZu0UZNWYq7hZJtkZHEm7AOdExHJJnwROiIgbe8ZsnMFZtOU2LN5klU6XVLfnDXEHi81imDtYavxeKLVbqSgtkZf2KHxsiXMDmsg5XtTGoej1zjl3LCw4d8Fzx6L+v7pjSf5jp5bk/9qf3Kz/8fVb5J/7/i3zX5N1WxUc37b/sfseNpn72C13/EPu8efucnXfY//40KtyHzuxfe5ha6lkA5y56F5kvNmfeJGxmZm1VIRTVBVLPcBZKOmLZJ/HmyWdGxH3zjYwtphkw5NzIvxPeSbEKjDMhcKT+X/hlpH7WRXNotR3WaVnrfI+r6HW2Cmaecp9aP7zLij4vPLeFJaUXWRcRsk3/8viIX2P/dnUwQWPXl3quefK6aVqpf6uvgfwCeAMslJMr+0+2F0HZ/LOWeMeMzMzG0GpBzg3Ao8Bntf595DugzMWGW/1oGFcn5mZ2dzEVDU3A0Bl60gMS2eR8fci4hGdj58B/E1EvKDP+N8Bv+q6aztgTc2XOWr8ms2fX7P582s2f37N5m8+r9kjInJyXBWQ9E2ya6rCmog4rKJzJSv1NTg7S3pSRFwEHA38sN/A3m9OSasiYkXdFzhK/JrNn1+z+fNrNn9+zeavba+ZA5LqpZ6i+jnwOkk/BbYBPjnk6zEzM7MWSHYGJyJuAPYc9nWYmZlZ+6Q+g1PGymFfQIL8ms2fX7P582s2f37N5s+v2YhLdpGxmZmZWT/jPINjZmZmI2osAxxJh0n6uaTVkk4c9vW0kaTTJd0m6equ+7b9f+zdeZxcVZ338c8vnXT2rZPOvm+EJECAQNgEZESiICgqg6gD48LoyDw6+oyDj8vgNqOz6OgMjsMoKo6AKIJRGAMCggKBLCwhgWydfe2kk07SWXo7zx9VYdomCVm6+1ZXf96vV72q7q3blV+d7q7+5pxz74mIhyNief7eJdrzImJkRDwWEUsiYnFEfDy/3zY7jIjoFhHPRsQL+Tb7Yn7/2Ih4Jv/7+dOIKM261kITESUR8VxE/Dq/bZsdQUSsjohFEfF8RMzP7/N3s8h1uIATESXArcBbgCnAeyJiSrZVFaQfAs1PW7wZeCSlNBF4JL+tnHrgUymlKcA55M7um4JtdiQHgEtSSqcB04FZEXEO8HXgmymlCcAO4IMZ1lioPg683GTbNnt9b0wpTW9yari/m0WuwwUc4GxgRUqpIqVUC9wNXJVxTQUnpfQEUNVs91XklsUgf//2Ni2qgKWUNqWUFuYf7yb3x2c4ttlhpZw9+c0u+VsCLgF+nt9vmzUTESOAy4Hv5bcD2+x4+LtZ5DpiwBlObomHg9bn9+n1DU4pbco/3gwMzrKYQpW/yvbpwDPYZkeUH2p5HtgKPAysBHamlOrzh/j7+Vr/CnwaOHhN/gHYZq8nAQ9FxIKIuDG/z9/NItdur4OjbKWUUkR4Cl4zEdELuBf4REppV9MVqW2z10opNQDTI6IfcB9e2+qIIuIKYGtKaUFEXJx1Pe3IBSmlDRExCHg4Il5p+qS/m8WpI/bgbABGNtkekd+n17clIoYC5O+3ZlxPQYmILuTCzU9SSr/I77bNjkJKaSfwGHAu0C8iDv7ny9/PP3Y+cGVErCY3vH4J8C1ssyNKKW3I328lF6TPxt/NotcRA848YGL+rINS4FpgdsY1tRezgevzj68HfplhLQUlPw/i+8DLKaVvNHnKNjuMiCjP99wQEd2BS8nNXXoMeFf+MNusiZTSZ1JKI1JKY8h9dj2aUnovttlhRUTPiOh98DHwZuAl/N0seh3yQn8R8VZy49glwO0ppa9mXFLBiYi7gIvJrW67Bfg74H7gHmAUuZXZr0kpNZ+I3CFFxAXA74FF/O/ciP9Hbh6ObXYIEXEqucmdJeT+s3VPSulLETGOXO9EGfAc8L6U0oHsKi1M+SGq/5tSusI2O7x829yX3+wM3JlS+mpEDMDfzaLWIQOOJEkqbh1xiEqSJBU5A44kSSo6BhxJklR0DDiSJKnoGHAkSVLRMeCoqETEDRGRmtxq8isJ3xcR10TTSwsXmHy9t7TBv/OJiLj6EPtvKcSruUbE9HxtZVnXIqn9MOCoWL2b3FVx3wp8ntzK1XeRu0x79ywLKwCfAF4TcMgt3nhuG9dyNKaTuw6TAUfSUXMtKhWr51NKK5ps/zgifgb8DPhH4K+yKattRETXY73QW0ppPbmFGiWp3bMHRx1GSulecpdj/3BE9Di4PyJ6RMTXI2JVRNTm7z8bEX/0+5FfWuA7EbEuIg7k738cEV2bHDMrIp6OiH0RUR0R90fESc1epyQivhIRmyJib0T8LiKmHqrmiDgtImZHxI78az4ZEW9odswPI2J9RJwbEU9FxD5yIe5Qr7caGA28t8kw3g/zz71miCr//Fci4lMRsSZf7wMRMSh/uyf/PtdFxN8e4t8bGxE/iYjKfJs9HxHvaHbMpPwQ4taI2B8RayPiZxHROSJuAH6QP3R5k5rH5L/2pnx7V0XEzoiYGxGXN3v9Mfmv+UhE/ENEbI6I3RHx3/nv/YSImBMReyJiRURc3+zrb8l//SkR8Vi+DTZFxJea/4xIKhz+cqqjeRDoCswAiNwChXOAD5FbtPAt5IZqPg/808Evioj+wFPAnwLfIDf09WmgC1CaP2YW8ACwJ3/cR4FpwB8iYniTGm4ht4zDT4C3Aw9xiPXQIuKM/L9ZBnwYeCewHfhtRJzZ7PC+5C7Vf1f+Pdx5mPf/DmBz/j2fm799+TDHHvR+cos6/iVwE/AG4A5yl79/MV/Xg8DXIrcMysH6R5JbquI04K+BK4GFwL0RcWWT138AGE6uvS4DbiY3pNgp/9xX8scdHHY8F9iU3zeG3Pfr3eTafD7w6/z3ornPAMPIrTv0hfzx382/jwfybfMi8IPDBM77gd+S+57dSe5n5AuHaTNJWUspefNWNDfgBiABEw7z/GX55/80v/3+/PaFzY77LFALDMpvfwloAE4/wr89H1gOdG6ybyxQB3wjv92fXAD6brOv/dt8Hbc02fcIucUnS5vsK8nvu7/Jvh/mv/aqo2yj1cB/H2L/LbmPhD/al4Blzd7TN/L7P9dkX2dyqzH/oMm+7wOVwIBmr/kwuSFEyK11loArj/d72uS4Tvk6HgJ+2WT/mPzXP9rs+F/k97+vyb7+QD3wd83bBbi52df/F7Ab6Jf1z703b95ee7MHRx3NwbOoDg7FzCK30N5T+SGRzvlenYfI9c6ckz/uzcC8lNJzh3zR3CrFZwA/TSnVH9yfUloFPAlclN91CtCT3CJ/Td3d7PW657/mZ0Bjk7qCXC/Chc2+vg749eu89+P1cNP3BLySv59zcEf++RXAyCbHzSLXs1PdrG3nAKdFRB9yPVIV5Hp/PhwRE4+lsIg4MyJ+HRFbyAWTOnKrkp90iMP/p9n2od7HDnJBbSSvdajvWS9yvXSSCowBRx3NwT9cB4c4BpGbk1LX7PZs/vkBTe6PNAG3P7nwsekQz23mf88AGpq/39LsmObbZeR6az5/iNpuAvo3m/9RmVJqOEJ9J2JHs+3aI+zv1mR7EPBnvLb+g0N/A1JKiVwgmQ/8A7AsIioi4qOvV1R+COwRcm31V8B5wFnAb5rVcaLv46DDfc+GNz9QUvY8i0odzeXAfmBBfns7sAq45jDHr87fb+PIf8h2kOsVGnKI54YAVfnHBwPQYGBxk2MGN/uanUAjcCu5+S6vkVJqbLp5hNqysh34PfD1wzy/ESClVAH8WUQEufk6NwHfiYjVKaXmvS5NzSI39+ialDsDDMhNGm+J4g9hMLnepqbbABta6d+TdAIMOOowIuKd5Ca6fiultDe/+zfkJsnuSSm9ctgvzg1ZfS4iTkspvdD8yZRSTUQsAN4dEbcc7E2JiNHkehb+LX/oi0ANuUD1aJOXuPYQr/d7cn/wFzYLMyfqANAW1wL6DbkJwYtTSvte7+B8b87zEfFJ4IPkhn7+h1y98NqaDwaZuoM7ImIScD6tc7r7NcDXmmxfS24+1aJW+LcknSADjorV9IgYSO4Mp1HAFeTOtHmY3Nk0B/0E+HPgkYj4F+CF/NeMJxeG3p4PQ98EriN3BtNXyP1RGwhcBXwkpbSb3HDSA+TO4vkOufkZXwSqgX8BSCntjIhvAp+NiN3kgtNZ5P6gN/dJ4AlgTkR8n1zvz0Byc31KUko3H2fbLAHeEBFXkBs+25ZSWn2cr3UkXyA31PdERPw7ud6w/uSCy7iU0gci4lRyZ6/9lNwcnhJyk4rr+d8AuCR//7GI+BG5QPMiublI9cAd+e/dUHLtvZbWGX7/cH5YcB65yeofIjcpvLoV/i1JJ8iAo2L1s/z9fnKTRheS+x/3z/M9BQCklOoi4uCpyTeSO+upBlhJLqzU5o/bGRHnkztl+WZyc3K2kPsjfPCY3+SvwfJ35Cak1gK/Az6dUtrYpLZbyM3X+RC54ZhngLfxx0NWpJQWRsRZ+df7NrnhmMr8e/nuCbTNZ8idAXQPuV6RH5ELFS0qpbQ2ImaQe79/D5STG7Z6Kf9vQi5grSUX5kaQ+34tAq5IKS3Iv84LkVvC4kZyp8t3AsamlBZHxHvJneE2m9z37GZyQ1cXt/T7IRdm/41ckK0m97PweqfYS8pINPmslyQ1kw9Xfwd0aXY2maQC5llUkiSp6BhwJElS0XGISpIkFR17cCRJUtEx4EiSpKJjwJEkSUXHgCNJkoqOAUeSJBUdA44kSSo6BhxJklR0DDiSJKnoGHAkSVLRMeBIkqSiY8CRJElFx4AjSZKKjgFHkiQVnc5ZF9BWBg4cmMaMGZN1GZIk6QQsWLBgW0qp/PWO6zABZ8yYMcyfPz/rMiRJ0gmIiDVHc5xDVJIkqegYcCRJUtEx4EiSpKJjwJEkSUXHgCNJkoqOAUeSJBUdA44kSSo6BhxJklR0DDiSJKnoGHAkSVLRMeBIkqSiY8CRJElFx4AjSZKKjgFHkiQVHQOOJElqMVU1tTy/bif1DY2Z1mHAkSRJLebhJZt5+61PsmpbTaZ1GHAkSVKLmVtRxYCepUwY1CvTOgw4kiSpRaSUmFuxnXPGDSAiMq3FgCNJklrE2qq9bKrezznjB2RdigFHkiS1jLkV2wE4d1xZxpUYcCRJUguZW1HFwF6ljC/Pdv4NFGjAiYhZEbE0IlZExM2HOeaaiFgSEYsj4s62rlGSJP2vg/NvZhbA/BuAzlkX0FxElAC3ApcC64F5ETE7pbSkyTETgc8A56eUdkTEoGyqlSRJ0GT+zbjs599AYfbgnA2sSClVpJRqgbuBq5od82Hg1pTSDoCU0tY2rlGSJDXx9MrCmX8DhRlwhgPrmmyvz+9rahIwKSKejIi5ETHrUC8UETdGxPyImF9ZWdlK5UqSpLkV2wtm/g0UZsA5Gp2BicDFwHuA/4qIfs0PSindllKakVKaUV5e3sYlSpLUMeTm31QVzPwbKMyAswEY2WR7RH5fU+uB2SmlupTSKmAZucAjSZLa2Jrte9m8az/nFsj8GyjMgDMPmBgRYyOiFLgWmN3smPvJ9d4QEQPJDVlVtGWRkiQp5+D1bwplgjEUYMBJKdUDNwFzgJeBe1JKiyPiSxFxZf6wOcD2iFgCPAb8TUppezYVS5LUseXm33RlfHnPrEt5VcGdJg6QUnoQeLDZvi80eZyAT+ZvkiQpIwfn35wzrqxg5t9AAfbgSJKk9uPg/JtCGp4CA44kSToBhTj/Bgw4kiTpBDxdgPNvwIAjSZKO08H1pwpt/g0YcCRJ0nFavX0vW3Yd4NzxhTU8BQYcSZJ0nAp1/g0YcCRJ0nGaW7Gd8t5dGTewsObfgAFHkiQdh/+df1M46081ZcCRJEnH7OD8m3PGlWVdyiEZcCRJ0jEr5Pk3YMCRJEnHoZDn34ABR5IkHaOUEk+vLNz5N2DAkSRJx2jVthq27j7AuQU6PAUGHEmSdIzmVlQBFOwEYzDgSJKkYzS3YjuDendlbIHOvwEDjiRJOgaFfv2bgww4kiTpqB2cf1Oop4cfZMCRJElHrT3MvwEDjiRJOgbtYf4NGHAkSdJRai/zb8CAI0mSjlLFwevfjC/s+TdgwJEkSUfpyRXbAAr6An8HGXAkSdJReXxpJaMH9GBMgc+/AQOOJEk6CgfqG3hq5XYumlSedSlHxYAjSZJe1/zVO9hX12DAkSRJxeOJZZV0KYmCv8DfQQYcSZL0uh5fVslZY8ro2bVz1qUcFQOOJEk6os3V+3ll8+52MzwFBhxJkvQ6nlhWCcBFJxlwJElSkXh8eSWD+3TlpMG9sy7lqBlwJEnSYdU3NPKH5du4cGJ5wS/P0JQBR5IkHdYL66up3lfXroanwIAjSZKO4PFllXQKuGDCwKxLOSYGHEmSdFiPL6tk+sh+9OtRmnUpx8SAI0mSDmlHTS0vrt/Jhe3o9PCDDDiSJOmQfr9iGynRrq5/c5ABR5IkHdLjSyvp16MLp47ol3Upx8yAI0mSXiOlxBPLK3nDxHJKOrWf08MPMuBIkqTXeHnTbip3H+DCie3r7KmDDDiSJOk1Hj+4PEM7nH8DBhxJknQIjy/byslD+zCoT7esSzkuBhxJkvRH9hyoZ/7qHe229wYMOJIkqZmnVmyjvjEZcCRJUvF4YnklPUtLOHN0/6xLOW4GHEmS9KqUEr9bWsm54wdS2rn9xoT2W7kkSWpxq7bVsH7Hvna3enhzBhxJkvSqV08Pn2jAaXERMSsilkbEioi4+RDP3xARlRHxfP72oSzqlCSp2DyxrJKxA3syakCPrEs5IZ2zLqC5iCgBbgUuBdYD8yJidkppSbNDf5pSuqnNC5QkqUjtr2vg6YrtXHvWqKxLOWGF2INzNrAipVSRUqoF7gauyrgmSZKK3rzVVeyva2zXp4cfVIgBZziwrsn2+vy+5t4ZES9GxM8jYuShXigiboyI+RExv7KysjVqlSSpaDy+tJLSzp2YOa4s61JOWCEGnKPxK2BMSulU4GHgR4c6KKV0W0ppRkppRnl5+0+jkiS1pseXVTJzbBk9SgtuBssxK8SAswFo2iMzIr/vVSml7SmlA/nN7wFntlFtkiQVpY0797F86x4ubOdnTx1UiAFnHjAxIsZGRClwLTC76QERMbTJ5pXAy21YnyRJRefhJVsAuOTkQRlX0jIKrg8qpVQfETcBc4AS4PaU0uKI+BIwP6U0G/g/EXElUA9UATdkVrAkSUXgNy9tZsKgXowv75V1KS2i4AIOQErpQeDBZvu+0OTxZ4DPtHVdkiQVox01tTy7uoqPXDQu61JaTCEOUUmSpDb025e30NCYmDV16Osf3E4YcCRJ6uDmLN7M8H7dmTa8T9altBgDjiRJHVjNgXqeWL6NS6cMJiKyLqfFGHAkSerAHl9WSW19I7OmDcm6lBZlwJEkqQObs3gzZT1LOWtM+796cVMGHEmSOqja+kYefXkrbzp5ECWdimd4Cgw4kiR1WE+t3MbuA/VcNrW4hqfAgCNJUoc1Z/EWepaWcP6EgVmX0uIMOJIkdUANjYmHl2zm4smD6NalJOtyWpwBR5KkDmjh2h1s21NblMNTYMCRJKlDmvPSZkpLOvHGk4pj9fDmDDiSJHUwKSXmLNnM+RMG0Ltbl6zLaRUGHEmSOpglm3axrmpf0Q5PgQFHkqQOZ87iLXQKeNOUwVmX0moMOJIkdTAPLd7MjDFlDOzVNetSWo0BR5KkDmT1thpe2by7qIenwIAjSVKHMmfxZgDeXMTDU2DAkSSpQ5mzeDPThvdhZFmPrEtpVQYcSZI6iC279rNw7U4um1Lcw1NgwJEkqcN4aMkWAC6bZsCRJElF4qHFmxk3sCcTB/XKupRWZ8CRJKkDqN5bx9Mrt/PmqUOIiKzLaXUGHEmSOoBHXtlCfWPisqnFffbUQQYcSZI6gDmLNzOkTzdOG9Ev61LahAFHkqQit7e2nseXVfLmqYPp1Kn4h6fAgCNJUtF7aPEW9tc18tZThmZdSpsx4EiSVOTuXbieEf27c/aYsqxLaTMGHEmSitjm6v08uWIbV58+vMMMT4EBR5Kkonb/8xtoTHD1GSOyLqVNGXAkSSpSKSXuXbCeM0f3Z8zAnlmX06YMOJIkFamXNuxi+dY9XH3G8KxLaXMGHEmSitS9C9dT2rkTV5wyLOtS2pwBR5KkIlTX0MjsFzZy6cmD6dujS9bltDkDjiRJReh3SyupqqntkMNTYMCRJKko/WLhegb2KuXCSeVZl5IJA44kSUVm595aHnl5K1eeNpwuJR3zT33HfNeSJBWxX724idqGxg47PAUGHEmSis4vFq5n8pDeTB3WJ+tSMmPAkSSpiFRU7uG5tTu5+ozhRHScpRmaM+BIklRE7ntuA50CrprecYenwIAjSVLRaGxM/GLhBi6YWM7gPt2yLidTBhxJkorEM6uq2LBzH+/swJOLDzLgSJJUJH6xcD29unbmzVOGZF1K5gw4kiQVgb219Ty4aBNvPWUI3UtLsi4ncwYcSZKKwEOLt1BT28A7zxiRdSkFwYAjSVIRuHfhekb0785ZY8qyLqUgGHAkSWrnNlfv58kV27j69OF06tRxr33TVEEGnIiYFRFLI2JFRNx8hOPeGREpIma0ZX2SJBWS+5/fQGOCqx2eelXBBZyIKAFuBd4CTAHeExFTDnFcb+DjwDNtW6EkSYUjpcQvFq7nzNH9GTOwZ9blFIyCCzjA2cCKlFJFSqkWuBu46hDHfRn4OrC/LYuTJKmQzF+zg2Vb9vCuM+29aaoQA85wYF2T7fX5fa+KiDOAkSmlB470QhFxY0TMj4j5lZWVLV+pJEkZu+PpNfTu1pmrpg/LupSCUogB54giohPwDeBTr3dsSum2lNKMlNKM8vLy1i9OkqQ2tHXXfv5n0SaumTGSHqWdsy6noBRiwNkAjGyyPSK/76DewDTgdxGxGjgHmO1EY0lSR3PXs+uob0y875zRWZdScAox4MwDJkbE2IgoBa4FZh98MqVUnVIamFIak1IaA8wFrkwpzc+mXEmS2l5dQyN3PruGCyeVM9bJxa9RcAEnpVQP3ATMAV4G7kkpLY6IL0XEldlWJ0lSYXho8Ra27DrA9efae3MoBTlgl1J6EHiw2b4vHObYi9uiJkmSCskdT69mRP/uXHzSoKxLKUgF14MjSZKObOnm3Tyzqor3nzOaEq9cfEgGHEmS2pk7nl5N186duGbGyNc9tqMy4EiSXP+9cAAAIABJREFU1I7s2l/Hfc9t4G2nDaN/z9KsyylYBhxJktqRexesZ29tA9efOybrUgqaAUeSpHYipcSP565h+sh+nDKib9blFDQDjiRJ7cSTK7ZTUVnD9ed5avjrMeBIktRO/Ojp1QzoWcpbTxmadSkFz4AjSVI7sH7HXh55eQt/etZIunYuybqcgmfAkSSpHfjJM2sBeK/rTh0VA44kSQVuf10DP523jjedPJjh/bpnXU67YMCRJKnAPfDiJqpqarn+vDFZl9JuGHAkSSpwd8xdw/jynpw3fkDWpbQbBhxJkgrYC+t28sK6nbz/nNFEuO7U0TLgSJJUwO54eg09S0t455kjsi6lXTHgSJJUoLbs2s+vXtjI1WeMoHe3LlmX064YcCRJKlC3PVFBQ0rceOG4rEtpdww4kiQVoO17DvCTZ9Zw1fRhjCzrkXU57Y4BR5KkAvT9P6ziQH0jf3nxhKxLaZcMOJIkFZjqvXXc8fQa3nrKUCYM6pV1Oe2SAUeSpALzo6dXs+dAPR+z9+a4GXAkSSogNQfquf3JVbzp5EFMGdYn63LaLQOOJEkF5CfPrGHn3jo+9kZ7b06EAUeSpAKxv66B255YxQUTBnL6qP5Zl9OuGXAkSSoQP523jm17DnDTJfbenCgDjiRJBaC2vpH/fHwlZ43pz8yxZVmX0+4ZcCRJKgD3PbeejdX7+dgbJ7ioZgsw4EiSlLH6hka+87uVnDK8LxdNKs+6nKJgwJEkKWMPLNrEmu17uekSe29aigFHkqQMNTYm/v3RFUwa3ItLTx6cdTlFw4AjSVKGHlqymeVb9/CxN06gUyd7b1qKAUeSpIyklPi3R1cwdmBPrjh1WNblFBUDjiRJGfndskoWb9zFRy8aT4m9Ny3KgCNJUgZSSnz7keUM79edt58+POtyio4BR5KkDDy0ZAvPrd3JTZdMoLSzf45bmi0qSVIbq29o5B9/8wrjy3vy7jNHZF1OUTLgSJLUxn62YD0rK2v49KzJdC7xT3FrsFUlSWpD+2ob+ObDyzhzdH/ePMXr3rQWA44kSW3o9idXsXX3AW5+y2SvWtyKDDiSJLWRqppavvu7lbzp5MGcNcYVw1uTAUeSpDby74+uoKa2nr+ddVLWpRQ9A44kSW1gXdVefjx3Ne8+cyQTB/fOupyiZ8CRJKkNfOPhZXSK4K8vnZR1KR2CAUeSpFa2eGM19z+/gQ9cMJYhfbtlXU6HYMCRJKmVff03S+nbvQsfuWh81qV0GAYcSZJa0ZMrtvHEskpueuME+nbvknU5HYYBR5KkVtLYmPja/7zC8H7ded85o7Mup0Mx4EiS1EoeWLSJRRuq+dSbJ9GtS0nW5XQoBRlwImJWRCyNiBURcfMhnv9IRCyKiOcj4g8RMSWLOiVJOpza+kb+ac5SJg/pzVXTh2ddTodTcAEnIkqAW4G3AFOA9xwiwNyZUjolpTQd+EfgG21cpiRJR3TnM2tYW7WXv33LZEo6uSRDWyu4gAOcDaxIKVWklGqBu4Grmh6QUtrVZLMnkNqwPkmSjmjbngN887fLOW/8AC6eVJ51OR1S56wLOIThwLom2+uBmc0PioiPAZ8ESoFLDvVCEXEjcCPAqFGjWrxQSZIO5e8feJm9tfV86appLqiZkULswTkqKaVbU0rjgb8FPneYY25LKc1IKc0oLzdBS5Ja31MrtvGL5zbwkYvGM2FQr6zL6bAKMeBsAEY22R6R33c4dwNvb9WKJEk6CgfqG/jc/S8xekAPPvbGCVmX06EVYsCZB0yMiLERUQpcC8xuekBETGyyeTmwvA3rkyTpkP7jdyup2FbDl6+a5mnhGSu4OTgppfqIuAmYA5QAt6eUFkfEl4D5KaXZwE0R8SagDtgBXJ9dxZIkQUXlHr7z2EredtowLnRiceYKLuAApJQeBB5stu8LTR5/vM2LkiTpMFJKfP6XL9G1Syc+f8XJWZcjCnOISpKkduWXz2/kyRXb+fSsyQzq7WrhhcCAI0nSCajeW8dXHljC9JH9eO/ZXpKkUBTkEJUkSe3F137zCjv21nHHB06hk1csLhj24EiSdJwWrKnirmfX8ufnjWHKsD5Zl6MmDDiSJB2HuoZGPnvfSwzr242/vnRS1uWoGYeoJEk6Drf/YRWvbN7Nbe8/k55d/XNaaOzBkSTpGK3fsZd//e1yLp0ymDdPHZJ1OToEA44kScegoTHxt/e+SAR88cqpWZejw7BPTZKkY/DtR5bz5Irt/OM7T2VYv+5Zl6PDsAdHkqSj9PvllXz70eW868wRXHPWyNf/AmXGgCNJ0lHYXL2fT9z9PJMG9ebLV03Luhy9DgOOJEmvo66hkb+6ayH76hq49b1n0L3UlcILnXNwJEl6Hf88ZynzVu/gW9dOZ8KgXlmXo6NgD44kSUfw8JIt/OcTFbzvnFFcNX141uXoKBlwJEk6jHVVe/nUPc8zbXgfPnf5lKzL0TEw4EiSdAgH6hv42J0LScB3rjuTbl2cd9OeOAdHkqRD+PsHXubF9dV8931nMmpAj6zL0TGyB0eSpGZ+/eJGfvT0Gj54wVhmTXMphvbIgCNJUhMVlXu4+d5FnDGqHze/ZXLW5eg4GXAkScrbtucAH/jhPLqUBP9+3Rl0KfHPZHvlHBxJkoC9tfV88Ifz2FS9nzs/PNN1pto5o6kkqcOra2jkYz9ZyKIN1fzbe07nzNFlWZekE2QPjiSpQ0sp8dn7FvHY0kq++o5pvHmqk4qLgT04kqQO7ZsPL+Oe+ev5P5dM4L0zR2ddjlqIAUeS1GH95Jk1fPvRFVwzYwR/femkrMtRCzLgSJI6pIcWb+bz97/EG08q56vvOIWIyLoktSADjiSpw1mwpoq/uus5Thnel1vf6+ngxcjvqCSpQ1mxdQ8f/NF8hvbtxu03nEWPUs+3KUYGHElSh7Fl136uv/1ZOncK7vjATAb06pp1SWolBhxJUoewqXof1942l517a/nBDWe7gGaRs19OklT01lXt5brvzWVnTR13fPBsThnRN+uS1MoMOJKkorZ6Ww3X/ddc9hyo578/NJPTRvbLuiS1AQOOJKlordi6h+v+ay51DY3cdeM5TB1mz01HYcCRJBWlpZt3897vzQXg7hvP5aQhvTOuSG3JScaSpKLz0oZqrr3taUo6heGmgzLgSJKKygvrdnLdf82le5cSfnrjuUwY1CvrkpQBh6gkSUVjwZoqrr99Hv17duHOD53DyDJPBe+oDDiSpKLw++WV/MWPFzC4Tzfu/PBMhvbtnnVJypBDVJKkdu+uZ9dyww/mMaqsBz+98RzDjezBkSS1X42NiX+cs5TvPr6SCyeVc+t1p9O7W5esy1IBMOBIktql/XUNfOqeF3hg0SaumzmKL105lc6uCq48A44kqd3ZtucAH75jPs+v28ln33oyH3rDWCIi67JUQAw4kqR2ZcXW3fz5D+dRufsA//HeM5k1bUjWJakAGXAkSe3GUyu28Rf/vYCunXPXuHFdKR2OAUeS1C7cM38d/+8Xixg7sCe333CW17jRERlwJEkFra6hkX948BVuf3IVF0wYyK3vPYO+3T1TSkdmwJEkFazN1fv52J0LWbBmBzecN4bPXn4yXTxTSkehIH9KImJWRCyNiBURcfMhnv9kRCyJiBcj4pGIGJ1FnZKk1vPkim1c/u3f8/KmXfzbe07nliunGm501AruJyUiSoBbgbcAU4D3RMSUZoc9B8xIKZ0K/Bz4x7atUpLUWhobE7c+toL3f/8Z+vcsZfZN5/O204ZlXZbamUIcojobWJFSqgCIiLuBq4AlBw9IKT3W5Pi5wPvatEJJUquo3lvHJ+95nkde2crbThvG164+hZ5dC/FPlQpdIf7UDAfWNdleD8w8wvEfBP6nVSuSJLW6lzZU89GfLGBz9X5uedsUrj9vjBfv03ErxIBz1CLifcAM4KLDPH8jcCPAqFGj2rAySdLRSilxz/x1fP6XixnQs5Sf/sW5nDGqf9ZlqZ0rxICzARjZZHtEft8fiYg3AZ8FLkopHTjUC6WUbgNuA5gxY0Zq+VIlSSeiel8dn7v/JX71wkYumDCQb107nQG9umZdlopAIQacecDEiBhLLthcC1zX9ICIOB34T2BWSmlr25coSTpRcyu288mfPs/W3Qf4m8tO4iMXjaekk0NSahkFF3BSSvURcRMwBygBbk8pLY6ILwHzU0qzgX8CegE/y4/Prk0pXZlZ0ZKko1Zb38g3f7uM7z6+kjEDenLvR89zyQW1uIILOAAppQeBB5vt+0KTx29q86IkSSdsZeUePnH38yzaUM21Z43k81dM8SwptQp/qiRJrS6lxF3PruPLv15C1y6d+O77XAVcrcuAI0lqVVU1tfztvS/y8JItXDBhIP9yzWkM7tMt67JU5Aw4kqRW89slW/jMfYuo3lvH5y4/mQ+cP5ZOTiRWGzDgSJJa3M69tXzxV0u477kNTB7Smx/9+dlMGdYn67LUgRhwJEkt6qHFm/ns/S+xo6aWj//JRD72xgmUdi64pQ9V5Aw4kqQWsaOmllt+tZhfPr+Rk4f24Yd/fhZTh/XNuix1UAYcSdIJm7N4M5+97yV27q3lE2+ayF9ebK+NsmXAkSQdt6qaWm6ZvZjZL2xkytA+3PEB59qoMBhwJEnHLKXEL5/fyFceWEL1vjo+eekkPnrxeLqU2GujwmDAkSQdk1Xbavj8/S/xhxXbOG1kP378wVM4eai9NiosBhxJ0lE5UN/Afz5ewb8/toKuJZ348lVTuW7maBfIVEEy4EiSXtfciu189r5FrKys4fJTh/J3V0xhkFcjVgEz4EiSDquqppa/f/Blfr5gPSPLuvPDPz+Li08alHVZ0usy4EiSXqOxMfHzhev5hwdfZvf+ej568Xj+zyUT6V5aknVp0lEx4EiS/shza3dwy6+W8MK6nZw5uj9//45TOGlI76zLko6JAUeSBMDWXfv5+m+Wcu/C9ZT37sq/vPs03nH6cBfHVLtkwJGkDq62vpEfPLmKbz+ynNqGRj5y0XhuumQCvbr6J0Ltlz+9ktSBPfrKFr7865dZta2GP5k8iM9dMYWxA3tmXZZ0wgw4ktQBVVTu4cu/XsJjSysZV97Ts6NUdAw4ktSBVNXU8u1HlvPfc9fQrUsJn33ryVx/3hgXxlTRMeBIUgewv66BHzy5mu88toK9dQ1ce9ZIPvGmSZT37pp1aVKrMOBIUhFrbEzMfmEj/zRnKRt27uNPJg/i5rdMZuJgT/tWcTPgSFKRmluxna8+8DKLNlQzdVgf/uldp3LehIFZlyW1CQOOJBWZFVv38LX/eYXfvryFoX278Y1rTuPt072ejToWA44kFYlN1fv414eX87MF6+hR2plPzzqJD5w/lm5dXF5BHY8BR5LauR01tfzH4yv54VOrIcEN543lY28cz4BeTiBWx2XAkaR2am9tPbf/YRX/+XgFe2rrufr0EXziTRMZWdYj69KkzBlwJKmdqWto5O5n1/KtR1awbc8B3nTyYP7mspNcEFNqwoAjSe1EQ2Pi1y9u5BsPL2PN9r2cNaY/333fGcwYU5Z1aVLBMeBIUoFLKTFn8Wa+8fAylm3Zw+Qhvbn9hhm88aRBRHhmlHQoBhxJKlApJX63tJJ/eXgpL23Yxbjynvzbe07n8lOGesq39DoMOJJUgJ5asY1/fmgpC9fuZGRZd/753afx9unD6FzimlHS0TDgSFIBWbCmin+es4ynK7YzpE83vvqOabz7zJEuhikdIwOOJBWA+aur+PajK3hiWSUDe5XyhSumcN3MUV6kTzpOBhxJytDciu18+5HlPLVyOwN6lnLzWybzZ+eOpkepH8/SifA3SJLaWEqJJ1ds59uPLufZVVWU9+7K5y4/metmjjLYSC3E3yRJaiMpJR5fVsm3H1nOwrU7GdynK7e8bQrXnu1QlNTSDDiS1MoaGxMPv7yF7zy2ghfWVzOsbze+/PZpvPvMEQYbqZUYcCSpldTWN/LL5zfw3cdXsrKyhpFl3fna1adw9RkjPCtKamUGHElqYTUH6rnr2bV8/w+r2FS9n8lDevOta6dz+SlDvY6N1EYMOJLUQqpqavnhU6v50VOrqd5Xx8yxZfzD1adw0aRyl1SQ2pgBR5JO0LqqvXz/D6u4e95a9tc18uYpg/nIxeM5Y1T/rEuTOiwDjiQdh5QS81bv4Pt/qODhJVvoFME7Th/OX1w0jgmDemddntThGXAk6RjU1jfy4KJNfP8Pq1i0oZp+PbrwkYvG82fnjmFI325Zlycpz4AjSUdhR00tdz67ljueXs2WXQcYV96Tr7x9Gu88YwTdSz3VWyo0BhxJOoJlW3bzo6dWc+/C9eyva+SCCQP52tWnctGkcjp1cuKwVKgMOJLUTF1DI3MWb+bHT6/hmVVVlHbuxNunD+MDF4xl8pA+WZcn6SgYcCQpb3P1fu56di13PbuWrbsPMKJ/d25+y2SumTGSsp6lWZcn6RgUZMCJiFnAt4AS4Hsppa81e/5C4F+BU4FrU0o/b/sqJRWDlBJzK6r48dzVzFm8hcaUuHhSOV87dzQXTRpEicNQUrtUcAEnIkqAW4FLgfXAvIiYnVJa0uSwtcANwP9t+wolFYMdNbX84rkN3P3sWpZv3UO/Hl340AVjuW7mKEYP6Jl1eZJOUMEFHOBsYEVKqQIgIu4GrgJeDTgppdX55xqzKFBS+9TYmJhbsZ275q1jzkubqW1oZPrIfvzzu0/jilOHuvClVEQKMeAMB9Y12V4PzDyeF4qIG4EbAUaNGnXilUlql7bu2s/PFqznnvnrWLN9L327d+G6maO49uyRThqWilQhBpwWk1K6DbgNYMaMGSnjciS1ofqGRp5YXsldz67j0Ve20tCYOGdcGZ+8dBKXTR1ib41U5Aox4GwARjbZHpHfJ0mva9mW3fx8wXrue24DlbsPMLBXKR96w1iuPWsUYwc6t0bqKAox4MwDJkbEWHLB5lrgumxLklTIdtTU8qsXN/LzBet5cX01nTsFb5w8iHeeMYJLJg+itHOnrEuU1MYKLuCklOoj4iZgDrnTxG9PKS2OiC8B81NKsyPiLOA+oD/wtoj4YkppaoZlS2pj9Q2NPL6skp8vWM8jL2+ltqGRKUP78PkrpnDV9GEM7NU16xIlZajgAg5ASulB4MFm+77Q5PE8ckNXkjqYJRt3ce/C9fzy+Y1s23OAsp6lvO+c0bzzzOFMHdY36/IkFYiCDDiS1NTW3fv55XMbuXfhel7ZvJsuJcEl+SGoi09yCErSaxlwJBWk/XUNPLxkC/cuXM8TyyppTDB9ZD++fNVUrjh1GP1dOkHSERhwJBWMhsbEM6u288vnNvLgok3sPlDPsL7d+OjF43nH6SOYMKhX1iVKaicMOJIylVLixfXVzH5hI796YSNbdx+gZ2kJl00bwrvOGME54wbQyfWgJB0jA46kTKzYupvZz29k9gsbWb19L6Ulnbj4pHKumj6cSyYPonupF+KTdPwMOJLazNrte3nwpU386oWNLN64iwg4b/wA/vLiCVw2bQh9u3fJukRJRcKAI6lVrdpWw4OLNvHgok0s3rgLgNNG9OULV0zhilOHMqhPt4wrlFSMDDiSWtyKrXteDTWvbN4NwOmj+vHZt57MrGlDGFnWI+MKJRU7A46kE5ZSYvHGXTy0eDO/WbyZZVv2ADBjdH8+f8UU3jJtCMP6dc+4SkkdiQFH0nGpa2jkmYoqHlqymd8u2cLG6v10CpgxpowvXjmVy6YOYUhfh58kZcOAI+mo7d5fx+PLKnlo8RYeW7qV3fvr6dalE2+YWM4nLp3En0wexADXgJJUAAw4ko5ozfYaHn1lK4++spW5Fdupa0iU9Sxl1tQhXDplMG+YWO4p3ZIKjgFH0h+prW9k/uqqXKhZupWKyhoAxpX35IbzxnDplCGcObo/JV58T1IBM+BIYuvu/Ty+tJLHlm7l98u2sftAPaUlnZg5roz3nzOaSyYPYvSAnlmXKUlHzYAjdUC19Y0sWLODx5dV8sSySpZsyl2fZnCfrlx+6lAumTyI8ycMpGdXPyIktU9+ekkdxNrte3l82VYeX7aNp1duo6a2gc6dgjNH9+dvLjuJiyaVM3VYHyIcepLU/hlwpCJVvbeOpyu28+SKbfx+eSWrt+8FYGRZd95xxnAunFjOueMH0LubyyNIKj4GHKlIHKhvYMGaHTy5Yht/WLGdRet30pigR2kJ54wbwA3njeGikwYxZkAPe2kkFT0DjtRONTQmXt60Kx9otjFvdRX76xop6RScPrIff3XJRC6YOJDTRvSjtHOnrMuVpDZlwJHaiZQSKyv38NTK3LDT3IoqqvfVATBpcC/ec/YoLpgwkLPHljnsJKnDM+BIBWxd1V6eWrmNp1Zu56mV26ncfQCA4f26c9nUwZw/YSDnjhvgityS1IwBRyogG3fu4+mV23m6YjtPr9zOhp37ABjYqyvnjR/A+RMGcN74ga7GLUmvw4AjZWjLrv3MzYeZpyu2syZ/plO/Hl04Z+wAbrxwHOeNH8CEQb2cGCxJx8CAI7Whg4HmmVVVzF25nYptuWUQenfrzMyxA/izc8dw7rgBTB7Sm04uhSBJx82AI7Wig4FmbkUVz1Q0CTRdOzNjTH+uPXsk544byJRhfVzbSZJakAFHakGbqvfxTEUVz6zKhZpVTQLN2WPLeM/Zo5g5rowpQ/vQucRTtyWptRhwpBOwfsdenqmoenXYaW1Vbg5NbsipjPfOHMXMsQPsoZGkNmbAkY5SSonV2/cyb1UVc1dt55mKqlfPcurbvQtnjy3j+vPGMHNsGScPNdBIUpYMONJhNDQmXtm8i3mrqpi3egfPrq569To0ZT1LmTm2jA+/YSwzxw3gpMFOCpakQmLAkfL21zWwaEM1z66qYt7qKhas3sHuA/VA7sJ6548fwFljyzh7TJmnbUtSgTPgqENKKbFh5z4Wrt3JwjU7eG7tDhZv3EV9YwJgwqBeXHHaMGaOLeOssWUM79c944olScfCgKMOYW9tPS9t2MVza3ewcO0Onlu7k6354abuXUo4dURfPnzhOM4Y1Z8zR/enrGdpxhVLkk6EAUdF50B9A69s2s2LG6p5cd1OXlxfzfKtu8l3zjB6QA/OnzCQM0b14/RR/Zk8pLenbEtSkTHgqF2rrW9k+dbdLN6wixc35MLMK5t2U9vQCMCAnqWcOqIvs6YN4dQRfTltZD8G9uqacdWSpNZmwFG7sa+2gZc372Lxxl0s3lDNSxurWbZ5z6thpnfXzpwyoi8fuGAsp47oy6kj+jK8X3cnA0tSB2TAUUGq3H2AlzftevW2ZNMuVmzd8+owU/8eXZg2PBdmpg3vw9RhfRld1sNTtSVJgAFHGatraKSisuaPgszLm3azbc+BV48Z2rcbJw/tw6xpQ5k2rA9Th/dlWN9u9sxIkg7LgKM2UdfQyOptNSzbsoflW3ezfMselm3ZzaptNa+eml1a0omJg3tx8UnlnDy0DycP7c3JQ/rQ3zOaJEnHyICjFlVzoJ5V22pYWbmHlZW5++X5IFPXkAsyETCqrAcTB/Xm0imDmTS4NycP7cO48p508WwmSVILMODomNU3NLJx535Wba+honIPFfkgU1FZw+Zd+189LgJG9O/OpEG9uWTyYCYN7sWkwb0ZX96L7qUlGb4DSVKxM+DokJqGmDXba1i1rYY12/eyelsN63bsfbU3BnIrZ48r78V54wcwrrwn48p7Mb68F6MH9KBbF4OMJKntGXA6qJQSVTW1rNuxj3VVe1m3Y2/uvmof63bsZcOOfa/OjYHc1X7HDOzJSUN6c9m0IYwZ0IMxA3JhZmCvUif8SpIKigGnSB0MMBt27mP9jn1s2LGP9Tv2vrq9rmovNbUNf/Q1ZT1LGVnWg1OG9+Wtpwx9NcSMGdiTQb27GmIkSe2GAaedamhMbNm1nw0797HxYIhp+njHPvbV/XGA6d21M8P7d2dE/+6cM24Ao8p6MLKsByPLujOifw96dfXHQZJUHPyLlrGUElt3H2Dxxmq276llf30jB+oa2F/XwIH6RvbXNbC/Lne/r66BrbsPsGHHPjbv2k9DkyEkyF38bnj/7owv78lFk8oZ0b87w/vlwsvw/t3p271LRu9SkqS2ZcBpQykl1lbtZfHGXby0oTq35MDGarbtqT3k8RHQrXMJ3bp0omv+vrx3V84a059h/boz/NUA051h/brTo9RvpyRJYMBpNfvrGlixdQ9LNu3ilU27WbyxmiWbdrF7fz0AnTsFEwf35uKTBr16dd4hfbrRtUsnunUpoWvnTpSWdHLeiyRJx6EgA05EzAK+BZQA30spfa3Z812BO4Azge3An6aUVrd1nZDrldm8az+vbNrNy5tzywy8smkXFdtqXh1C6talEycN6cOVpw1j2vC+TB3Wh0mDe3sKtSRJraTgAk5ElAC3ApcC64F5ETE7pbSkyWEfBHaklCZExLXA14E/bftq4YYfzOPxZZWvbg/v152Th/Zm1rQhTB6SW25g9ICelLgIpCRJbabgAg5wNrAipVQBEBF3A1cBTQPOVcAt+cc/B/49IiKl9MezbtvA1WcM509OHsTkIX04aUhvJ/JKklQACjHgDAfWNdleD8w83DEppfqIqAYGANuaHhQRNwI3AowaNapVir1q+vBWeV1JknT8inplw5TSbSmlGSmlGeXl5VmXI0mS2kghBpwNwMgm2yPy+w55TER0BvqSm2wsSZJUkAFnHjAxIsZGRClwLTC72TGzgevzj98FPJrF/BtJklSYCm4OTn5OzU3AHHKnid+eUlocEV8C5qeUZgPfB34cESuAKnIhSJIkCSjAgAOQUnoQeLDZvi80ebwfeHdb1yVJktqHQhyikiRJOiEGHEmSVHQMOJIkqegYcCRJUtEx4EiSpKJjwJEkSUXHgCNJkoqOAUeSJBUdA44kSSo6BhxJklSDoQ0xAAAgAElEQVR0oqOsURkRlcCaVnr5gcC2Vnpt5djGrc82bn22ceuzjVtf1m08OqVU/noHdZiA05oiYn5KaUbWdRQz27j12catzzZufbZx62svbewQlSRJKjoGHEmSVHQMOC3jtqwL6ABs49ZnG7c+27j12catr120sXNwJElS0bEHR5IkFR0DjiRJKjoGnBMUEbMiYmlErIiIm7OupxhExO0RsTUiXmqyrywiHo6I5fn7/lnW2N5FxMiIeCwilkTE4oj4eH6/7dxCIqJbRDwbES/k2/iL+f1jI+KZ/GfGTyOiNOta27uIKImI5yLi1/lt27gFRcTqiFgUEc9HxPz8voL/rDDgnICIKAFuBd4CTAHeExFTsq2qKPwQmNVs383AIymlicAj+W0dv3rgUymlKcA5wMfyP7u2c8s5AFySUjoNmA7MiohzgK8D30wpTQB2AB/MsMZi8XHg5SbbtnHLe2NKaXqT698U/GeFAefEnA2sSClVpJRqgbuBqzKuqd1LKT0BVDXbfRXwo/zjHwFvb9OiikxKaVNKaWH+8W5yfxyGYzu3mJSzJ7/ZJX9LwCXAz/P7beMTFBEjgMuB7+W3A9u4LRT8Z4UB58QMB9Y12V6f36eWNziltCn/eDMwOMtiiklEjAFOB57Bdm5R+aGT54GtwMPASmBnSqk+f4ifGSfuX4FPA4357QHYxi0tAQ9FxIKIuDG/r+A/KzpnXYB0rFJKKSK8vkELiIhewL3AJ1JKu3L/+c2xnU9cSqkBmB4R/YD7gMkZl1RUIuIKYGtKaUFEXJx1PUXsgpTShogYBDwcEa80fbJQPyvswTkxG4CRTbZH5Pep5W2JiKEA+futGdfT7kVEF3Lh5icppV/kd9vOrSCltBN4DDgX6BcRB/9z6WfGiTkfuDIiVpObInAJ8C1s4xaVUtqQv99KLqifTTv4rDDgnJh5wMT8jP1S4FpgdsY1FavZwPX5x9cDv8ywlnYvP0/h+8DLKaVvNHnKdm4hEVGe77khIroDl5Kb6/QY8K78YbbxCUgpfSalNCKlNIbc5++jKaX3Yhu3mIjoGRG9Dz4G3gy8RDv4rPBKxicoIt5Kbgy4BLg9pfTVjEtq9yLiLuBiYCCwBfg74H7gHmAUsAa4JqXUfCKyjlJEXAD8HljE/85d+H/k5uHYzi0gIk4lN/myhNx/Ju9JKX0pIsaR620oA54D3pdSOpBdpcUhP0T1f1NKV9jGLSfflvflNzsDd6aUvhoRAyjwzwoDjiRJKjoOUUmSpKJjwJEkSUXHgCNJkoqOAUeSJBUdA44kSSo6BhxJklR0DDiSJKnoGHAkSVLRMeBIkqSiY8CRJElFx4AjSZKKjgFHkiQVHQOOJEkqOgYcSZJUdAw4/5+9tw3ZrdvOg64x1/3s931zUpo2qTGeFBsxClVBMCSF/qlGm9Qf1h8aon9iCcYfLYKC2II0pbYSRSz+qGKwkVSwaS1qAxbT+lEEsWk+RDDBlmNi2hxia0+SI01O9r7vNYc/5hpjXGOuOe/7fvZ+9vOe933WOJx338+an2uutea85jU+5iGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTA+AccsghhxxyyCGfOjkAziGHHHLIIYcc8qmTZwc4IvKvichPicj/ISJ/SkQ+FJFvEJEfFZHPicifFpFXW94Ptr8/t6X/FqrnD2zX/6qIfNtz38chhxxyyCGHHPLlK88KcETkswD+VQDfpKr/MIAFwHcC+HcB/DFV/fsB/BKA796KfDeAX9qu/7EtH0Tkt27l/iEA3w7gPxKR5Tnv5ZBDDjnkkEMO+fKVj0NFdQLwkYicAHwFgF8A8E8A+LNb+g8C+Ge33797+xtb+reKiGzXf0hVX6vqzwL4HIBvfqb+H3LIIYcccsghX+Zyes7GVPXzIvLvA/jrAL4E4C8A+AkAv6yqly3bzwP47Pb7swD+xlb2IiJfBPDV2/W/TFVzGRcR+R4A3wMAD/Lwj31YvhoAcMEZFXXUQ/rvVgf9FylVIOm6pUbpx6Zrajny7K9r16c+re8zXx+lvWv6vt+jMcu9llQu91p25TBJf7teR9uPr/ta2aeo+1p6yGOexuPfhHhS8/So4Z6ntX/S89qzjL69Pn10/d70p5Jb9/VJk/xU99evl3q3HNfy7NPkrvTR+xx/VVSc8SUAwFrPAIBX5TN4wAMA4O+sf+tvq+pvutH1d5Jv+7Zv1i984YtPUtdP/MRf+xFV/fYnqewTLM8KcETkN6CxL98A4JcB/JdoKqb3Iqr6/QC+HwC+7oPP6rd85e8BAPxC/WV8SX415S0oWNEw1oozZCO3Chb/DQBKwGjZhq+gOGBi4HSi4eV0q2Ppht/aB0DtR93qdaxYtg8vlz/T/US/FRUVa0rrxdIVNd07X+/7ZqIdWJylV6koWjwPX/e+6Z5UvJb+tmXtOo/LSR9S+mjMipZh2XvTvf47n8csnZ91/y5wGtDG2uqoWIfP8tqz5rIAsOoZZdMI9896VXoHKY8/a11TOr+jVt771Gmdue5Rnlm6tbm7r61s1cmYXCl7T7rJtbR3Sef2WXhMHpPO1/vncq1/qW4s/p3Nvr1ZHfaezdPb/3bXJ3UXf7cFsuU5YUFxsBN5v1i+iF+o/ycA4P97/XkAwN/70W/DZ+vXAwD++y/+ez837NQTyhe+8EX86F/5T56krtPyj3/Nk1T0CZdnBTgA/kkAP6uq/y8AiMh/BeC3A/gqETltLM7XA/j8lv/zAH4zgJ/fVFq/HsAX6LoJlxmKAlDajIw+FBN+8fuPbfgBabm6MenT7bPv+1CHHyctyp426/+DT0hCk0FF1kWOJhC7UpEXzGUAkvbgqa9rnL5oLJZWOwAILTAj4MbpvOC2BgaLGi3WhZ55Aq1q95KfdaE+9Wm3yt6TbnItbbvosujgM6X0oiXX0b2LnF5QhgtPel+6dC7b18+gcNevAegTKSl9txhS+d2z7tK4jWvp1uYMuImUKejry1ZdE3BbtvQe2I02RX3ZPp3lWnoGOfNyfXqeu+LeU/4dEB+n8TO1v/t2Fi3pu5210Ze7NjePNjFcflRWdHy9tSVbX084yQftd2n/vsJHePWcpp0KoI40C4e8rTw3wPnrAH6biHwFmorqWwH8OID/CcA/B+CHAHwXgD+35f/h7e//dUv/H1VVReSHAfwXIvIfAPh7AHwjgL9yq/G60a0rLoktifT9bmw0+UT+PQMxUn1xOrd7wYVASE1tVf+Xy+ad+az/QAMsa6ov7q0HEf2uftTOvm/rMK1PT+WkQvX6+DBgGaUX7e6rS2stv336OnimfdmeoWkL9Tw98sRiPmN/Rukj8LxP3z/ru9Ilrpowg8llR9/HRc6YsUP+Dku0x+xPpbQxwxN1KOouzeqYlW33Qv3p0jltxP6ojNOr5ja4/5bu/evYoVHZMcsyT79edr3C0HCu8bxm10cMTiohs/cobypMRkCn/waCoR5LD86jPe7rgAGTGuPOII06zQBIlee251BvRmsHwHlaeW4bnB8VkT8L4CcBXAD8b2gqpP8WwA+JyB/Zrv2JrcifAPCfi8jnAPwimucUVPWnROTPAPjprZ7fqzqYJUiKAA9iO4vTTj0ExMe3IibtfldggKOg4EQ769GHN06PawWlW9RCjXW68WiY4amDyaPfsfCE1d/7ghNYDXZNPda306ddS190QsHruG6fFDVPhHwvfVovb5u+6FxNtGxz3rukG4jcsRQ30gNUjZmninX47GfpM/aImR3v1/berBIg/R52qK/bpFcJAtcZnj4tZNnVfQ/Dw2OyyMOwrI33KJ2F0znP0rFDozp6FuZW+lMwOLckxmZ/Ddiz0jM10QjYjOrjPO/C4OT6N1XUFQbHpG16z6nPKy44DzZkh3xy5LkZHKjq9wL43u7yz2DgBaWqvwbgn5/U80cB/NHHtP2wfe0frR/4y18JodtivkoMy6KnxLKwnFydQTYGVB9/YJxu9Zx44dKs7Bl9kLbAvAsIqVKHKo9+0bI67rGTCcYiwN8IuPF9ZVuV6/d9LX2WNgJ9I5uoa+ljff51QHkv4DSZ0eosDEhHO2uug5/ZPemj9whKKoxR32hTy2zgDHCmNidlF2fAMpNyj8rQgeQAmPXp3jcCZgtO0/d/prbr72um1lNi9Pqy19JZ7rVBu5U+Aq23NiczMMyqWPu7z9fq3r9Ht973Pv2W/U5JdZPJvsa7bdcLZFiHoECMSd3AKqsgn00OBudJ5dkBzsclAmCRTd+KxRd53kOMgEcDOGxtHzP0iRYN+ATNH30YsxlL0QCOejoDLbteUWnBjLYvpiK4A6TwrqWiOt1eVRPwir6OJwkbIQZgPGEAwGWb6BYvT7t+jXHtgVksatm4ugeU5Qpwm6VZX+YL1/WFqVxZeK4tepx+4bYJ9G2d2OXP9iinYfotUFhQcOnUr6euLk4f2XqBgEcZPA/tdt5RdswaxmhnUDNbaKLeheoYswlCrY/Un5y3Zwp5UR6xiA0cbXVMNBWeV8csrqB42Vvpo3pHbV9Luyd9JreeRy+98fljyo7ry98BMABwXZ39plOuMDzWpwR2tjXhhGXHwrUZ7xlVVL2h6CHvLC8H4Ajw0am9/F95eYUH3dA65bFPZaXJbpEyzAMAi30oIqhqTrInzzdKXwnInBJwyu3ah1cgnt/TlcCTCHSr+6K8kHXgyfvHICPSGYAlYJaYpz0wa+PQT0KZN58BN7u+JL34mMExgDYDbpbWC4NVTmfAx/22PE1vv2fjUr9upPcAksd7BC49/Qqbdw8oHKuoCKRsXe2Nk2egkEEfABRWFfVjPgFu97J1LD24mrMA84WZmakeXHHdQ+N2FDey7z0UuQ1LX5wxuNfIHlv7fCePS+8h0748qyZve0ndSh+q59C/5xkQ5/6VDshv1ycszdK9X/13Vrrve/RO8XzFv22ObX1Vt72xfxkMHfLJlBcDcAoUX/1he1lXPeHNmnXMBcC6LVjnGgvXIpL02Bda1B7Kfne5VlvMFScZgRB1kM51V0XS98ZHGKDe+lehzkZlABRA5iQF9v2qAheum8pafQGAFBaHIgM3TWPFsSpWRL+sXgN3CsVloLbjMWuTi/pY9ZPKqtUZMk6v0AQKRxPXLF1pLANw0uSowAX7sjzeI3Vkeh60s+0nyz6N66g02hWaAOCoPNPuo11nn34ZjEm6rw649ercS1JNZODGwCuxjPYOX2EZW3p3Xww4Z+rfbaG8IPdrd18duJr1e2QLcjuEw6tdetz6dRucd/Giesq672FcZhuQOQO8Fwf3HVkxYq15wzWrWyZt8/fO8w7PXWZE3N6TrOpX1DtG5CnlMDJ+ankxAAcAlu29/nCRUFfZblaAdfvgLvSOnUralKZv8lT2i/UlgaPIWx2kxO9Tyemr7Ww01GksFwJPDnCE6w7wJJI/9gBHsd9lAGT9V1Vij/bAzdq0PKrqoO922zq8r7UDfaN0E667AZzBokegsEqAtwTstmZ64DcDTzPQB2S2LvU7MVNRRwN9+0nZrlTMwBOzjLTj7frN4A1AZ0ewYLkB+npg1wOczN71sWr2O3EGGUXzAtQzBRfN48KslgGY3qbCnsfYJooA5wRcLYh3w9KsDgdFiZkKcGX3fx2YXV/8R8toXuTnLMZjyz6m7pa+B8v7+jpj4RtqolvM3bX2bjFPLPHOAdWrEcDf43G/rI2KFa+v+648vRwA50nlxQCcRYCvchZa8MbsDgng2Bp+rrFALiV/CM46KPBQou7VQYZ4+kmiDU+v8XuRDDLOGqDBFvrM4EQbi9cdC9OqktxQ7ZtWAJcaiyuDI+urgxANVimxNKUDT15WcBoAnMUB0BhcLcLMEzoGJ0tjpui+mKEh0OcxLcqcMbM6rL6FFtw9eBrtBgk8Ie7burSIJMYtQEYGCssEmFl91xg3ALggIlw3NSqzEf2OX7yOqpoW80J5VNR/c9+YjWttFx9fVuFWZAAzUrPuAI6/J7a4zMFVMiDdWj2h7BZhIIDX3eCqU+/Gvy1PD7z6urkLyUZNlymzZPclg8U6G/fO7VAsbaTC7dMZuHE6l+3buNb2VAXVAeKcfp3duTfPLdYm5e0YnKgjviF2/jBZ8IAP5cUskZ9KeTFPrwjwattofFgFrxyc2EQdc9S5BlB4KJrjR9AkeRJjBmLBvBDAWQbp5yoJ4DDIuExAhjoQaBfX2oBXSwcUcf1i7JD0C6b9lgTqTM4GgNJizeBKHKiIBMBKAGYCQpx50mhzkXafre5c1uv28rG4tsU6+s1tD4FZx2r1973WzEzIoO5rAAa4H7jNxmwhJtDqWytN4AMwe+kW6/wsOxscyRP/TBVqwixkX9bL21h2Y3au1K+RGjWBFAJebo/FC9f9rBcwBlcnWqJXLelZG7PVAOd1VqsHXv19LRTHpVdHjoDZSB3J0quR0jtKaa6q1AB0LJWA1qg/FTJNS+WH6TF+43ucGFVPANAQOHZiz0yV39HrAIffI2ZpWT6or7CUvZHxm+dkcBQHg/PE8mIAjkDxGx/ay/NhCZDhix5YzZSBggEVIFiUCuCBwJGVfbP96Bdz+x5fV+2Yjqj3HDbE/gmeJKY/S28Mzh48NRBi9xsqsMbQWJ6wsWEgYQvuqtH2IgyugLXGYsjqN2OH0phR2yPwdKIxY1arr7vVHxNtoX5XBOhj1VoGZhk82X2x6s0AoiDAhqp6v6vGWHLXzlNWTLZ0dRDXgFvUNwNPVt9KC38wUwEKT9q/RzHG9m6wzdRC9S1qXkXjMTuJdoBTUn3s2FIgaczSQkcgKECfJEaNQXhL1w6ERL+FJv/i/Y76WOwdPwmDmn5MTCWsCWj5eA9YLR6zDJ4C5vYqw8zuBHhqbeRNU5+v1dG2OXb9FsORwcZ1FkUIYI1YkWvpMa69Abjd+3X1WK5jDKRGqtpeeBNhkgFSc5cA2rfHacFKrmFcvAVKfMArfFiec4nUA+A8sbwYgFNV8HpbkFZaVB58Vx+LEYq6twqzLAAgNJuaCmrpygJ54SrIOuBkrGsLPgGizEbE/Bg7fA3VAi1MF424m4JeBdV+K0+Wg503t82L9aUCK11fqG77/WrCstiCy8AtgafSsT/IcpFuYRoAN2a9ljQmcp3BkfHzAMRBTf8s/b5K5B09DwZqrHprDA18TFjdaO2tfo/B/PRgdsZ6sTqy9U4I7ApG6shFor4dg9M9kEXyYhYgJYC3lbU8bqCc6o57CxUuLWjCY5Ltt3y3T2PSqxv7ttfuXRirUQngEBu3cPoAXLHKUCA4ETvUs1at3/a9hTNCso9jFnLHdIT0B1PesqHp8/TAbJdXNbWY2BKfC8fpCzLTYulJ7TgAJ5kZm9zfAJByT0o/z04YHFYxeqDVLWr1a3wJv1b3Ee8P+eTIiwE4p6L4TR+0F/dNLT5pn8RcX1nNVNzQ+FR6BieAQKi3Iv1NDUPhWDyCJXi9itexiNLinwHYwmW3/Gda3AIoBKg51/xR86Jn7E+bzoJ5smt2vxfq94OoMydnYllaVOgoG8ySta0BDrp06/cD2fScNcZVoG7bxGq/vJjHbmwlNZfVzcbb5zpicBgoxOK2sBoJ4U03BWa+KAfY4bov/fNIwGwPKEOFJel5Lf6uBtBjOzFmvRI4mrBe9qx79RgzagyUmaGxMWBDeRsbftatrHge2wCchWyiSlZBtfQo39gh66tgcXsrcg7YAZi8YDawa+9wvCQ9M3X2nbN04MnGZ2tbOgBkDI+WCXjKCyoDL6vP3z+6zkC5IBvKp/oGsX/YxmpkKJ/zdurMLo8Sg7yzXyGmcAS6FLQzGKQXYJrOdl/JJoyAITAAQB3Aau3IbtyjrSbtEM48FoqaDO7fuygOBueJ5cUAHCAYF5SaFnGgBwqNNbAyMgE4Dxtbc2IGx4z6Oqak0qxuu1herFclNgnibbZFzSaSWEr8w6RFrwrvABsrBU+LFXDHZBBYA00GIrFLK91E5HXQAt0zJd4PGpnEhlk7CoxYJWexSIUgdO/s+SacH1ntxGxY38aq+W+WEaPGi57BgMEc7dcLjcmo30XQTatbXhrfYd8QrGDhvka3EquU68+Ldt/XFbmvVs9K11JfaJzyYrTV3eWt3d+tLC16k357mS6P2d6syB6A7V9xBiS/e93COFCJNLYhFnGgtZW+H1ORAg52ekAzuQ3Py484fTv+DkQlO1XOiHVJDMUeHLDU7v3qAUSrb+vP5E5mjBLbD/K1aCOzjNyH8IybtDnqZ68afKRIdxDqK3yEr5B9fKT3JzoErIe8vbwYgNPUDO2l/0CAh9JepFfbv6cSdgfnWtxQ81Q0TUEBcASnEuDIaXI/XVgcYAgwBE+8eLAL9ZpUB1R3vZEuwQ4VZFuMvCRb/vh99rq1q3sDCmTzASCxLGILDC24zGo5pc8sSwdkTGWT2AhLRxhgJ3WMAlICIGYmhMc+T5InUThGgXR2MsGoiY0Jct0+bqYKkmzXFFg32hHErr41FixUz+BUjToYtC4FySHXhpjHpIDaJ3GjdHqGSmCWjexryUyI57HFQzWpzeK+NNl9ZVWnXefvQnZgKQ2RsGpBcxqzLHaN7m0EFASCbJwa5Ry8Dfr0NjJaaFnVOZPRJiEfJ5NVMrzAAxs4mCzufbgEADsA0gOe1LeOTYk+xTvKeUYHVSpivuJ0/l0Vw+ty5b792iOenfDEnK5bjLQDbHzS5cUAnCLAV54sQqU6OHlVtmMGaHZ8sxaP57FITYu1AR+F4GTgSKovkm9q+zguNSbyRcLl+E1d3EbiVJQYHMHrNcDRMmCWXtdIN9CV1RYEcGixrgqcJ+DJ0hO4QqS7LjzVrUlFVUi9BbTJ7sEXcHG7pVa33Rft5KtgoZX7wYFZa+SMvLBz22bweqLFgxfr1oe8g2cbHZTeoDbKGHtfJoDSLtYuPQDV2E6m7VwtB/dL/JrbciHmbFaPJbaOQV9aGLe2kdVjlqCIMTtJMEK1BigcAc5KCIDVX+1+4/nm+9reV1JX8ZiY8D32tkPkoJU85uI72xutLiUAuBLCEMlqIlbDJfWWgzq/xeTV5s+0akQuZ5CktD2SgYoKUS5FEb+yUI88mVhGQLAHRpE5lx/Z8IyAEasGpWNRqPIhALuWDmTD8B3DBH/wQxna10yEmx5FMlbUnf3Te5dDRfWk8mIAjojiMycKt24qoG11flgCpABh7LgUxcIhxR0UiLNACy2SJuwhcpKa4mgYy8PgiT0pLnXMDnk6gZCHUom1KR3TsS2StAA3WxXdyhLwqON0m+BPQiwKMtNhfXGAIwxS1Jmni7LdEtmqyAwcwfPGPWYbnQBmMdWfyL6nsVpRj/3r6YopCHFbFYRR90IG0SMbnYfCtirR72ZvRXUPbXAIkLqhcG9bFIvvtN+Sx6/34CqUPrJL6lVAvSHwbMyUnkdynSdQ0zzioh22DYoxsEU+G2YnFZPXHYa+Z4l22OvNPp9r4OnMCGaQn725sleb3Qsb2uaF9jxS9xAodAcA3avYgHkcKFVNhtXeBl2KyOsZnHDdLD2wUpWh6o1rHBl/A5mVTv1jcDdJH9XNZWf4bwQcexucBIIVlGdTUZEX1QeyjyL+3kRxnUI75NHyYgAONBiBk9QEbABbgLYFvwrgxzAo7di0o7jV/w3KPNgHYytEgNM2ha+kXy4S+RXB2lQJkCFgr40AV+wmbl9pJaPgRdTj9FRku4dwObULOtwdN+bJymS1QCwO2kUJbeOx0KRoqquFuI2FxkxpGRfEomf9VFqmGFwJmI6PMUl2SdgvKsyKVZpMEzBLhpqdoe9uEejYI1u0K401AYHi95zv19R2lZ4p23IlNZJ0/WZQ6KozG5kcMuCmao0UAwuBI/eaqXQvHbgy2QOcPF7A9l10ACcvxME8rR3CCZaRnxV/m3Ff8Q7PQwKkdulZhvF7tJCNp6PMDFAaATwLCWCbC0YXScVGY5dAhshNgGIAqP8OHOB3UKHng1Yam95uqfeQij7EuPYG/rN0zpOOUumaiHrkZvoIFDZjeurMNvYFsmNwLrikgJvvX/RgcJ5YXgzAWYriMw97BscZhVIpb4Gu6uU4TWhxDRsD7Xagm51CsUVZfRIuomSDEHYFCyouDiC6uv0jziDK6hhFpo3cW/7BTs/uhVUw/ZTFdhQBJZQW7tleiurY/uU1qhnJbuOgkvt6ra5Jc2XX87i+DiZxN9DVzCg8ps2Z+L0gA0s2BJbBxH9L+kX0bfsX/ZT0fEeLdZ+/pe9ZxV1fwbYvXT3U5gCbXK0T2MbvMeO2/fs2Idt2fcdtG52ZYazI7Wf1mPuayTiGzPPIznj7xv3c8+4mI3YCR6M6OJ0B0y0RFGdu+CyqZw30d8iTy4sBOGsV/Mq5WcR/UFacNubm1dJeYPsbAF7p6qBmYUAiimX7CFYNFmgpNVxRN+ZnWRevQ8jVu2Bx1Vaj/zdmR4tPbmutCYC5u+8GulYN3ws2jhbo1AbHPnE2fmZGyA2FJzY4gpl9j/o2e+Qd1lauLc6GxkT7wGq9AjcQTcbR1umaF1e3wRH1TGwInIyIq6D3dlok+qHCagFN7JGO1C3Eelj/yMklsUeNuYvfAeLypB0T8dYG1c1G36ShuupZxnXbNQakffo1kclyzR5SkeP90usMFgeal5bH36NgwKxc37sRS8C/483pjWBll79q9GklRlIR6tJm52FsCNVnfaXvlJkaJkpWZGPr3X5fc197hqfdV1Swdg4SUNoAACAASURBVC9Bvw/iwHi9R9/QxoWCPVa6d29bop5RessTF1uMImqzxlj5PfAzk30613ctTpBHYN48pwQFD/Jc0BCHm/h7kBcDcJai+KoPXgPYVErbS//wYEbGAVKWKsBm0LuUABtWFmiL0EI2OH4eFJUTAhIrlY84EHwMRHWmQWln29gX+73lVCUbnVCyrMSyNJWbRSAVrK4KYzuYACTrKp7O/fbdr4SxpCCroLTrIKez6g1J3RIL9Lr2/Y66bTxcRUXgSYCkHnO7KgIZM9Wberr4bMgeUs0bacuVjL5Jdbb1/6I56CMDoKQmIgaHXbwZeNmdjhiaZjDbfq+CZNCb687smhBwU2ITpRsTy681q7/6XbaC7aPC0BYQKK2CdpmNjHkBZfsek/55eXrJcz+rv+IxyW4sC/Ujt90FGSRw7v0mbzJWWTK487GpERdmSSAyVnTpjmDpRZHZreGgUJ4oleVWpONUvnu4++WcDZ+7vBM86xsG3QOwpC4apPddGpXn67tAf116Xx+rv4B4j9tWLrdWULA8J8ABgMNN/EnlxQCcqoJfuzT25dVpDdsXt0cId2FVcbCjKt3O0XYnoDzqwMY/PGJCNOUNo8gq7GFUnKmp5G1UIXTd6stxIjg2T1ZnFboedZvYh88B6SrgcUVUNOVn4XHgXWyrl/e+Od0XUWDIIFQAz2jW9yTyFG7Fj5W0uH7MMlrnOML1zhV5+3eZlGV2ZmLmMcw/Y3iStwwxPBw+YNwP3b3bLAzOZm7O+ZsctDFhMbI9U2YgOP+IIclu5SE+H3VlOCTAteWVjaD7vj7mXZzZ7ryNzMBcr2ZNNjh8D1f6UlFToMRDPnnyYgBOEcWrzU287Zq3j9p2V8Qc1BJgR0STC7luL7xoBOMri0I2tqQSOEj2Pc7sxLaF6y5ayXW5hDt1iXDm7ohV2XYo0nvwYqqw5pZsu6a4l4XHoJpRNVK6b1B5LMF1y87otiRGIbyeOCjgSWqogLQrSwbMgG1g6Xkwe+Rt5/g9tLFOO+7WdmZ4OJ2PlXCmg5ishxJqQD6nyJ7XQ4l+o2QPrvBqgzc6jmQMfxB9ut9u4cjRSJGjTdiYPddt70uum/s9ixxtg/YYA+aHwmqEfJzIw9aBkSqF+712ySk2kPWli+4MbOeibXnP3Yuax4S+HUqPgIyjMQtAwJBekA2Y8wGkkQcwI3Ls0nmBXjR7f7H0Jms90CDzwaF9jyqziQPw0tdHeSqP36CNxt7u2xQqx150IyPovs97L7Rxeo52ndu290EVfkyGoLhx8Vob07/inA6mff+ih4rqieXFABz+CFntZGqmUsY7qXl9tPursavi6z75dTp7t6lR2n0Sy9ImnfZ7QbAo/K8bBWukK1lj1LT7jAWLj3mwBY1DGfafl11XqgNCfUGAp9S2TVwErtr5Sdu4L1Ef20mAdrz+L/WraCyuNbBiYoSqEGOGvScMG8kqsos6qxas7pUWmELjUP2+4DPuhQIitmMgeDTj+a50j45rEfdrgQ8raLIvkZfrZqPlvm67R5OqORo3QXfP305vj/zG0vOxGOl093S/ARCFxowPc+XFq9B1+zcZUpMXFY9JBFuM53fhxZzumZ/H6GBG1WyLwkEg165/szHjIyqKAEr1MXjjGEBWH6cHIKYjQdJHmW1wemDI80+fPsIE/H6OAvO19y/GzKNCD9reKpl6SQGmAhynjyJl9+X52x+JDsom1WRvg0P1mO3NafkIAPABPsJnlmeMZMyT2CFPIi8H4EDw+txuV08rXm3XS2xLU/5b3jwySZcwCBh6LhTpF73r8hRsbh/Jt5fswhvMVK+eGgGYfkK9VT9fm/Vrlh/ABq62a3SdXedZrThSsfEi1bc1U8ndkpnRK7c52s2mPJM+eRtX0t6nXHt/ZqoJuZZGLMW1OqdebZP8vPOfySjODNfRj68w3YBso9OX7w2UAQN6Brb3nWPvxJmq5xqj8XEJz5azfs++49nJ3jlCs7UzRjjJMFvm6XyttdGBKgOwWGGHbNba/r3gMgZxh3xi5MUAHACuDlpEyUA4GByTskT0zqWoq7EAYDHKspaoj4IEGmBaRMNYt9RkfGwi1I+1FjxsdfN5N4vUHYjgsPUcRRmggHgSHlqLRji+HMnY0sUDEQqC3XpIHlpIQcVYRcUeWMBehVW2ds412n7oPLQW6rcdgOpqtRoqr3YYp3q6Xb9oViOxESz3a5+ez7PyujUzEzIoa+m9kfHoeIsU80VB0XXZyDgmbT6vh9VISm3ODj+1uJTcdjJgrrHAjOpmhovVRGxjNTreoh3FEcyZjdmpwI+9QDJCDhWGv1mdkbJHd+4sWlPcIbreu9GnqNUdPbkMVGuL5Lp9M0Iqp3yQZzTMsYGSO3MEnIq205hKuhbNtQuXmooOPfCyxxwBKtIxMbAMW6QAAyMVlaBHEPC8xrhwvzlrKXubHjaqVw0WdJZnFqfHys3sgrhcr6JizGKv1bIuOzfxFednPk1cDxXVE8uLAjgMOMqyfdR2YOYpbGBqFR+ZQkBFRHGBRbusWBYDRzUWLPraF3IHL2JBpMQV48mehLy4ULmv2c3U0tnVW4TS6ftwGxuh3WNXtt0jUeolVAscY6dItp3IZRH3tt2XjUIRdaPl5qkTfbM8IxuerUYAo+CIWzmldpBjunhdxNaE9xXdF63EBTSBivoz5b5mV+3270li/RHE+BayT2JvniKhmqkS9jvJE4rHg/ofazVN4LQos51TpfS0KFpBid9FWKWabUX69fleF/Wog/J3dmKuaqW2Z+lp8aRnverg+ui+JIM+vq+OqIn6tn/DCzKY2YKsVknqju3f2q2o/VI8678gA7c+vS878s4SBBs7q6dFAN+DIJfdeFzJ2+WpolNPq8i7l+xKfr1c7TrBat6ZjJ51ui9zF8fy/F5UB8B5UnkxAKeI4sNTQ+OnpQaDQ/FvPDBZ5xY+myS43N6bgeooCl0ns8Ed/V7fQm1yS8XGeWb155283FStudE11f1Ylc81/fu7CnvvpOuE3EYeXHxA5LBezf1mCY+5cd1sb+VG1di/T57X1YSdasN+0/2wd5F1T9GpwgisuR0Z1cEAge24TArZilTNi3VmfKzuHLhSurzcNqjfHGeGlwCh/Ol9ofti+x7vN5Eba92nWV/4GAXvh98+22n19x35eyP6a/fbM1AtT2RobGIwNPtvRFMbvDmK+DT5elJ/dfX172Gl72D0PBro0911FgYvI48qBml9un0r/DzSnDGy/2ED8rwH9KMszrhgNRWVXrb+reNYP4d8YuTFAJyqgl950wzGPjxFdMpCaiYTVUnu4yZ9AKrRb67Dd47dl15JZRI78ryA2GK41hLX6TTx2MGHimqt4oeBFlFnitpZO6Gikn7SUKHTxHNoN9ufv15LGOuKAn7oaD4EFGg79rotuaqC14NT0KtUr/tco/0iccJ7tC2pbTZOtnIXzYuHDXl/ACnQnmlOh6e7bRH4hPVQOVSJZ2b3xWqmSoDgTc3eSOZ1VSFulMqnoHNgQU6PM7TCGPxc82JoHnZrBc7dgs8qrIuOz8E6SRzLca7RTjsKIQPhc41FdxHxRWXVfD6Xq8VqGOueydNJSyzd0TYt/gKPq7PWGJMKek4yMTKm5+FqPUIDIuKbZTYy5n6zkTEbEdMskAyzTXq7mscYGdMdTIyM8zzUly3IG5HUttsHcjqVHXRjp2LSfVqKK5OMt8fgoAcpI5ke1TAyhNbr6b0aizkZP34GAjtPrEhbFhc84OHZYkADUEAOBudJ5cUAnEUUn3nVEPpSWL00+iDG23EGPrMys2+WvY5uyZT6pQWSz7my30UiACAfA9Ei9LrCIrxbvJ1QlfH1RrvbQsbpmhiNRfpJFukcLHYTz6egb3kEPuuwTYfV+kCRjrMNTohoTFzXoiRfS8+u3MGTF82B/rgsMLfBAbmUt7PB2uWqgSzyKejWNjx9IRCST0HPAMZB0HLdBmcBpjY4J69vbIOzuJrw8TY4Yb9FIOMRNjjLkt8xtpOxzQCridxmi8esU69kNiWned0OrKPtkTvzfsziex95dzHrMHMj53Oz+nT/u5tvrrmRj1jGW27kDJD2h23SC8Z1uopqPB+6imhivN5U6vtxb3U3cTb2SvrMTTzl9/GOoxpy+mQyfi+i8wXkkLeSFwNwVhW8WdsL/IEo1nVD69sXfjrRxEqzAnvniITBsa40yXdl+nK9OICapmOvrEeApN6NnNNZLRC7oOhrW9TyYlOV3cvFr+dAZgTO6N6qRlDE7OkUhZmZ8kWP2TBI2oX18XGqxi79RCwG0/+rio8ne2itSjtaWtBYtVBp8WUaf033ZYtNsA7WJ1XATBEjVvPmXm79AwdvJFaBgBkbUMZ9BSQoyOqimQqqdxNn93dWx9Su7guNJatQ7I6s3DU3clfpgCJ267hNts1hNVeyk5Fom+/dJi6VYDiY6bDncUr3Fen8eSnVrZoj0/jzoxfUXpcF2Y2cx2ykohqpMhVcLsBxr6LKz0P2133M5ioqJbA2VFFhD2J4ve2PieD3j0FEpWc2kpv2Nf3zYLWT9P3jebsPyjoGYCzhVbfPo6jPHAfnkKeWFwNw0vECos7gnE4bk7OoszMMZPjIhV6u2WXcYwPTyz0u1/syBHzAO+vcfo5VE5OvSbYJsIU9or0mIEMsBQMfdiO3+WJVNkOl9pAn/lH8nj6+juXlcmwP4iya5Dz9PXKcnAbu4L8rgaTKE7H1icBbTPASwRipbV442eYjLahpTKLe0dvT29dw3Qm8pYV2Pg593bP0W2/yY8IQsPSGuaP0x1y/VU9iXCZ5rxkRAxugS2rrbc5QTewLn2/GKtC+75LqHh9+2g74VPrN+QmdIPK3OugQ4M4oPd4dyWXpHeW/vSx/i25MP8YQ8zG2tq+AHG8jj/XIiPjWYZoMwHqC5CmjKj+JHCqqJ5UXA3A4mFxVweVir3wbgkJc7Zs3J5w3tmcpNUUyvmzMT7ONsXOsin84Vu5SS3hC1dg9XdbF7WGqApXckm2xvmhBGJxy4LiWfq4l2CFqm4HCpbY0byct+MZG7AFE+5vG7I7vv/c0YRFR4AZwY1VY7yVlvXVdebdI+DhQ/B5mBk5CgfyIsrbJubkCi9fF3jduF65sBxOMhrswI8rxWVQnUlEV6NRLKuqOvX/1ZxT9fpC8g+WF0+rmsclRlH2YYKHLehWVLwJlrKLy4ejUY8bGrYgFiXkQjv5cyShZIK6+XAk8K7W3ENvIANFcvJf2crSycesp0rG9Imw/ldz2BckeJ5wNQv1lz4PHiSNLM7Atkhdofq6WPzM01O9073GdmZ3RMzbpvai49t4Da1Tey9K7/1ixb3V9m8LvWWaxkkbGxAtO+GCgtnpvojgAzhPLCwI4wJvtLKpFFIsd2+DeVPGCn041Jrmi4FPBpWx1rOFqflrWSawaY4FylORl4CbO5Zfal90WO1oIR6eNiwSVXqjuSru+S41dX4pls03JFzqp/KHUNLFe3BBYh+o38cU8122K/j4Ojs/FtUJKtPNg/eYJOS2omxEyGw4qqN85pJpjwe3vazY6Zt9TCdQUWsgaCNomcAJMkc4qHfHGC9hNPVQbeISbeHOfteebd+QjN3FOf0o3caT08SLGwGwmtxgc6++7prtRc5d3pO7ble/+ZjWJUJ19P1jFwkl9M72X1ciLasa+jcsFtOzPuRotndfOufI+E5vD+WeOFuxptTNSprzXlvKRAXOrW3bXezXVsJy1/wjMteKC1zrath3ySZEXA3AWUXzlB28AAK8e1gAQFA+H9dislzZhI2M+EJMP50zHKXg5Om4B8KB/IuoAq/eiCvuFGtcHXlQiEb9nJY8hhcDOx1INcMIqI9eFa+ygLwRCFsp7SXXnBdO8cjh9od9rSg/wonQ9lSU1UZ9eVbEs+3LNliXuy71bNPerT2e7kYpmKBvjxM+jyUnJ9gbRBgfxs+tsx4OdWs8m4pi02U082dEQc8Fu4iv1Y+QmPrI5UeSFHdG9u93EkdLZKmmsFmMwxnYjzFLUQduZwegW0Ume/oZ3IQG2f1mt16ezm7j3+w5Vhj93zf3i/vVu4v3vEbDZHVY6sG/LbYz7esskpT+Zm8vY71HZHoyPAAyfyl4G11N9ZD94S655WYUNWtjx9KDK3MRXrLCzqPhU8eeNgqP7GzrkneTFAByAFtS14HTKyFzISEJEIxAgMTEicNucQhNJA0cbYCrmHh3MT1nU9TdskMx1sxqHPaNYxcNxa0bukO8iIzsKVlHxwgiNwHszI+NY/DsDYl7YB+0AvXFv3uVyPJ5kb9LZz0Q7+QwtLweuI8bX2waD1ViwLpoXsv5eVuI0tAMN9sblOCQENF1t0I27p0uqT+m+rrERGq/QzkaHgUKqg2yiOApyX0dWteSFdwo+nlH6QHomHOivX6BZReXee8QMzI5gmamo7IEwEzhSF/FvBn9ADjcw8v5KZ4NR+kKMJAcDzGE79+37e9GlJyNjr2EPjOz6qKDlvRYleXSQJ1dj71oPJNmGaJF8jdsGGqAzFrhAUAec0rMqjBQ4VFRPKy8G4KjCbV+Wsj/+YOb+3dcxu37NQLiv2w0G2fUaMbk0zwFK6z5UVlEVBGXOJ5UX0fDaEXH3cVRqHzbxkscXRTJepDqTxCopob9bzA8LUBLMlN3xgyipksaRjE9SYfZCbAy+8GRWo71Q9SCrsbbfp0JsiFjOGG9WM7XHdqvuGJ/+JHIrZ1lTtGGhE+fB6i8ZnkTudjSkA2qRZgd1Q9x7ie1kCuAxcfyRUrqAwA6yPUnyvkE8g97dtko+liDqpneR6ltI56U1u4afOpSh4PokLfJa8jvY6o7F+qHsWQpB2OtUkEs5XUdN+wsve5J4xm6jAz5GBel58DiNxrvVLZ7H+zRgXJYSLIYig6C4dy5BAIKejTG3/TEQM2eE+N7b370dTWKY7Fq3OcPgOh8HEepUuRlIb2bkbJuZ2Zzc29o4qKLrhZ7ZA044yQctz/Z0Fpx2AO+QT5a8GICzahy2uRBD4+wMT57C7EzY45SiqLG1SWoumwCtHqnhUrks1d3S0zEGiHYq90V4ktLhLiJ2mfNw6D553Uh/6t31YyMZazc53xNufSQzexDu17ukz6S317kV8fnWcDPDc63NWZabdimTPs28r/rnkZma+IvrYBG63qtj+jZzenjx9VF7fTOA8FIaRiOmNtaeqjFczvemZFgs5II+qjuViwxVQqXJ7uOt2dh0WDkeMh9L8ibs77t/Piy9XRPXbr26ph7r1WH8Hkpft++ZaMPQkTI9gKmIo1t2UZQHsrOb6oBN76I+LWcAqwNd9vwu6S9Lr3jeODg4GJwnlhcDcB6K4td/9GsAmhExe031wq7XwnYjRBdojZW43sH+9IcFAhvYoR2+gQKlnX86tNMpg+ITJRswnzSYkEJMiAhw2j5edjnl9AdL74yQ2QU9B9tLfkDb9U0lJ0psBZHhZJf00I3/7KDOdrEmj6V0IKbtNDUbGQelXzyCrRs4lzhMtT/ok42M3TtMA3w+0KJr6X2gP969jwL9sadV1BbP4yTAm+0aT+Ct3wEnqvdD3RuJ1Ra+wwacwVNKZ7YkBRFE/F4K7eY9Pcb3JMGErGTExCqRBwlbBz62oQ8SGKMWv4zhkSpAYnCCaQh2YsLwDHb7HPxwB+hoTEqH7io643MHUpnFSKwX0R5sMN7apvmF2hYh9qpmhVIyGO8Zju5v3mCMjL77WWkXKLBjeB7D4IyEVURNFfV0uytW9+b+zUFXsGR1d1TDBa+f2chYb+9sDnmUvBiAw7YWIhrGxd2hm0BjZNRO9i7aHeMQdfJBnQZyzO5Gi3g5IffjpVTo5krOEYGvnTd1Vf3V27jQTMiGrOvAyPgeI2Q2xg0vqjAi5utnAwoaJ4izEfK5xunfRSNmz+44BXOj324lp4vvchSC12v0IwcmbH/wMQ+sCrD7elPL0MOiKh3FAMQhkYXd9SPdFv+HwscO8FlFoWKpKnjjC2aoqB5K7LDfmDE7MoPi4QjIOHqRfOzA6KgGez+rRmTdirALWgqPSYzDZc3eXS09BnpVdXCigD8Paxdou24+5oHT+ZiHlq4pXf291K6sLUz5mAdP3/5ll/cLrR8iWVWXjmLQqMQYnLPu09luiSP+CiQxDKMggQ5wVRM7xIaxI2PxniG8xdYxIzNiU5+Cwenz30t6PMU5T6X7zTY4PZi8JoKCRVoABTuq4RU+et6jGg55cnkxAEcheH2J2123FeGhbrFsllBFrau4pxNQoWrqJaDauUtrxLm5XCIWjZVb6fwBKRFEcKUFFTU+nl20YcTCHYHlJOp2O4twI+c62KV4piYKF9c7ZyQu+xa66WuB22zSbkdMbKBz0C8BR2rlSLjZ9qAyY0A2Nn0/moovgC/bJdnCzudcFcC37WwUHDZRCGPm2JynmCnNzT5m4j4ODtv89DY6saBGO+yCrghga9Lb0bCNTmJZEL8z+0NtosW9YUbhgdLjGI2I6dyO2ti/i8yYFXqHc/rWTs27fT/CgcYVBGb4/C6zI1GJMWOWZVUMbbmegsFRfjFxncFp18XzeZUd6EvSrb+jL6aXVMfOPrDPnEFIivJMKu7Rt91snubti47d0tvc5UhwLA5OO4aps9Hha33dickZMDgrLjvA915FcaionlheDMDp7TPYAwoIJqdPZ7YHgNvgNEC0Z38svUiOhrya4RoxOL2KytkfXeK0c8qzOksUBsRF4LPsqupeE801El7H6lRsLDysorIPWWukc8C8Zii6H89FgNVUK56GDihsdSsH46NnoLGgZw+UaMOE0yGZleHYLNZvgeJEv/t0DvrHht4NIMmuzZLXo+1awD0GTNwn/p3chbEXAS1ukx1x9vAZVIL52jCSa9NqP8Xv/uZd/aBV9rrqy4/sTBg+jeyClPI0SBoLbd+Ggg2zQ4oGm8LebpyPzHSSjQ4rLUYu0UWR2hwdRsnHFSQWxr5TGkZObqpY6utg/eX3bMbw3HJBH41pqzsusE2Tb1C43zoGIBGWYdw5Nj6eelHR+DHGYxudsBnT9D2NpDZrrq1sK3mW1zg/N+A43MSfVJ4V4IjIPwjgT9Olvw/AHwTwJ7frvwXA/w3gO1T1l6RtZ/5DAP80gF8F8C+p6k9udX0XgH9rq+ePqOoP3mqfj2rwE7idUic2pRaPdCxSUGuomi5bsMC1Ck4nY1bCK+vN2dJLHGpYgll5sy64UJRkjgVz3gyRL7W4vc1Cu1I7S2vV8ER4QHXgc64FrOpZNGxZ+DTxMNC0XXN4mJ1rIfo/Fhiuu3UMXrY/TbyAJngVV121QH+2/Y17f92pqKqpzhDl0knlJfqfThO3NkucwH6mWDluCEn0P6t6BLyQiaslOA4OL0imemMbHK2xSJxp4RRB8qYbnUTOLMGF7ms1lkrC7qad6L3VrcEgsLolBWjzZ06ncjPQElZ/ZfWW9Wt0VlUrbwA71F8NHtqzDhVVO1vLFs84idzu5cJgQJXSQ5XTWJHIYyXYoNeeB6uZeEGu3X3NzqnqDZjvPasq1MNZBSUdgKld214H/b50a+zI2y2pIwmk8D07Q02V7w/T7AAPsiEwlx2ai+i4HW8Poa7vwV/fTwzSWbUHbGMw2DjY30BL722LTPh9E7Ml3NwTFz1hkTIs92kQEfl2tPV1AfCfqur3DfJ8B4A/hPZi/O+q+i8+ayffUZ4V4KjqXwXwjwKAtKNbPw/gvwbw+wH8D6r6fSLy+7e//00AvwvAN27//xYA/zGAbxGR3wjgewF8E9rA/4SI/LCq/tK19p0tWSJGDZ9FZcJGw6XU3UnGACC14LSYeku9zMkW0zV7UfVqJmCj/7c6pBai52u4PFOUZPu3MMApNRvukYrKjHXXmtPDnTpscNigt1DdsdMTXxA4krEgH5xp98VGxqbWqxILz4m8w3qGxsr6Tq9LT+oYT8vMlKuuquUMAMQu6mZ6belhbxJggnmJ5GJOTEOkB1OkkDj0kfrNB7GuyCeV2425qzJATBx8VZkZ6wrEIyw7EyHZjsYZCOmMjLfflzWrabgvQFsUmdkLwDxmrNjzhxfgRUL9ZYs4n9a+kKEtqwEh2YjYFmlm4GZu4jxmfF8j1/kT3UvYtk3cxMmte6E8MyNiN5qX6JSC1ZjRNkrXb8rTu4HnODmCkWH2TIYq5BoN9kyh3zuBohQPZ2JAzHFwRowfu3L3h2um+ELIcwcfo9Ge4/ZNSA4uCMozEiFQ8xR2QveLPpuKalt//ziAfwrAzwP4sW0N/WnK840A/gCA374RDn/Xs3TuCeXjVFF9K4D/S1V/TkR+N4DfsV3/QQB/CQ3g/G4Af1LbzPGXReSrROTrtrx/UVV/EQBE5C8C+HYAf2rWGLt+axXf8br9CvHO61rcrbsFsouXzhgcVaBKfE5RT/v3vIaaCSiZZdkWfBUFNlamGSO2PKsW2rksiUVp6XxSOZ2D1TE4JhwDqC/b7rEd0QC0CTNi5gQTsotkTNdHkYyNWWnsEadT3TbeKsOy+URwq0/9WAdmcNqEZgAQNGZCVDV26f1p43FCuNDunQAJsRcckJC9uWwBZ6PWC2KBWZXGShvIAWJCrsiRjB1YIJgBdhOvVAcv4kzjV+4flXNjXAmGg6d0zhMRnCWlC/1+jJu4cl8xSp+7iYcH1O0FaNR2Sp+Vu1nzfXmeQq7Zr12TEahhV/K+PHv3AXtQw/n9LLTOxsXz6j7OzS4OzgAEsXdV73waZXfF9ukMIgdSFK6+XrC4kXHEwXnA6S1sDd9aFM8GcAB8M4DPqerPAICI/BDaevvTlOdfBvDHjThQ1b/1XJ17Kvk4Ac53IgDJ16rqL2y//x8AX7v9/iyAv0Flfn67NrueRES+B8D3AMDf/cGvw6+8aS/wq9OKVzW7/7Hb+LoGIFkAt58pEnRtVXEQxMJGksG8aGJu/PcjtdwtNgAAIABJREFUXSQjZs74o+O4ITObI16cbgX6S7YqnWGp5TkVY0myZIbH2hwH+usZGmZRRunM4PBhjUMGBxqHbVLfvG3QjlJ0yOCwYXM78JIKo4ELd62XsANAlXQaNdsZuTpKuF/RTzfglDAyXgRYECvTSveV3MDJGyvapjEgl/LE1ND2l+1QjAHx17WOjYxbF+I9YzutsN0YM0/2vHojYw76B2cFMxPib9fEyNj7xOSC5N2/PdMFeUwYAG5Dk+2xLL1bUNkFfXRQJy/EIxv/dGJ5p6a5DWr2+XjM8vV8+Glif2Dq/H05QdjT9cL2Zb2jwDRwHxQcjM8NgXfscL7ee22NjIz5OrNDREo34GVOIdsBmwXlk6yi+hoR+XH6+/tV9fvp79Ea+i1dHf8AAIjI/4L2afwhVf3v3kdn35d8LABHRF4B+GfQ6K8kqqoy+3IeKdsD/X4A+K2/7mv1o4emMHh1WuPIhcFhmxdyq1DaoQLx4a+1oMi6u842NSbSgRvfSdYCWVa/zl5SgYGyl1SfXpTOudLsys2eK8lDyxf/uMZMTfZGwq4OAL6zYTdwtsHJ5y7B2+MIww4Acf0sKk4HIjIy9zvfV76u3WTZ2I94XgGA8hEYmanZ95vtSkATK7v3Ovajhaxq5z7uQDPatUVxpYVzgVI5YiRo0q6Q1L6NB1P3I/fjuMOcBxLARqk+XvSYbeJ3ikFmeh7ALs/I6LWS7ZN2/bX8QmXas97uzXPq8L542bpmZHzRfE1jakjnd/VGxtkQmfrnQEq8HLNYDk5oHPrxroNx4PSRkXF7BrIrx8+mHVWCJHVyjyDbnF7SWPUMm2ZQk8adnA5mRsbDQH+UhyMvJ2PxQd2tHo2+dHc4OrrhvcvTGRn/bVX9pnes44RmHvI7AHw9gP9ZRP4RVf3ld+3cc8nHxeD8LgA/qap/c/v7b4rI16nqL2wqKKPCPg/gN1O5r9+ufR6h0rLrf+lag1UFX9oiGasKPtjAzu40PrQP3T18lvgtdB2lpmjIsTNr19JxChQHpP29NV1qBJPr2ufd/o7mlbDvEcmTIQfx810ioi+8sw6WR1L5kTdS3376e/v3XT5NbnMks+u33NXfdorqy1nrSuBklM4LeMu/XZcM+kaLQ6VJexR0jw2Be6AQkXHZIDbqq7TojQxFlRbOHkh0ntLpXe4jGfcGsUB7uzIYbFIGbdaUHozkqvNIxqN+jyIZ82KdQeEeoAB5vB8byXjqJYW4buXS+2LpAxBjv0eGtLO8+SBUA1pjz7NkdN69Q/Z7FjDPhE8kH508fi0mTbzn81PQR6qplD641tfNwkyZuYmv9TWAjyvQ37OBqtnayvLzAH5UVc8AflZE/hoa4Pmx5+niu8vHBXD+BWR7mR8G8F0Avm/798/R9d+36Qe/BcAXNxD0IwD+HRH5DVu+34kBG8RSRPHhdsDmq9NlF1mYDYubisrsU8L1GgBdFw8cojTjWPqlluTCzOVWt08pwFI9Pewr0iwS1yndQM1a42TxxpAQWLnB4IQNSQT3q8RWKBmybl3Zbpj3+3Gdd0wxUV8HIO8qI5DGUhDgcUY2c4wbf5TdQmuX2Q08g8aoK+22t+tsZMxecEXZnT/6YSoqcF4EUOGYOAUBcisZ5joLiKyO4Rgtpn7ieDLJ6Bt7FVV/LhkbMJ9okEcqqr0KKj8/NirtVVSzODj2fB8mKqp74uDM1HZ9HBwri+2+jeFBiYWdDbNVgWIqw2gmFnoRYsji1Gt2US86VhN5RhJOXgTDjRXnZEDK6TE2HSDAvr4R8AQyc80dS3FwsJcWtmKrG5r2oMz+APv9aTJgJlA1Ogy0MUj2DcdAmJGxoDyvDc7zyo8B+EYR+QY0YPOdAHoPqf8Gba3+z0Tka9BUVj/zrL18R3l2gCMin0Gz3P5X6PL3AfgzIvLdAH4OwHds1/88mov459DcxH8PAKjqL4rIv41Akn/YDI6viRna4nLCqw2dGDjhaMX9b1NjiQBiRsZV/ETyUvZ0bVnzaeInMx47nxIj5J5OaWdRsGyu0g9LDaNkn0xLO6ASbYHgiMWjQyube+eewWGWaF3j94zBCduD21xNLPjqK23VvHiaMJVe2GYiGdTa75jsWwyUWDxsVkyqK/TArFO9gXbnko2M7TIbGbNKyxYPdhNvDElcZ9VaGHBmI2MfKwMpiKjQMyNjdm1uYxrj0DM4HDOHGZyqCJtG8tRh9dciMYDM4EQ6MwTZTdyDGYKZGKT8oGfc0nWansvGQ7MyK9kOcU4rd6HyvYpqpXuM72zMaklX1tKDxSHVmsY9zVRU5mKuwM6NvG/7MXFw+vQRSGKGp9WdP9C+fv72RywPjz+rqPIp3vv01EanomKw2DMwt1RY0ea+H2zwPDIyfsAHeJABxf++RPGUKqrrTaleROT3AfgRNJz4A6r6UyLyhwH8uKr+8Jb2O0Xkp9Gmn39DVb/wLB18Inl2gKOqvwLgq7trX0DzqurzKoDfO6nnBwD8wN3tkiHoQgbFbp9RYwe2rgWXNUBFoVXZ4uOsNbyXyhKRit9cIlaNAZOlhpv4uUbdIoq1WDuCNxYHR4t7xTSVSJRtdUc6n0XVvKgC4Izi3DR3W9pyb9dyut3YJJ6MxqpX6bozQlDfvWnnRRXHQFRaPDovKWKkLD3ZydACncDGxNOJAYyVY5UJn+9UaOFh1ssKCy0JPMH74k+cUk/vG9PAiyjbEFQZlEPUzUcA8DTIeUY2E9lrbKIy0f2iMKp7nz5Wd/DfpWMCWVUSI5/b7OuYeUvNAvmx6g2D69dUVMP81MZNFRUys/AYFVXKMwEno/Ex6W10bh22ua/7+gKb6n7EWswA4zHlrqm03lZGNjgrVuizqqMm8oyBBVX1z6ORCHztD9JvBfCvb///RMqLiWSsCvzadlRDVcGrJb/MTJ1f1hILfi1YONAfBdszWTQH7Gt1kJs4uW9f1vgtEH+hGzNgbbIRMV0nV27fhVUGAlw3fBZlI11e/NndOqVvVUsFLdZRrgJ+FlUFdgBHkBkDBipmZLxIBiEzAANkJkTRsxEDoFKUnkd2594aGbZ9InZr1Qj0xwBGEIDJWBZOZ7L7rJIWeRvNCmaBiNUil3cO1uf2M7S4nWu3IycVy+gsKmZhLvTuGmPAdffnSVVSxbV0dOkxvm9oBXQ7mRrjkNNzkD67L5MVcPXwWnNaxIHKZVlNZPc7Ok9qXbOKqj8DC2jvuDV5oXR/XEWcfUlBBos6mFUwqxXg/UQeYczwBHsaz2DVTt1CQH0EFhLjkZiQABmPiRTMkqIG2z1SJWzTMgriB4Qajk9MB5hZIrA4AHB8nb2vRum5XvOiUu+rBfprXpO2aWvs/hmv8av1PLiH9ySKZ2NwXoq8GIDDzKsSY+AnSU92Luk4BfotCLq2UNC63tgY3d9CKptm/NvSV40+rESdct9u2Zu8i9x16CexGDG5vV1fGPh8uQirENJ1iLtnj94S3rH3BsJ9PdjSZ4zFtbqvyUhd0NfD+ex3ITVS3vnP22jp+3fx2n28rzN9brEB964Xo4VxVl/YMI0zz1Sxb9Ove2Wkgrm/LLayH68k27W3YIcApA/YrytFb2cVKP1uHpQRvR5ocXBePaeK6pAnlxcDcBZRfPRw9t8mrFPmAzGdAQBgZwOsaMbDQGZ8+O9gfiKYIEqoqFYtzsgAYTRQwa7SEiHWCx3kSemjyWBmyzKT7Cb+dmCDAdvNvAToWr8DLNp/2QbIhN1u+wMx2VuFjYWNdRBlA2D1dDc21ZjY+wMx48A/Og1eYhe+0rZ6dCAm737bgZcBkirddR99t2geA488zXVLNlhlw2JjuYXKJwNmsm5ZqG6OSGzSbLliTOxqxEnpY9nEO5Vi7CBujt9dj+jrN9unby3S6lup382QNsbEm6F0X8dqXsyT8XQXETj6vY0J3wsZOEfdPE5ILEUgh6jcGSaN631E77hh4aLp3uwd5EMtXcUroSruy7sKGRlARwRmK5bnkBTUr7OV4/L9dRaO8jxSQZWunj6N69gHAiQ2R+PaNJLxgMGJ/j+3m7g+q4rqJciLAThVBb+6BfpbRPHKDIQjelnYXCAW/EVC3cGsDDMXLdqxpOtKNiE5Pfcp0ckDT6dG44rn79MrpWcvKg07HgJPF42Pnb2s2DDWIwIjFoQLgSeQGgkgtdyWOQEPjetnlaGbJ9v35PHh9Bgzu4HdeVFWllRQl04FZWMTbfd0fEz8HMnY501aJLORcaxYo/OiGjsU7wyroPwyqZkM4LIBM9/X/iyqGDev20AULbKs1qvEJLG79YXrhvjp47ntAJB8npSpehSg5xGGwEmNVCxnVjO5qkdiTHoVldsrCT+PqNsfB4EQVlEp4AVnKipAUt1+lQyBR7ZNfTDKkYqKg1eOVFS84ehVVOmd8nc3GBybp/Yqqq0fnREvgz7/QtI3EZKNkvcfcz6nK7OCwAaunMncpwN5XFkFVREH59buvr1+nj9sTOj7EBHMmDdncNzI+BU+KM/M4BwqqieVFwNw0q50GoEzdvjrIH9SUfGung6OdNsULRETp4QnVPNoifrMW2pFPuSSPZ1sYrrmCQW0iZcZknBLjkml8H36XMSnmhMAYnWa5DFkryJmVCxvYllotxXnLoURNLuVM0PD5xD5JBz4BpV2qIJct/NCBBDsdvm8o5O4t38aGwafXHeR6Ky7C9Pve86LqqAzlug+eaM/q5sZhQvdw0IgpD/GgHBCq5v6x2NtdZMJTup3pIv/JQjX8KpIh2MK5TGmpoom93XL42NDz3cpxGqUvNhyHktIzJyNnwSY4M0xMzioQCXKZMToMYBkV+4AvpqYlRGDU0lV8hwMDiR7CHJ5y7/WMYNj+feHcQ7ydhLRhOc2PkCbx0aqPI42zFHbF5qbwsYqV5BthGR3rb26wplSn1u/2sUz3uDvPKcNziFPLi8G4EDjvCVRwOx/1wHYaR5QNLP6oZThGbXyydjrEjs98nQKA+I4T2qlM50qYvvZWJSREXFJRsRAO19pGaTzWVSLKMxlPBvjUqC61Danq9ftBrPdid98XpRdt2vN6DXaZi8qbnvqJZW71xkZZ0+nfEq1UN3w69mdGkAN4v1cYyJUKNjQ90K/nbEjrzU+aToWCUnp4QXU0mxMbFffuyVbXnbl9gma2I9zXzfVFxGMDWDEO640ZlWBU7Hxyyd+e5MKX1GDrSBQTe+wUpqCWQxy5aa62WunP7Xbb4YYnHWEcIhRS8k2fhLlkjG4II1ZH6jPsgwDEEI9n9L9uvE+56HnlBka7MrNpPeEGnlXed8k52eAIbIv0x+Uec2mqTfonRk4zwyY7doAX+R7uIPEYANnVkvdo+AZscQjFRUAPDynZZICzxjo70XIiwE4InG6dgrHb+lMCZMNjmosbivgwKd5FW0TIamxIp1sXEDHLSCAzIIKDuIXk16OM8ITpEkcQjieIPk6Hw1QgWRb4uOQJmGhWm7LqP2nNIi+rxdPI6NAf09Wt/3ohuReV1g+FiGVf5dOpXrue2aN93n7AdK3eDX6MUoeYneW3bk4v8XA8XeVzrLSnGcm1/rNrNe8HIdR2AMZtkXrgUzx+WoMPnp1ENfreQYbwhGw7K9jkKcHltEGgygdpvHxFwwmRzGAlBi1/uH4eXdQmO+bHa5csb7Te/540fFkeshby4sBOFUFX9rcxE+l4mQv8fY+PVBwv7VGXJiKbPS4kis3S+8mfq7FJ4OlqOe/1BLMgJTkgjuLVcMMTaTbLhJh4Kw5Vg1PRsyiMDu0NZFYGE9PNh+ZwRmxQ2dvm/TsEL++KgFJ2hidqQ7RSBu6kav4DFk7GxxT/aEEQEz2O94in+lEdYt4o9dcuYPV2mrTUIP0djIzV26um+1JfEzIjoYPW+QxYRaAY9EEu9aED6ps71m0YxvGmtz2u8i5NZ4fAFyUIwYHUlhVU2TccG+PYHvJjqbSvQ/See/MgQ2BjE28X+zKbSoxYr1WSm9jzezV1icNNSXbgqR++bvAbu78jKQ7GoPapTztb03MlNvPYMyYtXkm/t5HGgZtpjQBH1ZZ3mNjM65/Dz4YWKzI6rkRw+TxoCZreaE595qNjaWnetg20spqOAHMbHDaYZvLlie8qD7Bh20eghcEcFgKKDx+sRefJ8c4noFduZvdjc382TbHmSCrV+gsKih5YVTU7aNpHkP7SaItGYOPkCY/X0/FrrTFvz/TqtUtqe5rcs+O2Ppr/452auyhNZNsqB3tZ7UOsjGl8OIw2YnO+kR15ImfyroBZL7ufaG+pl0zjcc+Wm++x2t1cz77zfYaPCacL4in8QMcPQ8+gJGXzTrp3yigH4OrPI4xJtp1iRmc2ULL9ViZEVNw633u6+Z7TKqSSUXX6mcQwnVccxG/lefWeNwjDAqufQftdwaFj2l3dO9FMvAZlUksy2iE+xdm1DYxTLfOx0r96wCRG3gPyikq6miCeZ9yMDhPKi8G4BRRvCrhOdXHvWGV06olVE0CnyXakQe2UIifMbPWiPi7ElPCwnWzpxMzHQwaxkcaRNvLDar42oHss4MrTUZHNbCRMR8DUURIbWyALhumxsItbvDbXJ5tcokd7yKKB2MbyO6l0EL8QEHSrLMXDaPvdiZRjHHvWvogNIfWoOUXCVffSsxFMnwVTRS63bVdeSjAaRuoswILTfzJsNSZk+zybPUZY7BoNl41EQTrsAifB6U7sCNQPJgti4J6y0avMfELsrLKjIiXBIZ0K0cG0wqc2abD65YdEzAcEyB57i2UvgogAxaFXbVbALu47m1s6Rc2xKW6NXkzhk3HQmVlcl9uJ8YsDPIifia2N76trb1OKZXDKGy/E5CNZ1Y1aZm9HKuwSmKH9nUvZHPHRxfwZiDVz0a/S87LbfTXWXIb+4luZmTc2vdcW3rfP+yu74yMuX8bi13aF9XK1uZ2sOKMN88Z3ViBw038aeXFAJyqoQJaijoyd0q4W7QqLXrB1NAHkj5qRXgbtQQGOHeEpNkJL1MzG5t2X0Ad7Hj41GtmHUY2Nm3HPtjh3xltuD+bSZEZjXMCfdu4a1aLJcNYMlrt0xcCHgwE+LyoQn29kErJFwo+3iKpsCQxBuc0ZjYqXLeVy5No9DsbOLM6hus2r6WH7d+LRrThBna35yR5TPzZSBjLswoq2AJJ70uov2J55TxnUr0sgogPRa7eJiuBwlXHKqaFYtu8ofViKTEms2jE5um01uzmzd40ATIiw0ogZajCArBYJG/VTgVlcwKXbf8q1D3CVgKFrNZbJIMQN7xWir1DIGS9AUKyJ1OWnQpJeJHXIcuYAQTVBd2pgNaO4VlpIhu6W+ttFRXPhaO57VqgP6Vxbf3Phs8MRxi4zWzrOM+CFkaklLYsLnjAw6Gi+kTLiwE4RRQfbMczMCBgfbXJWnsvqu265kB+LKPzoirRn+oTZRy90KLjmi0QeyPRSeR0HhTburihcAoiGOc+ZRo4e1H1c0fVmMA5nc8wmh2XwP1iWxfrfj60ErCdF9etVBbgSSzq5UMrefGovJNzO548sfeuskrl+rOZeAcY4x7pF0xUSsS+JPWdLSqTuhtzFwCmFwakHKumVyNdE87XygWwvSfi7ijP2xgKA93iekf7j5V71ESPkbepRhOnl+VdVVT9gj4qz7Z3j1FRAdixk0BW74yu95I8yAZlekPmfQfnR0nwBsSEQVfPQAFtPOIeJM/1W8Y3uGDF3iX82W1wDhXVk8qLATiqwK9uRsaNGm+fisWDWJA9ndxLiRbLe71dgP3kzcH4OE9WURHwwr4su/dyQDA2mE2nbqddZNTh7JW7JUc5dhMXMnDms6hAOywGEHwW1SmlMwhp1xvAadf7U7cL3WcrF6wJyOhWNbsXs0ccu2pHVOioI1SKedKMMZm4LgOpbrtvO8qhUH2XzhCY/8ug0E/drpaeWRhXARZm1BiozIPtAZsLe40xZYPa0ancF7qHxpjl+q4ZCvOp3L2R8K5uy4gxy1Ihzti3uqMf8W3lIIImannpXW0BDHW7r0hoADoWZf+2iMFM/ZKow+rjQIGaDOEzg9NPIcpt05hxvuRaj7yg7xkcGXopVUUKduf30r3bIxDDxrop7QpAsfQeoPRz6NCG7op6fZf3BuCzNrjdEcAq9LayF9X6nG7bqgfAeWJ5MQBHBPjMw2V33YEOqS1OWn2mOUkNexIKUoZS3BB5KeqLri9WpVKwser2Ok0FU7xtjhUSOvdsGyEdbywqOFFQuzhksjqDc5Ks2rCVZO3qBhoYMq8oPk6hBePjdrdm0NvBtOu2wBTJ6bYANvuBdv1BaCKrgmJG3QK/t7CT8e41d39bUGnxZfuBBwlwhyoOWk50X8kV1e4PcFsVpfsqNVQLHCTQbbOgUXeJcTp1Qe1y3Vu/SbUW9iixyvKCe5I4xLFFBxYvx++R2yeoZ40jD7r7XUiVw0zRMshjb8NDITUSBeNjkLnE8KVgfCoRM0iEojTD0uNCC5i3XQemwfgcDpAqzNRPHIyPmRWhPEzBCcLmSJAN/03iwMwA6cy+9UdQMNvFKijPUC1vLNYZCOTv/9aC7o4OgEczX2Sv3gIwDGCY2wpktHNAGKjGU57Ok7Pve8E+3a/bJmtyqz6OE4NkZgqvbUyDMasObDwNFZfH2hYc8mUlLwbgKIA3q7k200KbjC+btIB5LUFpIS6i6cTv+Fj350WtWsK9txRyE+dAXaHGmp34ndyOOybH7iXcliUxIZUWurdRUVkacN+J3kplDGhl9VgwQhxJhYPxVTCrxemxYDgFTnWzjcGKUEFdNOoxFqG5itooBeuwlMxuMBsRhjx5TKyOYI+Q6maQsQ7GrNKuPp5cVnOZrIjx6z1Y4ugOVn8ZyJRh3ZyHATbXz4HjvN4un9DvtAE1UNW9cInBuSKV8iRPKNqS8/V0X3esbim43+De30XN1T+Da/lmTEhWJbV/7/EYGpVv+ZvMlC590Ly3kWyvNpZRnJ57ZcS+3NNlP36GNigFYSBfUNw9fFTu2eQwMn5SeTEApyA8f4D9R1EIEOzK3qBMC/aeNddE03ITcstLKtWhk9UjtaHd33lSGfWY1Uj3uLvy7ziA8fl3PfdMrCa9y/FTtQ/sx2z2rB+bZ18mg5C3kXd5SveClFk5wOxF7q87AZJZnkGbI7flx4ZD4L85/EIGVdG3oRck+ADXSXum6kx2grmNazY2ZZef5zzaGHX3BIzHZA+k531u7cvwero2sHucyQ6kDeaWmRfXsI8TxicZGcsWLw0fpCMwnkWe2y39Uy4vBuCsWtwG51QUfrgCU8tEixr7co/OeCRT48w7P5jMotxbRq6Ap3vL5TIzGxzeWdvlYHCCemZjWAZPzTYimB0/N0ZDDcO2RewJFemSWBRmaFa6zgyN1TuywWEjiKr3MTTWPz73i43CY9wDcDJjxo/F7quxedEPWqI6I+NYaLk+Pi6hlVLYi65Q9DZFVnJml9QHXrzQGDAdwEycl93y2DPYxQjqrrNNyUrvZF93sKPitjmz+xrVzYe2sp2M96u14tfZ06lSzjqou8Wj2p5BVzerZVtd+XnYcM7sbEQkvTRr92GrXPFisveCWIwUM0ex86JiOxoyW+Lqcn4y6J3NlR7c9Eq6DvoHhM0kp49YlsfihAp1I+Oq4Sa+4pEVHfJlJS8G4BRRnNhuBHEuVROattLCHszOjJmoCJXH2GV73KdrXiRM+98rY5jS5G1o4UbnBtDjU8Zzu/nfQgeRQrLtDu8Ai9uehMJchPLQxMourqF/j9OFL93ukuOrWP5QKMYfu7rp3nnMzFakSAY7rS0d160RR4ifzSJIJ3Rz7JN2Ldy3y6RPWpkxy33tn3V2Wxay1+FnF2pbHpOl5Pb9X6f2qU/0PrNhZ/H/IEUWZhubAMzxEEsUS31t/aJ30ezb6OX2+xLZ28dhPq42FlHtBkTo249YNjFmHLSS3+Ha9bu3sSmaj72IMQs7lAUE8ClPA5/7L9699SQi+NpYmERkbio3mjxU0g303pntXxobZnAm82UZjGmf7obc3YzWly0Uw2hWd7L76e5xDIq5vmcUxdvp7Q6ZyosBOFUFr9eIIFx90mvpFxSfDFaN4xSk0AeksagoJLEOvZcURw9mJoTtFIqwCzXFKgESlcp5/F8KpMfXe3sYa5NtbCx1aLdB7AszEK3u6F9Msmw7ZC2KG+cpeHdO4ADZfXxmY9PaAMXgoQkc+TgFEw4WtxLbYAxJipZMdZ+AFGeDPaCcHSImgZ9LnBTO5SQ9a/j7xSxP9Dtesxy3hkGwx97R2zY26tcCHigtpwyG2AWdVXiiGSzyv9ZpXqeSmoayDevG3samP/SS12Fulm1srqmgZnY2QL6vXDbGdWh3ROVHTEghxlG1K0sLs5VjdVEcEsqHuuYxufcspxmDUyb9rrq3OXkbBofTd0ctEHgZpQPd3NWl6+j64Cen5/py/8ODba+0Lo9WwL6r6P4lPeSd5MUAnCKKrzht1KMGLmdPJ78Gpd1qRD0udPxCmwzU6/DfiElEqNzI2JTNeVmNML2H7d97dNfXhF3J7V5iN0b6fzqCohK4K8Iu9aP6Q/JBn+FOzQsxB9gr6ux9WizzJCWenuZvuodkO7D964up5rycL+L3sMotMxOg6/3vgDE9mN2Dzv43A04WHZR5zCGAbAg8qv99yLWd77U0ZhmuMTicz34zw8oMDi/sXjezYdizO33+hRi3xdvjlpCAgHueCb3QJB7wT/mN6QDGYDpgtmIBfctenjYfyOwGBnl6ldTOyJgoqJ79mNmxzdir1na+v9GM17NXJswK9qqq6H+kjwyzdwyTfe8SXlT271le43wY/X6i5cUAnKZnv044jtRLM4NfZnCWyWJzj/EoB8VPVDafc3XDBsfuqj9OIQBWPovKrsd9xa5QAY/c3NyfN3ZGYlEVylPIIy08pHgy1KTu4yMP7I5XjTyLhMu1OfUXzRO427uyW++1AAAgAElEQVRAQv1FkyW7xCpiEhyGwbcOe91bOUFyaIjzyGJRYJVSuHITWJRYlllFNVMppeMtSP3E5UyEVBu3VFTsJs4HtdKtT1VUPRDo+8EqqszsdWOG+D0q27NsvSTVZXd99Hn5s0awcjN1xOzrGi6+1z/Fm3nu9UXo3Zx5IR/HcZm0lcrtf68p/75zfVThDEBjg8T5U/nBKM7U5ezpNDJEZjX5zI2c01ndN7qfFlpiq6eGF5VHMtYTXskzszgHoHpSeTEAhxmVsUFtABYOutcYF/toxEFSVZqUa5RlN3FelrPhKdcNb9PVS8R6WN9AtXH0Wz5/55r6i9ULxhSwIeuIwVmpzZ7BYTdn+53USF53qJEqaKamIxTYiJgtIKeu3skFfStGuzvUyM8neldCSWY0ynWzO3hFPtGbow3zuNoYxDQcbN25sqpJkt1NCkpnPygY34XYtbC7ySd+R93hxafIxw5Y/RGOYByMTwv3O8rWip3Rd38cgz/HmkGEjTe/R/2J355H9+ntGIYAx/cepwAEacLHKXAwviKhymkq3LyQtrJI4833bPmGaqSa2dakPu1Yhd4ImZkVVttlTydq6wq4a9/1PgMzJJkB0R1gYDVS6dim8UGZGWQMGRa61rdveWZ2iyK533sj41FBuq8u2Q3ypfHLLKWFfx135H1I+1Cfr70XIC8G4PBZVCzOmxTOG4tXYYNPcKj8ACr8QVZa9MJYUdN1X6yreFCxHmTw2VYMMgCz+bC8mq5zHJz82RNIskmW0pT6ZwlLKs+qkttu7Lek0ETXT3psRNzySlokeBGwyXyl39cYGvvTVQ4EgIrEddTM0Nh4J4aG+hesWIwrL5Cn0jE0DkiCXckHmIrntX48FF7Eg8ERxPugbOMAqzdUJlXhqyzb1yxCnj/04jR1C1J9Xs82HjZmZRs3E77OCmCTwnkcfEY6M3G1e0n4QEzx9zkDGL8vXy27uhOTIIOyGSjHHbQMJ45R1bF9Md4yBE/MdPTHvnA+oLcvy3nHZ1ExwBjXPVIxj1ggtvPpGZ6R/Q/nGZ5VRXlGZ1UBeWx2LI+Mr19LT8wn2WwBsZFYLidU86LaDtusUz7xkE+KvBiAw6Jk4upHFNCXvmqJ68TEaMfguK1K2o0L5YWn8ynkdpDiSTI4sUmHjYgv/XXsJ2RmZ+LDzul8IKZlyTs9639MqJkdkgQEgv0R7A/bzMctDAP9KRtR5kB/vc0CH7cggjTezMQwQ2N93TE02w9mI7hPPDE6M1Xh7Asb41oww4YJ43dN99X+WFfBQxkzNHbYJoMQdvUWGus4GoBVGJpASApQiMagLORB6MyUsg2apjExYRDiY0rjdwGwUHtpMdcAIdMDL+3d2K6nxZzAoiIzMHY9g4w9wGmwaKu7EhsBSfc1AiEMjjLIaH+8oWfQu3KnYJSjftEif6Gyo4B0vaHvNYaE+z8z4k2HUw4AEkticDpwNbMF5P7Vrv4icjXd8ngbg/Kj69fSub4+Ts/q9jZnCDoVFR7w8OwqqnfbOB6S5cUAHBHFQwmg4tdt501HNbC9BBscz+xaZnYyvVHj1f497naeRGICZZCUbTRMFAQQaOd/jwS7Bb/RNnHGgp4p+OiXp2+/C9fBferua2QM/JiAeAxUuI5hALfJeLzLXOWgTB/X77eVmS3LPeVm9D8Ls2cMsF1FttXR28kwCOcTuBnAXJMGFKKD7KbNDOvIELUQ0zF15XZWLpiB3og3M2LieQAkryi+XwZJfORBPhl7ftTB1qkhM8rCl0b2MlU0GfqWNHdu3Zi00ezz5uwUp9fu2QxIt9Q+l5ulj4BZNtIW95Ra6kJzU5tVVpzxJd0f7/PeRPUAOE8sLwbgqAq+tMbtGlAx0NOzMMHExH9ZeFGeLfa30zv33kFZZlHukXtASO9VNOoXgBS065rYZBTmNWSzcrv4kwgDEr5vBQPa6NPci2kM7jhvfjf2eWZi7ejk9y3QyOzR1Xa69iC3Iw73G+LZAjMqd9e9j67peNEdtnNfto9V3vaYg5naRYiKmRnrzgx1r7aH8eLf2uwy3zHwU0Nfmdjg0G93AJj0e9a/EYFz7d5nj+ZinlPsRbsZGysqnvWwzUOeXF4MwFmk4isfmo71UgstKsbIMP2dGZys2zfII7TbCtpa/F8khsdteiTUN0tyO5fY1fEOlfKPPKEawxRfr3kgMfOU9NEIQ72xvlpTXt8Mauw6e0ZBvE0r19VB5d5X4Cwe733afcvjLN/Hwa7dkpkR5kwcUOnjyvau83btVp+qxnvAjGnfdB/DZrfIc14qzawcl+mBWQOkBmzpvVRpLtyWh/tO0YarlwWVjXwB7qlvXaya/P2p57FyrKJy2zsCsztVEHkY9c9yRWaj+nu2PJye3KlnQJfqt7w66F9B2HLdY4Q8khZHyJ7NmKHx/mu+lxFjxEdkzAyY2zhkN3FBwVeUh2Ef35foweA8qbwYgKOQdOClCbsz98H6bsmthXMf56b9YkkUvK8kAXYKaMK95S4uY1fYIjEpj8zm2F131fsWdAczort+sUtv2qVrl4eMdHl0+hgdhSalvm6yCU4AzBYk0WyPAYwYnig3cre2NK/bjC5JlRGndccky+qRa67cfPK05R25v7Mr90K2J7u64QX8ft1NHNmmZuj+DrgZ1CIYuu17E0I2Kwi1Yzv7LRYV9x6KoskY155Cij3Tv0esKqFnysDfn3uyZbE+df2+oaJaaCDuUVFF+fegoiLG5V4V1ewYg36RH927CYO4GQsyY1kYqIzyMpM0rVPG1308uk6NXehvz2htXPNZVAULzs/N4Dx253LIVXkxAKeq4FcucbvhekuzOgmrIRjwsK0Ne1r14KiPRstGxtFGgC2l+hRCuzrZqRzawrTtxjTa3BkZ19hB86nbMeNu6V3EYu6hUs7Zid+9iuqisaI1N1irm3bClcdxbERsba81u6B7uiJFMvbxJs8ojpLsC0ON+zqT63UV9kASN7ZNgEQk1W2jFGo9obqjnRbvLRbLfNaUtRnXPGIx4tVkV26OhtxcnmNMzlQW2IOakWt9pUXvrMFIrCJuBO3pndGs+ruY72v1oziir723UUTN3te9EgCaGQLXZAgc6aMYMquGITUDjwodu4mvNIZDQ+EYp95QmIFZNkAOoGJtJ5dnZxrG5zGtlKe/Z+vT7Bwrt3Gh8ZlFCja50AJ/jT3xPCJeySidWRZOb5GwAtREWAPtyuc+JOA5AUzcZg+6bKwuWFF1fxbVIZ9seTEAB+DAdiG2HPXeM87yFEDSYizxb9ms7jWAiqWfq6RdsF8nV+6ifEijuFcOu4EDmuq0dHZl9cWD66Z7rMheVKGGosWDYtlQnGdarOMeBES10z07CKH7bW1u/1ba3VG/ewDTq86SJxT1ryKuc6yazNDsd2+K/Lyfa88U9yU3W2UGgFWAKTBevKJRd1cWaOAmBYN0QDdmvThC7shNvBLNwsER2apVkM+LctuJtCBFnpEleA5QaCVytsZO2vcU1XC0YX/WNWyRhMBT/ySYwfF3kNLZy8qMkCUBicx28LfAebbakhv7yI5nBK5MllHdNKRLUjlTXh/XPbDL9c+tt+45a+qaDU4bv3159hQDrrMxM4ZoVkbofQEiInJ5b8rzR0g/MR3yzvKiAI4Ju4nHgY/xYi2iDk6aysHywuOTKLIdjMWzWVe7JmkSttoL4reQDU5rN/pnwoG9Vtm3ndQoGiqoVrffMNH43cGQrbPpQMxoO5iJRulbnlz3SAIABSPE6qXdgZfUJ2+Hxm8WB4dVbvd6GzFQuHXYXi8pfsmgLPe1/327X7Yoz078fnt7oJlxptDzeFcyfuaJdY+H1mOeB5+t9bbj8b5ltNCqqgOY2fOYxZy5JTOj4Vme4RlQOgY599Rt8pg8146c4fEZeUHNjJNZPTa63v92tunZ3CFuyAFwnlReDMDhBb9Ft21L6k59AeD1Wvz6IuoBAnMEX4HFDbxoIQo+6j2T26h9Pm9qISYkGwJnhka2+gKSWHo7OXvrn0Ywr7MyyxJMTdWIybPSJHbitilWjYdx16CEz5UXa8FZoyzXbfe7UsyXM6mcbJhXYgxSLBqosznBHvUxeIy+FjpElMaEnmWrO0AnAFxIjbRS7JudSoQMYHkB3qmoNFQPrCpbKV7MPbFoVgK754GKihkFPkRUBFioLymmEJqqJQJDcr/VQfMqcxWUA2uKCcPPgw+tTCoqYtTiWTKDE3F94jnGrn8pwMVVoUrxfdSBbWJZknrL2hZSvdF96burqNqYbf3vVEGrf3tjFdVKC3Mc+Miu0rpL3wbiRhwbTWByzJCM1V/AHhhwrJre3uWeGDa9iknYNXyQbnm8/4Pyo+vXygriBZz1r6DsbHBO+GB3mvkhnyx5MQAHaJ5UACAl/KTs2iIBJITUQgvFzwHggf5WFT+g86FUL/t6VU8PNRJ5UYFAiChOBEJeuy1DLhu0e7RtS3QLdLZN5jWAjNCZTlU1ARj7ZD0dEayNIwJz2w8SIKhA8cDHDlDddo/MiJ1LgCSr+4EAzkKgpWz3BMQ8vRCjwQazqoozLa6stgPiNz9LuzYDTw8JhNhkSmM2iF7L9gMPvOB2h6wyeFoIEHE0Ya+PdqpmP8PqSA621wfjY5ARbUd9bgcjksBuXA5QsEjUbUb653i0SUW1C/RHgDMOmOXnynl0G9N4eBk8CVlEZBWtUv7I0f44UfRn1qg04+14viOWIKlR/3/23i7ktiY5D3uq197nfBp5bEmIjAdJYF0IEzAYjKLxRTBKhIXsC+nCQRhfeEYxKBeWbQIJloOxQfKFkkBAEGMyDBNkSGQZg/GECCvCMJcWI5lcxMoPQsjMDJIVWUJEzMw5715dueiuqqd69dp7v+fss7/vm/ft4Zt3n179t3qt1V391FNV1Hb21xIHDa7PKAWrqGYxuc6rsEYBKZc950149BQ8QxGrnkdozpGEr3H0d05F1ca4rc9l9uon3tIZhGevXyvjQjj7wSE05yB3VF09+8G5eXoyAo6q4HXd6pPZ2mIvcQyma9Oew7xr0h6f5Kp++99C3pAfM65GQsam7+ayvf+W7OfG8wk5kHRSan9VY3xVhnwbEm1YTKoeTd2tHyZHRxNMjhaqK57LYwuycJxgcz4RIJO/pBBSXGWomYTM/m64X0a9fDEuUSoI23APzezg+aT8PGJczXNuHuradvDNfdXosoUAo/Juvo2IF+VkXSZPA/7xjCRjjhfFQqGbbYskQc/ayOTpeB57JOPw7hzXGYWckozBglmMm9VIi+S6430tIgnhyZZOMRZDdxitO4fC8P1Zvcd4E75V29b+DMFhNdee1+CRRAwYsnwBwaFxbBAcQvTa+HIauYdj3tj2qbfzWl7hpK9avR6q4bV8FV9Z70w0fhZwbpqejIAjonhRGrDdXN5vhZbYjCLOVCvT/nKsp1MViJEoNcqHJRQSUZlJyEGo5YWILJ00FoqsEul9K9UlFRYH1YQEcVdJRaUIge1E2y6rWwz+z5u1kPAECsAoyZLJ5itOWPMNle+LScSrAqPvxWwppk74VHC+T2Xi5ZxItWapDJZQvljS/daUT5s1tlZUo9k31+N5YPFqdnJlwS6eXUa6dJJfNAs/ls8qLBYmLyU++Y9C7izNHFSeSzLZSN9VYvJ0U+/0MUjma4R/F3bRQGbY9G4zj4bdL7AH5BR12wXRQBuMXK2q03k9CFv3ZT8uyQx8gv4kvgnPxUyAOdO2zQ0LLcmk3PqeoFubzplXiKiXESbx65W+IU6FBF5g68CShadlkp/5RwJ0K7EjjjjIy9ZmedHy9CXeK09mi/y6TE/y6fEmlX0Jb1ODsu0Eo87dYd8jTARmroZtiincAy1yBXS6EOJD0FDYr4qPA5nA7H5ZJC8w4WtDXTedFjzalNkKJ/qme1RS4aXNIcbHp3omArPlD1sEudpEsgXWxgpISIVF897GHqfLS2qL8J0SY2YV1ti2eH4gOGncNFeWl33fEGIgWQVV6R55Tqysqw8lnmOydCpIvnJYBRXPvV9Hbs8QmdS38HwLIQ38jvY+eI4kLP5WBCKjdD/s02V8HmWYy0oWhOPzYDVctpKK7ynGZUMONCVtzvQNseCd6koMLAks2KYyzEnyz+RLjKRyXnZHKEw+gPx5ZEFhHdatjQA0EWqaai3/e9O3tfGO/eBcknX3/NzE+W7u3K8Qyjy7PqYKhTG7WOTci3n1rtKzo7/bpicj4LCKaqaXrgkloE1P1QmByZ+Mxgd0qoEIGVIzxqZi8/LwSRPbAJtbZzQi2uY2+BTCKAtzHdZJ28yx2QuYaZvRCkZRJPuisTlRUi+QLxs/tSpSQMy0WROCk9REvQwjOIyMRaDUfF8xZ6A5G9VE5xEc42s0dEi9zHIBwbEkyOqMhGTRuFkFZR+h0rvICI5NiFB7TGDmMlWxQXCq5PZS4Eiam5jvKFAljgDZd09LC+j70Gz9FYIteeUd1m9rO54R80ayPxlGocILMSskA3lY/JvNPBSyyJ6iWklth9ukt92zRqunmeCzV48FoJkl0TlrIwCAbgVDS9eYiV9qfw+BWmh9mdVn9GiPgzNDnsoGP2wfzlIXLJ1kLL7C3dl0XPGsorpxejICDpCd6sXCupXyWTip5KumLbLRBjsDHDdRtn4ZhZ3gGGQoNqvIYlzMbfG2/QOP8waPrwz5PC4/ldL4k+qDECPeoJXau8QN4u/UN1zK582f57JqoBt5PqI9FgS4vUBAhvIkwIz1eAMsRDQf27Ykqb3eBgkVK223SoLKYRg3CxymcuOQCDzvMzJB5kSdqYu2YWuqlwUYv6+JACNtp+hth4DGc7JM3mFOBIRkYUSzAON9272I0jebLX8YXauU7wIgHQBmaj1oBJGsdGZX1en7zyEl7DkuyE44Q62DNGc13XP7e6B/T33R0CGGeTIsiAJzjo3uXJ99siMHRygfAEYEhv+1x8FZJ/ncwB4Hx/mQtP5dsqLidXa8nj6bYc2zMuapOHFw3k9Hf88Czk3T3QUcEfkmAJ8B8CfQXrv/FMD/DeDnAPwxAL8B4IdV9fek4cI/DeDPA/gKgE+p6r/q7XwSwN/uzf49Vf2ZS33Po2THxxZ52bKBY0FZqZMKLD6bFN4YbWET37gOou5IbyX+T1UOA5n5H7wIxEZKCI/YOCJfkaF+RjrSZuynmejPI3tjPNVvN/yRYzMKYKN7+nxfNA7u39vmxS3XH9sbnfjNlobZesEb+F69c/lPIYWwyCovenhULgWFHASWaxOjigkxGNBGYDixkwqK6zIfJtft9YSFibjO6qW9ce75qOE+U3skLIzqnMQRGvI95tQ5Ds6OCsp/T8bHKqrdaOH0Z6aiKojFcJejs6N/mqnbxmjie75yrnX0x9cKZBfpWjrl4KhHyGAxpah4rbPgNs/pw5LeDwTnpwH8c1X9T0TkBYCPAPivAPwLVf0pEflxAD8O4G8C+HMAvqv/9wkA/wDAJ0TkWwD8XQDfjfaZ/YqIfE5Vf+9cx2wCHGbiLa8B3XGaDZNi4s9AE3Jx6O0xD8bRHsBNwIV+s6+T7Acnc1lmjvzYzfssVpVonE+K5M0m8Q28fysLjwultBgI5Y/xoi4l3juYZ7FX91onfWPaE2qu3WAT0qSX740RHxbyymRyEvkW2ASt3LTNQiPludNJzWX3EBpGIwAkNZMO98sBMRlp4zL2PpgvmM381hBIk3qLDgYzNIwdSbpvI+VNK7CfEemwTXll1Ibnx9qggJkZzYi2VbOfmxlCk/zc2M8i5BuI7htzhKYOeIXlzcIpnAbEyoUM8LPemmFHy9iMK80qtc1pbG4vVMOKsK7ilASMiZWUQEJ4Ga67k9IzfnDswLXnB2d2vQ7CGI/7bGBQ7Auz7yTpIxau53RVuquAIyJ/BMCfAfApAFDV1wBei8gPAfjeXuxnAHweTcD5IQD/UNsq8i9F5JtE5OO97C+q6u/2dn8RwA8A+Nn9vjk6FJOMWxrVGjMTw922MSe67SVGK26NEwTq8W4RnKT+Gjcv4XHMERxGfrhuGep6H+A2JF1vYyWvyxjzrW3azHf6ntVjYWL2xBhR47keOTj8Ls2Eo1E1N0u8p7iqaXj3xgjdhYR3zuextlO9bsqUIf/S+LhMssAahDMAybLMy9Hsqk4KDOU+TI7YrvHyu5f2iMAzkvG7SnuE3jcpA+wLKXxtawY+Cjz71+ssT0fhh0XOxtFkR38vZT9UxTtJdyY1f72neyM43wng/wXwP4rInwTwKwD+BoCPqepv9jK/BeBj/fe3Afgi1f9Sz9vLT0lEfhTAjwLAx17+4asHee4VG/k0rbykTWMsO4uBde90yRV+EIt34PcdqB8E9ZfxWq83VzPAN69xTIwszfoOdCtbw2Wrtp6vIZKwJRSjSnyyDdSLPEEPY2GhwO4lookPZele2AqILcU285dUCDmfBS3b3LNVW1gYzcbH98ICZ6EKVRm1jFOsvSPs7JCfb0PA7J1HaoPnO8zeJc231WO57VLE72RZhq06paGQ0TYfXJgMy2bbMzPwAwnVPGemtmttq4+N54w34Y0aSyWE4/QuRP64IPE8MI8o+o72Zp/zXtszueQwHPFmz2Av7hNzDDf9D/XG63ZNhg1/FJ7OXbdro/8eSxUKMxOvqLBgm/bEFPWthNLn9P6news4BwB/CsBfU9VfEpGfRlNHeVJVFbmNRKCqnwbwaQD443/o43rq+tYGG9uCFQuopZPmoJVM+GWExM2zwVweWyjDh0YBHsXBOSkvqOEJdcbBEcpnPzgZCQkLqApxtROTltmCa+bRlh2mVSD5ohlDNYzqGPOcu+eMj62/qgKmCmdLqNXnWpIzPlMdrMo+MXguCYmZ9P5Qh02R1C0cTdzMrDHzZKyBviSHeeSDZ0QzUrRwG5bdt4a3YN5wK411dIhnEb0rskO8drfwAJmqmu/L96+wgDqRM75FxE1X475pQ5PY5Nt90YnYhBfJEb+DRMxeknvbSQ2VVSnctgtsNCfjuKwPex4PNUSNggi10uaEx93fARKgH1hV49yY2KT5vkQU1cjROqjGbE0gS8qkonKuzXXhFFiF1O6bPnzE2jWWmaIoJKBG1pys28Y1T8kR5zj2CxwaKzPG8LK0Gd9wf4lETGvGXttrn7+1nLDWHk28O/p7kFf4auUwq+82KVzeek43SvcWcL4E4Euq+kv93/8ETcD5tyLycVX9za6C+u1+/csAvoPqf3vP+zJCpWX5n7/U+as1x58CMrqSN1zekSIWFQsqll8lb9ZAC1/gm7yQx1ONqOECQEtsDg8sBNEJ3hdojTaErkffFE6BrEFYgGnhEiIfQLL2OVU6pVVqu0b/okibsW2Mdl9lEBTYlNvRj3KdANOux+YrUMy8Da9JB5TNktmJYetb05yFKicSq8OTt2GatxSLCtvE9wXEg2SezFrVOR9uAaLBCVHQKZWgqXNekke+y/g8WOBjZ5Q83z7sonC+CN1vWPgEzFFT/qAqpLlMmeZWweuRWXcRl5T5frNaIXgwzEmZOR9M46ZCzYrq/LgTH4bbJgHHD0Jpk53zWJTqs7BhKuHsBDTvepXbH1Q5G3UitonLnJDLjyr5Nqe9jx1V6Jis3GhB1sZ7WcBREkKuiZU1u57yled9EHA68+eEk4tyZkX1oF/Dwz1JxvxxPqebpLsa+qvqbwH4ooj88Z71fQB+FcDnAHyy530SwD/rvz8H4C9LS38awO93VdYvAPh+EflmEflmAN/f8871jmOpOJaKGUDU3i0Be7MF8gRVFWj/b0xeF/NFxbgoM4sg+2/WdjPrnfe5GTcaJD7qqQEk8+G9ds59WuM9WXvGpTHo/lqysCFWe1ZOxruZffNx/fJiMLtna/PSWjKbM77fS/XOHcZUdbNBvGm9NL4r1kfFlvy5937ytVm97fjmc85CxCx/rx7n77XBZc+lS3XP1b/U99ukvXmtOify5nGdf19s3MlU/RH1+F3bFWiGPuwdzX3OxqEX/xtzrr0+5q/9fycqs2JN5S2JFIgUFFlwQNmo6Z7Thye9H1ZUfw3A/9QtqH4dwI+gyRH/WET+CoB/A+CHe9mfRzMR/zU0M/EfAQBV/V0R+UkAX+jlfsIIx/tJMHe21xJTydihX2pBONJ1NidlhMb+8jmL83OoBvX8gNKD/7GQuiWHaoj7siWjqTZCtWZtj+EUxmWq6twZn7XpZZzEmy20wslhvy8Ji4g2l9Z3eAQutJluEJqBRKwYnAhypGZCRRhLj9M+lXGkhBCFmpGsPYd507o2ProvTjnYoSIsZ/K9jZwe1djuTpWCj1J7rEaqKumhsaNB64NRGEY0QtgPtR0jHaiSoqBz++1yTM7oT4a9hCvNlfcvzCHp9zVCZRbnqmaLIUMeCo01cUHsW0l9U9MUdXsjvPBPf//zxtx7IQQnNsiVXqSqmojAHOOrz4zfezOVzuX4Xv3e6PcG3RlQFr4+oif5Xnr5C9cZQQk0rFJejM4EDk4NQSm716PM9pkC2Bze9q7v83vyc1wl1FFrzbGoVn14Z0LtbnpGcG6a7i7gqOr/jmbePabvm5RVAH91p53PAvjsI3oO8iq2HzIjJMyRkBKbW0n8Gdr0qH62GAo4mut5WQrb0NRI8PKVhAnf7EjQyZYAkc88GEzazsEd6X53BKDgsggJMOIXFEIcm76VakA5TTCyTYDEsZp5MImrQuoUu57USMR94XHPBM7EsaGLLKR4RGHJaiTjfDCxNKkbd9RISvdrc3YgAkPVeSRyu64IPklVuF6+Jg/MmfMBcogXQp8JLFmNxCbZM3UM82AUWYCxvi0JshqJza3ZBN3qnFj9RQL+TI3UyENxLzMzcQ4lsKkLpHABrA5iom1TR9pYSQinjXbmkI7by0Ti3F7eJK3tqDeiGukGkIUd2SHuOslYgxS+VVfRvW/62/JjvH9fTUoqP4ui1ZRs5+x6h5AAACAASURBVBEPVwUN9/0YQu+e4HGNQDLl/WhBMU/G5A/nAffj4AB45uDcOD0ZT8YKwdeMMzP5BhqpLzgkdmpmR2cimoisln+QCAAZcYok+dixfLbkOEhs+AcRrP59hzB2EPKGS9et74XGp8I6fPbxIykYI8dsateRHPPxdW8bscvz/XA+iFtkfRcRqHcem0er77uQE21b3dis7WYYweEYVrzG+rgpThNzlOxwe5AQTlHZSihIr6Jw4q7QPBwKC4ixkaQI1CywlJhLtm5i9CXGHe2xh+H0PHzc4uEKBOLvayVhRuh9Xqg9S0pzski0V3lOIT4nNmn8Drd3hOCtHWskF0g0BlGGOWl9h+O51rddyETteJbiCIcAqa7dl70Aijh0CPW9ps1VpnWZ9xJxzHaEEHCASpnuWkvfRDdWQNSGv/+DAzr+18me34S70140Vr1sBbeDjlZSWcgoOucFAXlO8vjErwvG+4s6C0LYWIYyMsnnZPmjkMXCFQtms/4BYO33b2Eaxraerag+3OnJCDgC4CNLw20eaiHEwDbi+FROdLJdRFMZR3oofxHa0mhz9nqID/lQxNccgdLGFEJDVXFhprUxbPh05l+I4HwS8Q+/kBAiUB9Xuw+ra2UBW+dqRRKePLxAjVNpCgaJyLdRHQrJPKSqYFNuNjUW8tmTAkf6phgmwrtBK8GbQ/Q/mmoDyLGyBL6JsSADiU00mXJze4amUN8FJDwNCElqj8Y0W0KnptwyF865jdGkflb23PVzSei+rsn/IDAXxtN6bKgCncxDJVhr9lySX6XNhm/58c1WHc3EqR9rbwfhYdWVWwSJRNuUb2mFJiElq+2ijKUTja55J57P1/i7jX0ON5xTQb01yfhC/bmKKsy9R5Jx9LM6cmN/iywX0aibJsVdVVQi8gNojncXAJ9R1Z8arn8KwH+LZtQDAP+9qn7mbgO8QXoyAg7QBBsAeFXJDNxPtvFiva4lTLOh7n14EXVLIYWg9lgNqy7+qb/ufZzIWok3ptQ3xNUBqoJXve1V6WQmoa4yK6ZTFTp5s2qBg23myMWhRmJECr3vrOqxdEq/Q0UFALXYAr1VUa2rpNMtm3L7iZjUbE21MWu7t1tztHEzv99TUfGyuzEDR0d1qB5zbVygo7lYa3COWJX5QCoqV1UMKqrEgyG1E5vFe9u0uJ1oTllFZSmpokTTtbdVUTHReaaiasT3fo+kZlLNKirLX0hFlbkuUZdVVJYavyfu5dEcG2xVVHyv/B7NyLys8pqSgDFXUbX72darJPjMDAHyGO+DHGxCR1wUIFh4mm/+geAUlIkQJCQATUNN7NSbje+a6zm0RxlQobWXmWNFd0dw7qSiEpEFwN8H8GfRrJu/0KMB/OpQ9OdU9cfuM6rbpycj4IgoPnJoL/OyFhdE2KLK/clQ3iKKo6kCJHbRquooxrFUF0JM6JFCqgcKCAgUFwgaGqHenjV+ok1vIY6BbTSl6NB2F9JUSXiaO0ZjoeVA190EnT6whdavUnOYiqMLAnEmW5NKhDajPu5mot7rFxLcKiAU9uLgCE0fG9RVTvm6ejywgyILfX7fWTiKvuF9swCU5qS3vSxxjlsYeTIVBwlXTYUVAimfvHn+ZvweEworQuAuyqhXCE+FSOxF2j1Ze4H49XGSCovva+w7ELU8J8vwPFBjslmFxbJNRSBxi4RbA1GZzkm849EGo3UVknRnrkaiOeG6rMIK55y5vrctCneKQ3Vz5OmtmqMhfi6d0rgpHAE0HM4hUM7ksG6iwtqQ1kmNyuMIVxDqeUnQl60QkjbtiQqL00FLalsujHsrII3qNZ6bfUeAVm8UdEZEZe86548qqhnvKKm2zPmfrnfn4NwxfQ+AX1PVXwcAEflHaJEDRgHnQ52ejIADZB812ZLpejg9TuR8+uQ4PjK5zuoWWmbpBD3GAmIYPCy3+hjoH6zlZpKxQiLKM7IVFYdLsDElK6p+fbQYYiuq7OgvNnprj531xZhCGGM0iI1kq7IFViAkvIc5V0RzvoeYIMSsUl2bbK7HaEUJsOIqKyq2DLINKKEfyuqM68IlWL3Z+Z7bm5nOW3vn0rXm8Xt136TeXv4HQYVlKXn/pbziSG5L4+YYzjwl5Yc6krzyIrg5SQAiFfRMADrn6C6QoFjHgiQdiFGuE4mRvxlaUWUeDqORtMt2fNze5LknL8+770UWgjb9gtHErQDV0jIlVW84OJP+mWS87LKA3kFSTSjuW6ZvFZFfpn9/uju+tTSLBvCJSTt/QUT+DID/B8B/rqpfnJT5wKYnI+Coijs1m/qx4bLIkb1tMy/IVlSWLxJt5g3IBIIQcNhEnV/lbOk0NzHfs6JiC6l3ZUW1jlZULnxkM/DWa3bWN7WiojtkFVVb+0KwAQYVFYg/Q+NmIQQ1nid7EyaSBN0XkmAZKpF9M3Ad7re1FfcVVm1ZKGABZqai4sI21ywU5nHrINRs53vPyiqEQuKUFRKeqAx/KdeosNjSycN+EAo5qrA8aOaOCsvmbDQTDxUU0rgthcM3VtXl+n64SIKyJqFmjwtieV4vSUbcf/Zx47cvUY+vB/mc+4l0KRZTpTKjhRZbbHp/NG42RJhd57Ri5A55hSSE7JWx63tpZoLe8ss0P8Y1a4MOFsjBM4yDdMIrR27sr/nBuWu6nYrqd1R1Zq38mPS/APhZVX0lIv8ZWpzI//jth3a/9HQEHBACIYoD4jcwnmoqpO86i6hHIecygohOfhT1D4vVEEFOHsyg6XrEaRKyZNJEAPYwEqaiQo4VxBskw+fW/0p+UkaCq7XxNlZUcQoMge4aKypf65Wsl7C1oqoSL6pIHr+plE58P4JEIl6obps/H2q7D3o2yYrK2xijt9tY43nM4helZ0NJJPwcgcrMiMVsZSUY8xkZiPadh0Xt5phPcbKVdC/bDefDYEVyyTT4ErK0txGfE2CAjM5shJhHTNuMhDy2yWWzO4RcppCADcwFmFFNw2VHNdUlkq+VmZme781p8vQ8USU9xvfMNeMb04wDtGBrRfV1rqLaixLgSVX/Hf3zMwD+mzuM66bpyQg4TSBpH9OrShradFpr6aQlVCgFyVqGYzYxxMrxoOyv+seTHf2xk0HfiJFDMdgJjq2k+LrFk2KT3exEkFAlzEnGywcEwVGcR3CYTDyep2bk6AKeE0zRCNB1VhkyghMoEAt32KARCkzDKShi/loAzTidz1RNMqnX5k68jZkfnKUEypPVdjHX0XYOS+AICm3mmuZENwEdmWRchaLWa74f9oPDFkExQSFgUXeeqmj6xvYQmr267c7P1KeLMwFmpprRHbXPXtpaUcU7MC0/lNuMOwkSs/qX/clcI0Cc85b9QUtvI4SzFZUlU1EtcsRH5MXbDe6x6X7T/gUA3yUi34km2PxFAH+JC1j4pP7PHwTwf95tdDdKT0bAUYQVFUCbPBOK+19GcI4lm3uzSxAjHy+iwQsxkhtt5uzvppZCJ/wwEz9VhN8VZBJxOAa0sc9JxkwiYQSn8ZeFxgUfF7dr1y0xGRdVE18xSK20+VMsqksIDretNrnICE4aFAlATKhl5MlN66/xg9PzFkaEMEdwUIhkTO1xAMvkB0ejLKNNyQ8O7XBOxk1+cOxqEIS5vUp+a8ZI6n6/RPpmBCfQNyZmR3uoZLYPoTmJ8YHuhUnI9InRnJEQRM+WScamzuKo3AdhazxNAgeTjO1hXvKTM9ZnnsyBXm4mGW85NsEPYY7O6CcnooYLjIzLHBvrbzT1Zg6OCV3jIu0oKLZpPADMODZ8ABjVUuHTKNaibKJOZXWoY+Nzjs0cGcvl212wYMYI0x7HhknIe6bcdozd84PTrLy243NVFerGi/Q7TYpbcnDOd6V6EpEfQwtxtAD4rKr+axH5CQC/rKqfA/DXReQH0QDy3wXwqbsM7obpyQg4glD1rLWQNZEtVvFiKXLE72VYBFp+LA6zhYY9GVcoEnend3UQcWsaPuWugxphJBkn1AE5lAOjEWFNQShLxfbUjMzRscscxoBJxk3lFifRE6FDMU5aSFLb/b5UUv5eKAYbxzUcHAeTadyqpB60y5LHxBwcjoKeyMJkMZXIxT3PCN35OWYhjjk4U7JwMju3evOAmMkfi2QEZzS5blZZUW/KNyFLvzEUAwcBtfYsFSWBb9isK22S6+R+mXi9FzDTTftZ4AQyB2eiEmGEZ8+MnJGpWd3HIjzMn8nfvm7LeFmaL2SEZwyk6ePbQXc2gx4SI3qB4uX6o8DDMaVGUvBuOAR6v+YqtPn4Z7/3ODhpjBM11zWJOZULjuT/5vDotj6MSVV/Hi0cEuf9Hfr9twD8rXuP65bp6Qg4onhRgnorul0IWM0UKqoCM09tG3uUcbNVNg2u8ZdNc2cqKkDd5PmkWUDgMvbZn3zhCBUVCI1gFUE72OaN6V2kveCazCexJJSffmvmi8Qp1k6OIawVZFSELcKYg8PCjJ+9Q07wzMSZGduz+ZYdBIdUkDMOTuZbMfqXOTjnEJzk6ZjuZeTgLDR/7jdnMk9gVEIzB8fjn0lsQoXQIbY289YECQnJrgnsr7jkyJ+dyMgBMhBSY9y9rA7v+cwyRhEbo6R+rI/4Fsb6lz4RtmraU4lMTcApP4fliHZNoBy30zGEx6zM3O9LS+f4qlaPnf7NzMRvnRipqdCpcHKVCq3X2wpQ23w2Gd8jGa94SMiNpcPOs35n6XYk4+eEJyTgKCEQDyrhB2fyMVVGKzS8ANfh5O1eixMKIP43TmdklQXe9AOpabybEHYIMPcRssm2WwbUcKU+CkmWGCF5UEIpaOMKjk5saIwSPNRAgQpJJ+y0zhz6tfYZser3yOgRWe2cGKER+A7Kvmq8b7qvkVvknqAlz5VzgOx50WZ5qpqEwj1Hfi5YIDvys/EfzDmh5HGbeHqCOCldqe2q8BAdCz0075uEv0pjO1U6WSM/b64LtPomMCnNx8a0HnFfoZYIOZ6tx9Kc0XtkvKS0kZVoj2NRifC3RW3zSZ7QgNE6zPocrdoA2riFOWBUUZEQnNPgx6ZX3ZCM25bcrh8QPmL2SMZsJTUiNHwP3jf9vgXJ2NsaCMTXkoxvnTbqrAlKskeCvrbNx7QRarElmYdb3r3Tcyyq26YnI+Dw6fxAnJmZFRVQUfrLfpCarKh4M7f8Q+LBGEokyFZUfAKE54elE+Vr5snYO+8hDzTHolLa6Dia+EIn8gdrQ5EQAaBD6oj74uvBnQ2idLKikpbTxh0bA6NX7ugPSs8gW41NHfmxpREJOB5dO7rAMtyXb6JKXJRe9liyio8FgeR4zoQ4qrtIqF5sl5JC71bhEAChghFkhIYFxNnzsMxV1XkojB4BWeA8UnsuzFhJIV6TwG9eSAhpvKVADHzcVNfaqzTW9p7FexEW7eHvZJHg2DBCcxDyicJCgD8vsg7TEPSrUOgOQqRYIOE0Q3g2ZegQcy7lOFO3TzOSccu3b1w2ZcdyyUppcj974Sv2LKT22p6VyfyZed+3tKIaE1tIzfLH34buLDjAgm2aiqroVvh6Th+u9GQEHCXOxzWJYyNZ4k2e4XNBqFMKX6dNgPXfoabh7SqOfQSQ7KZd1ZC19xZrcDiny4tonNoDebqmrdm8K+b57dr2lDvWHa8zisaqodl+lVE0qjcp19rIwS/P7YEZzYt+Rh7XtVZUXIatqMbT/Z4DwM34JryI2T3MUg51QFLhpF7VQVi8Mp0r+7anek573wcThN+PFGtK9nV17ZiuKbfnzfdS2b1y58I9nDPjZo/F58Y3E1pmHov3xnXOk7GjljihajsGVm1svgd5ha/WO5qJNwn8Od0wPRkBRyg4JqMpYaEU1kqJJ0PHd1VJzvYsv1I7hqA81Ijgnc17xXk6IvEAsqk2RxLmujaOINQe6Dp7LC7WAfKmwRtw2lDp9z2WdxbixuCPIwdnjJ9l4yuE1FQWKBn1EiSODdDaithS8AY5vyIEnpU4LjMODvvBYZ6MDmP1ZVYk8UysTEZ4eh87HBxmaBRCnorAIZz9aOP2m9EjSeOmoTpCkxwSOvIyWFmRRVOy0LJJK6EaYvTHjXRpv0tWVgqwiVYKMeH6oErP0pCpHMrB+hYJpLCqgIM0el16TqJ5k7Q2lNAmnjNXzwmTprOfKm9vItWNQkIEus1hIEbEaUSXsu8u8TKucpNcf+QIqWQsZFQRn0scLTyPKcY/u3eRCBqsCUUp/p0FKX0uXO3lj/2PwT/TOFBwlPupqRTPKqpbpycj4DAHB9iqpjiaeIq5VCIWVaGYNYViVB1LDd82tggXMpVGCCQLxbMazcQPvjhlM3AnBPKiSNeFP9hkvtsXMcQHv5Ss/mr1kKwn2E+OWw5rdlw4d0oXY1tIbcCOAJMQQuVtmVtS2yHozAiztM+CTfhZeGJhh0nICYCg3yGEzHk/qT0Xrub2FkIdMaF2D6VgEvJeoT2hkIb9gUyX0J9UllCvOQLHRNWshiHam/eV0br2jwXMi7vs6G9uwZWFEEsbHztnkKdmGEB1J3OSLK1Upw95asE1TN5lL8kTZHB35Fxmjga9jarpbdMe8iQimKntAGD0ZLzqAx50FszhOX1Y0pMRcASx6bYT235iM/GVNnZoNuVmRIjNdOOv7aiPMxNXaqcM+UBfdBzgybGoePNlpIHHNYtFxaRcRz80m49ziAn3a0JjZYJzdvRn12P55HGPaqwQ83TThioozhW1TUgbm3KzqbvziYiDk8rGEKBpTiikQDKdj/G5ZTGhFWuN+2VngTZ2qxtCS7S3p8LiejE/koS+cSMbzchT5PbUtp2KyYkgwj8Om597E2RG3gjCVibmTAESFELgaMKl9dnSiTd7DeG4hbegjd7KQIdxhWDdrl8XTXwmwCw7ddmMPBOi/aOMd3gQYBxholAOPia6FxZiWOgQSGpvNCVP84E5+rIVYqLT0QLrnBn6zNScD0psYh5jkGS5NUV46Dlu6g/z1ijfsZrn+TSLqpLq75mmG8nY/h7lPXyD3HGLVFwnUT6nq9OTEXAgIKFFXJXkiTg6zWLIIGbAlobmz8MW7bDEWsmHyKlDqg+VBCAJs/MHUlGtAoLgKV/zSd0+QbZ0EtoUDZ1J1kYSqA37quFgmrahV7AQQpswWRhxIM9V4Y1U5XGF0OPxiZStWJCXH5uzK6yoWBVli0Cz2okxmbUPL7KbWFO9Igs4ZvmzsACi2YrKNpVKZdi3S7TNc5ZRKlB7J5qzhWEo2JzG5rsQrBRzFpvHInHTCt1YUS2kp+PnwWo4Ls9WVK1gCDD21zdiUgGNVlReHdEeW1GhhmA4E1IAQskIZXmMFRW3tybBgLw462BFhfwetDJsahziU7Rdk3BnD7Oqpg19VK2wENKQqVwOQHI2t3HkNwgZjCaOfonse2dLKb4vhSSBktvnMmPfU+HP+h927OZcT3avW5lrYk1F35E7BuNseftm4udQpooVD3fWGT2Gr/acLqenI+BQKhIOzlhVFdYnsSsukj0Zwxe0QHaOEn5LzBMlc0IWMl1aV1KfgBYsUVdBJYsrOn2TBstT27v6+CSEkGtS+C/ZLhzAeZ7MY5JV3SMCX5OSWki2+Zs+lX/H4g/MHTN6uSvY2Y9xY88oSyI/Dyf3ls6rbPZGprrlUqT60KnfJ6vbxrBXN5Pht/X352yPYM3jOkdw1eFZv0m6hg9/VRkSSPZSGcpeNT7C5c6RePOG3RK/+zPz7hEtCYu1y8Rhjvj9WFXT6C342jSzdNqzhpoJQFsC8+PGbW0HgXnBUa4f/3P64KWnI+BoLNQC2XBwmCjMKgIm5DVeRiA4lr8iq66sjUjZDw6nOPWFmuttUnKkF91PuSqsqhK/RcUeT4Z/21yy2XRs07GZp72D+D+J1DqEYogy/TpNS5EcToFNou0eD4JopPLC3tslbhFPROE+gd1QDMm9LrIguBDXBlWTT5VrzcSFxjRep+0qzfeB0B9GgnzOyN+MzedCt7JIENtrjQtMIvZ3utJYqW0CLrDQdrWIDFGeez6FwBB+Xv1nMiPn5yWxmTEnihObkc/28FuFaghvxiURgReaP0x87CSkwYXM4NPxulMGQfAxoRpAISE4VINNyl6ohj1eDQtSo2fjsews7fnB2UNsHpNGJ4KcH/3X4Vrn2+DBrafcikq/dt9QDcAzyfjG6ekIODvfnXtvRZyCT1qgxTY0jRhHRBBeNUi6x1KD4yD9DS2FiLZbh2aAbagdYuaFurJXWea79I2E/ICwn5xR3x79h0UXH7h9aZbYRPnQXKiQaGzWbLWjIKFqYiLP+Sw8SapHm8pQF8jk37Izblbr7ZGIeW7A9bgfEvpmJGI2nffFXueejEdU7BKJmH3CzBAzFjI3danMXt3ox4c9CLOxAbJH4JlnaeczQeZzRv2wIFD7/Vk/7EMH6MKXI5YcNyu7eZgJlJUKsBWVOzMckE+3oqJ5Gq2oZstGsrIiVVihdyD7DtoKGXHfWahIwpNZmI2WUgmpMIQwhCtuz4LApjhcZKXEjgj5bhdaazhxmYi/x2OLVLFFf0YBJ64vqUzMaxbZwopq7jNnRnI+RzJeer8HvNxwcBY53i02FIBnDs47SE9GwBFENHEASFEBqQzQN3BHKEhFRaotUL4gFn9b5BaoL9oHCfJkkVhws0UQL36EotDAbK1JQQVBm5RmB22s0uLNnze11ndGslJZGuulT52Fl/cjzVQicyucy22MKq6Zeitb74QQutd+Hcpaf2Gyrp7n7WKIFJ7y2+8ykNjHe6gIzs8Yiyp8GZCXbiqT+SPxt3Km8a2gAw8mXkAmXvPdeVni6MTkwCdnrXOSsd0zt5FarnMODr+jqsxLykqosW4lQb95tUYfd+bw8BzP+DvBj8uxqpwnQ7AlP4MCTNEw38w1E4XnJF5qm8Y2U3OlWFS7wsnQPglYl8zEZ8iNEE/mEsn4XJqOW/N1RnC8j04sPugR75Uns0V+XaYn8/T4cyjz9903Eib81nbEAtA2t5kfHCAWGg8HUXPU5kzW5Y80NqaTL5ZCwgxZ4vQfD+S3Y+w7+cGxU5hmayhf50n1cOLraU6obQOnJJNDxw1mkWy1ZXfA88AhDRR5M04effu1mUn5mx6uNg4M+99zHi+u1cQ/FsHJyMoWwRkjhdeUHydvFs5HK7kiSH5w2MzZ1E9JZagISyJSt/iJvcY9LpL94LD7qPAdFFwQ9kvDbXNyQbUQb2nQRc0RHEY2JgjOgGLNEBxGVGYIziJZRZVFj2g71HYZURkRnCpZcMs+dixvH6Uwwcp9C9F8LhgEmJn6a+CYjHe8iqbvYuYHZ1edha2fm6ziUsy+rIaynEdodq2s6PpchRfo0AJg7V/pgmOoy1ggvTPr91lFddv0ZAQcAFjJwml8bRmFWYg0vEj2g2Oqpj0/OKvHHAjY/SBv5wcnnBFiej3CRMRpui2yJFjYwjPzg0NrWonhYSkkRFQFr4WJYxM7d5+b6HsRQGvcl/MHJMahfVzWHsP3wJajk/omYY25RcHzQKprfzn0A01NmhOzyhLia3BdFkiY5zNz8FiE1HCa0cLtFp8Fn1FlF23L7nXOfwzp9Vy66CVZ5/9OmM2AwoxfYkKvCJFs5fkiCwK66T9FG9dt/UIuFUYLrVnoB0ZkrJVzZuRsxcXoTn7p7Z7tOw2LSBYURiFlNC1v/ds44xvb4iPqZbxvGnvrc3geCEsskYxOzsj2K30LMzNxaObJ7CFMbAaex5M5OyNRPaNbWwRnvH7qOSe8cu6NtX2Sh4168F2nZyuq26YnI+AooTIPNQwHDywEkCpgVONYEjr9ckRo37D630pCCLezx5G4RbrVx+EcE82bVMRV0rObXXMKaPXmm+ul+q2uTssy8pPyTOi70E9SsYx9U703mc9zBzBGqa5uT+cCDCNj759S8HxiodCGyhyIS6jYqDJJSAgJpWH+vC3LzhY33oZd2AiBpPG9QsgwYcfGXxCoUxN2hS9v2qiSN+CpJ2O/vi3X7pfyB46No13Uf6A4kiCBmaBbCEUuVCa9W4y6UF1T2+46+qPDgI9hICnPSMki4sjPJU/Fo4D8GASnoBmtW9KpLekdkwIb1vdzeqv0ZAScRSo+emx61q+tB7xa8/JaJLbiIuK+XcT/ryVHUxACEauRsqrKkB86RdKJMlloUVIQTC/bDbFaIYyWNfvqlpmjP76mk+vnhDHm74wCxzWf6EiY5fudeTLmcYyekz3/in6B69RIaV0f+h49HK/0e1R/jf0C2DXLv0aFVdI7xRtfr6uzTWpOzE7kUHoevHFz29aakpqrtW2btpIgQIKCxHfDJ/xEpMX2fpmEDI1AnlBJbbjqRenUTgKQW6QNJGRG4Ph+mfAO/8ZtzvYDfea2+2/yaswE/xxwMlJq2xBglIRGWJll8qVtBAazomIjgUHFZWtF9qLc53eHhFwkhKeZhVfLDyGI8/hmZ98K19sTYNyKc1Lf8hl54vpMbJbuqfiAl7Bgm1H2/tHEn9Nt05MRcABWm1QcyAx3lt4WwWGisNApjtU3/BsI03U2sW0qlH6a8Y0mlhGh+6qDyRCHYjgS85BJxEB7CZSu+8kbYZJdSapqfcb4NMyN6L5srAoO1WC/2vz0jZiOeqOJufe6o8JSMtvxhV9owylbgWQRJK6IaxVlboJudbyNNCfteXnfZIKuxA+5xgQ9Nq4YnyBv1k52lmyRxpt1qD1b3qHMBaAimubSo7RXEpSFInozKkEqIhaAnFsybEws3M3SDNnY1KfnlOu2tFI7j00kR11MGp/s4/IvpEqCFguQG2d7k/bYlcVerCou421R26vyyhLXncs1lJ1zcOJ5sIl1dkQY45tGOxd2HjncO/L7dc6XEhOvfdzDdePgzB0Orkk9+K6T4pmDc+v0pAScFIvKTgB8YrQNRslCBSAyZ06M4IyJ/eSMH2BYvJBFxohm0ObFQUDtOm8qQY6OMiJhkbIhGW/uIzwCnxRRKVRtKAAAIABJREFUoMRiym3zgBVIHpj9L+1C7OnYs4kH9VADoSmim488eWhGXpS97Zo3Rxv3A23WbF0ya3sRQqPSnClWJ9pGfQuzkS2h+L41t23Iikb+qQKHvuszcZv7tk3nWDTNGfN77Ow5ekFubQBHEuh93ATKM99qVbJ6EvLeTdd9TjXzUyKkRiAdtfLzoM1wEDTb9WyNZMaOqprq2mFAidC+ssUP8dbYEsr3eFEnJbMVVcvof4a6w2WwtdlpsJTiTdWuKZRcKdCmO7GyKrR+ZCEjoyTr8DWvGt6QgdELsniZ6G9ESHL+6AmZ0ZCZEMJC5pRjo/n61IpKz1hRTQSc2fXZNbuexiunPu6HRC62tNzV0Z+k9eM5vX16MgKOCPBi6RYHZOLNvJIkQKB4WTMvLwIUD0Egns9+cCwtyr5sFFm4YqSjlTkIUCyQJ2LDPBb1DckWl4fKEaZjkS0SGz63XVXcHwZD3EaSbj5kurCmIcixjx2psTkVCUSoIQIt/0T+bvi6SZEnGveRzJIF4sJYs6yhugBQlKx2CCVQOCTAqq2DhNM6kSzA2F9e+hYWFGjcrqYkL8Q8J3CBJYSrIxOzEf5GCgghUcGD37u6A0BHeBThnVo5knlA+oJ8X8mJIGh+er95TntZxFzynDxUZOGp2POz+QAJCnF9VcA8MVRCEhJZnVK2NrKJig2FVVQjNYEdL3rdytZEPGckaYm1LWnOHHWjZ3mQcL7J6MVURTVEG2dh265x23zfIzdobLtxxrbfLxDvCfed5mnHyaALCGP9AUJbBwHkln5w2rX2hTCS2VLk73F8oo1t+yxcna1jPyU4OB5081Fsuef0QUxPRsBRBVZHGshU2wWPCLD5UIvHqqoAOIK41TupgH3peF1CWxhuZvPxB1LlsNrJSdAapq1VYwF5TeO3BbmmjSlibBVVIgGGuuKkvAjxCdbaoOsl56dgmraRIQSbMCMnkqByHKwIwIhKcZUI0aiqvjvFyTwQpma2H22vNA7fdAnp4Lq8+joaQQiP0txU0P1qQNtFoj1GNPaCcbJZvJ3e27toAnb8LiWeF8e5olGnOUnXqL2RpH1q0kbMWdrUYoWvaU4in33o2H1ZEwuEfMSwPxm4rk5UUr6biRPDwuOY0ZyhREhWvt8K9YVLuX9CVJxDIjTXdNtNzdZ+t/ePNlHl5xD3nFtuP/gdsKQIQYt9A7GvKy+rWx861gYLIWEtRSoeyre0Yh/hsXkf/eiwIDBaDY1WVJi0t+n/jBXVWYTHhGo8zoqK08yT8Tq5Hv3zcWXLublrNHF9VlHdOj0ZAQcIVRMAj/vEebaQLxKf1UHUVQgj4c3yG0FTvTzQTukLITiWFoF7SRYwksRExoHLY5snncILIT++oQrcQSFzPgr4tMX8np4nITAVDCTLnlR4K8yciswBQjJ9ZlIrOy8bOTjhlyPXbfXymJhDkkyvqQyrGDfu6GnOstl3vq8ZidjK2Ty0v/kEzmbkNsftN/o8xb2xB2YfH7Wd+qH2WJDJDiNz23Z99jwyHyffn23yubwhAJiSjMfn4fcjpGZFPqmPc4lhPmLDD3XaiHgkkjHx22ysrAZztBM5DIQNN5GI+T2JIQWfDtmnUBqTz0OsGoyOXGNltUzfAupfJJug97xbhIGIvoCaxh3pba2oFrC1FHtx3reiAtVu490KWXbVVnFJo478LXUgIzhV16ma612mZwHntunJCDgNDm8v60MtjmhYYlfwjPAATT0DmArIHFBFPgiCdzRDAVcVIPNoGOmwxH2umj9bNl1uY43N5kRnuGQNFYf2jgJJtNG7tfOK0gLPqaaF//q0t+js+Xyxa62upA3YrrFwxRuuCXozQQHom3X/zeRlJpH7Y+TNHKRO4N8s9NHzWGbtKYgUjEEY6/m04ScBlzd56pv5W6byEhDxWkDu5UNIYXVMWKjkti0tIi4Q8/Pw6wXTsByVvOiC7lcgWAx1oxepYEtgHp3xscUQOx8P4V3ALHF2QMh/o1FrO1R/hR7aAlb/khBEvKWZE0HeQ8fwFUxgZhWU97en/iJkZU9FJUMoA960l0HNtaf+StMzTBerx8b2Z2ouXtOq6tlQD0BWc40WVpZ/Lp0TQMxZ4NZDc6i/IufoVlRLeQEAeImP4A/138/pw5mejoADxaFzcF7sbLMmNCjEuTaNgxMIji1cpyp4uQQHZxSYCiIW1aFoeEamz5jjXJ1UUVmP3/MbB6f9NieDCiVeRnYEGMhTttAqjjBlp3VA22SdP0MbVgsxYfczFwRm5tv8+029DXO6tg02NbeUuKO079cL+crCIuIkmtQc9Ne6XJDrcQgHFhY5LAMLNtZHFmYpH9t8FqpYxTM6zbM8VmGx76ecb22HRMwqLJ6DZDHHmyGZgtXZ/IkmtR3PQaufkZUUGgPRdqgbt4KCkJKj0mZ9oDaYnNwaJ2FxoqKaORFMgoBEG2P4iotWUpr+TPvmcAWjgLISAjXW5b6ZGJ7iWCUv61l48XuzsRAJOvL4VrYsltEDexZQtuvy+NxZ/XUpBeF8ns+/K1ZUbW5E1voaAPAKX8Ef9N/3SIo4CD+n26QnI+BUFbxem+S+kjCSCHumTkhwbiASRSJ43YE8Fds1K2//DuurLJBY9weBW4McIC5IoQYhtXk+joW4jzrqSXykR9LHNE/LVjraELKyyNG6WxsPdAo/FHUCLiDJnNraXpZAsvZIyNY2oyxHGrcgLLEOJTtftL6ZUGvzxILoKmxthLRBjyTjg0R7zUIqri8kRM5O3qntPrqThkn+QoReqbFgcT4TS/nk6nMGXsj3+g7C8UhgjnH3+SW0Qul5YEArDNE7EcmYCczh3iDQTiYwLxpBI5oQLt7Ggb6naFuSJ2+/efBc2ruPlBihsXELCTt+vQSJ/NTv2cp6GSLhA4z4yUa92erGfbnKS+OAxFHSK8TRH7t/bgOYo0NJZciHiAGhGa2oGmIZQspeIE9rZtWMcjGyBGyttPJ6mYWhcXwVmubVyxiCqNniy/tAGAkkKHAykHMIzswlQVN/xfhi3IsjOKXHnzrKezjKHX3hKMjr+3O6RXoyAo4iAuAxWTidKEl6vnQ+qBqIyl7pmSt91SAzn1R94a+IE6VC3HIKheI6If7ySStIrTGSVYOgyaf9pv7K460AqceiH9GYM0Um3Zr1pILNwCOPSchBVI4NlYnADzUEDiX9TCIZa9yL7Tqt7xCefANWyXWZoNwKhEpxIBmjRD8uBFW4f5xC7T3QPc6QHY77VUmSGc3AXb1E8xt9h5VVGQjMSXCr8R6tNCftekiWbKJeNQQjIM9J2mCIwGx9+569Q2DmuQT2CMygZxmbvFLbQm3zHLNjQCZ9B2emC3f0Du8RnEeUgJ3Mjftzs7AMAXuGDhXFdFNunJgQjtDHs7dJz1DGkbPzpukKAARAFhpvkRIPiQTlLUeolxlQoJmrh9l8VIxWWVGW4st6NHFOJp4WLfgGeTJb5NdlejJPr4i6mfhDLXQaja/31FVESw211DKSjPvOvZCZ+FII8jV4u9BmjohhVbUGfwGxKbfgnUaKy2bgsdCVXjYW8MOAKDzQbyf/glQoGvdsi+yqdGrVWJsPdNpmU+ncdmjVmdTKZskz54eMRjQT/XndlifJaV2Yv+cTvo2j+YsxoUA8PhgjCozwsKrH4oEpYo5XGtMigqVDAtcgPKbiO0gISYkIXDngZbTnnJBFEsKTbD5s/iQjZic/hcc4fE4lIzxTc2vE/CWzfESaITyjifqB7ouFX0MHBJKCgLbxeRNJFQpI4ue4Q8aB32P3bGMeOVHw+83ehjMyYX/ZU7F9sySQCqkuCTmZbazW3shn2kMUbOxAm8uRu3MuzVQw55LSezTWG4WbLMhv2059J5VifLOcl1VY1ufciWAf5TA+TSjTzIIrx6KK/ArFQ8f1KtaNefiDvMIfrPdTUQG3FSaf0xMScASKl4f2Mh9U8PpkRDNeMDq7XspFCEcRSEw7/Qb6AmSiMG+oTCZWhLCRUZSoy/55ZpHKUWMzetAwNV+YO4FMfmYnaDaOFKncOifBLTnbE+S23QycrvOGa8hA8scTG89Jc6RyNgNHb38P4WEngr6paXb+lkzQeyczhGcpoCeqhLLAE6u8GAnxTVFp3JrrJoSGUS+7d1JRMQpkgzppLIAN5emCGySZy7PZNtA2X1Z5sYm6P48SaIQib0Sjyov5Ou2et/kKdaFUSOirw1yO/J4RCdvj94AE3hnSEQiPbNq0ghFNnDZiImHz2Z7vncnn3i7fFxRviuAkYvHkvvYQHHZwuCNfpTJju/abuUFjPRvX5voOyRjI/Bz799sEfx0Fno1QOBEW39QSSlDuq6LCMwfn1unJCDhVBa9OcbvjiySidPoL8+1FKpZOMllEoXXp7annH6S6DxP3ryOF0IogIbMJOiMhABxpYDPixu1Qr2vXg8AcC8wiSPyexU+fTLyN5cVQqlUDlm+aFPU2mLRsqaS2ZQjnYKd+6y3M2xcSCTnKd+MlxfxsQjUUuPnkMtyX1VMw/ynGKqSqYwQnBBm4dCJUly20VIk7AUnPwefE7muYJ5KpppY1wr8dUYj2lNo+0PNtPusCSeAQE6PqlJ0nrukekZ0M6nYeFiG1gKMi8c4uJDwVaJo/Q2f4eVQJFeki8S46hwiMDmUrKxfINe73QLwzApCyQ70JwsNBM4tEp0r5bC2m1C6jeTYTbOHFDgqZ/9ZcKsQzsx9BtM5R6RlhZZkgIURk/WX3wijGjIOzx++xeeFUyYghjRuxhrJQlM3Etyo+bmO00OI2dknOQzrsSHPnrK9C0FMYC2gWd6pgmXKEntOHJz0ZAaeUQHBOtWCt+YVetUwdAQKFnO7FqXRVcZPxdq3lW14y9a4loTCM4IDMzq9FcCoA9us/Q41GM3U3Kx/QBhs782tsIzspW1sMagZSDY2n80K/ecPKqplYhPjkzz46/F6I9Ep7EdgyifsfkQQrEzA5bUyp71yPT9CBhpDzvsl9zepsxqTbk3NqD3mBZu7VDOnQoe1xcR85QpzC+dscwWEBbIbgNCFum88WWiQ7pXnNAmX81TTXsslv5NX+jhJfaGbBlZwt8vMQTe98IjEHXELqjJiDlXE+jXx/3iTZMifK6rR7j43ZrrdYVHbvUeNEAy+QdCOjKokt/uz+/fdwL+P1GF2k0VKLxQl+HrP6YywsoCM8tJ5GPUJ2JK6NaqxR4LhKkLkSMZJO+DKl8KKH+yM4zyTjm6a7Czgi8hsA/j+0w+RJVb9bRL4FwM8B+GMAfgPAD6vq70k7ivw0gD8P4CsAPqWq/6q380kAf7s3+/dU9WfOdqwkIGhYIQVSUj3eEPvAyaEawjJq1YIXpTmGOpaa6gBN0Dk4j6diZRNwQnOYg2MnIinEVaGF2D5nqZKsrGKhKElFNYajANri56dm21wkhCS2bDgWCjFBuzgjT4Un0fqQy4E+OShlFXiwTzadd/SI0B622uE4TRykk50IrmsgLmwZlzZoWD1uOxAc0op1ftS4aM8NPa7xsbOjzbh52jNBf6O2BsGNg4jOTIZZRXtOgPHxmRCgzO/StJm7wDQInL7hkRflx5CMq8IfFJOMWUiZkYxPSXqKNnQYt7/TNEczE3SoDPWsz/y+jAIKND/X5IG51ys7bTPnaK99Vm9NURYGl3TrafldcHDS1YkZ+cjR4Rhap97Tiges9VX73U3Dv4Y/wFfqA+6VxoPPc3r79H4hOP+Rqv4O/fvHAfwLVf0pEfnx/u+/CeDPAfiu/t8nAPwDAJ/oAtHfBfDdaF/Fr4jI51T19/Y6TJu88CmsXycBoyrFoBHAvWkqXFCpJDAVKp/QFt/dwrHgqUZZTlX5BB0oRj5Zy+a6UH6lBVQQJxc+WbPqJfrmeUCoQdJitr8L1wsf5RSmPl9lKKvTGiw07A2hyMgdGuQxnY+lSIbvhfIdmSB/KEjX+2/QKzC04ePWLPQBrV/z2ltJ6Co0ECa4chwuPsGzk8FLkcyT2k7yWKNu+3GgGxawmTGFB1EiGdOkVAkngouIC7+MDho6w2bkhb4npbk6FgolIUgm43bdOUkkWRYIDq5WDsSEHTIei2zCfDAvaGF+z5kYWjMVVI475lWTisqeQkOhYj2amZhzumRizu8wq6DYxDzqjAJE/H4TFVWuPxNgzquoIjhxF3B2HAmeczCYYmj1Yi/wDTiUbwAAd/R3lPdw32Cbz+nW6YOiovohAN/bf/8MgM+jCTg/BOAfahO5/6WIfJOIfLyX/UVV/V0AEJFfBPADAH72ms4WUaBbVAkhEevAowGahZQjOPQxrmRF9WKpIUCwLryXP5aafE287mqpPZTlNVl5zdAhtrI6CpMUi5tnt4CX0baVf6Aj0wsLFgrBK68XAtBRssD0QGvGSycCNxELiDhcBcCLEouILXoPJEy8LJrmyhbqAuBF36VYUOCI7i/pOgf6XNK4o/xKmwP62GJfmPvYaW3HBsh141nFBmTPd/TB45ZOAF6YYEH/X0B8Ejt9Mi9LYzM8Z6HFHBZLtjcsJVC0lfRflbg5x8Jqmti4Rwstu877vgsy9C60un1OpFmD2QjZQsuEDN6PanoeMccsijryWoJjNbt+LDaunAQhXB3o+2B147HE/Nh3w/yfhcyZGYpoPJ141nsBSK2/Ca83rRdCJ/tRCCmT/ZeFCJnc+x6/Z2pWrfw+52u8NkTbNG5sDx5JwBnqchtCv2f1Zz54xnx2YJjG7d9QJmwbbhRxru4dquE5mvit0/sh4CiA/02aZPE/qOqnAXxMVX+zX/8tAB/rv78NwBep7pd63l5+SiLyowB+FAA+/t5HPX9VwdqFDBNwVsSJ5KQl0BLmoUhEJmaUZ62Rn3kZITAxwsOnMft8UgBQxIfP5Zl7Yh9vjcPxhsvia6/GZtgEjmjb8jJnJk5mnM+LbFiNzVNSidA4wmuvpLlKdalPbmtzXS+rWXSyhNYr6nH/Y3uXECvuZ9bezELpbdOs7XNj2dS/wTp+jg+xzwF6fJsshFzyaHvuWfOczeZn5E1xPmAbeFxgKyVHCXSOUuzxsWYEXP6GON5W63ObGBGaeQGemfsDW7RmHH+zFiSEZuD/AHlsU4RGsxAye3yjp+WxfhvL/KmGKo8PCTQHCJJ7HdoXx82CeHwLn0OPSfWZg3PT9H4IOP+hqn5ZRP49AL8oIv8XX1RVFZmdaR6fuvD0aQD49z/6R/Urr5unykOJT3y50/u0t9Huda8sfFxog1VU47Uxv/KJjfpKJ//Udvx2xEWVOc6oY/9Cgh4JBKqhetm4uee6k/FnUqu1Pd5jRwNoeWuqxDwvKZrysLkVEiZnhNkT7Q7qi2ksomyirsjjnhGYeWw58nOMLwRSul8qcwKSCTrPj/2YmaCn5yHD8/D5QDJBBwZHf2UgqNO9W+DXawjMTrTdPGv1e09cFSIwr5N5tXehSDwz5v+IKNjJIG+ofoompI83c/by6xydkUdDGxU/Y3tn+EtmAjN7go769BtzgrKlItv328ZfaF5rut8Yx4iMjHKEvaMiE/5PG7i3sQmB0dsPsvOWhGxlZmEgQPfOQkquG/cyJxkzJ0qx9tlaccLICOL2ntOHM91dwFHVL/e/vy0i/xTA9wD4tyLycVX9za6C+u1e/MsAvoOqf3vP+zJCpWX5nz/X71IqvuUjXwXQFse1bl9dQzSOtQS8LxRdGBoEQ4E7GBOJxcPLCpJ5uX2KRUpyHMjRxN0BH+LDYhXVSnKfO/qT+JAPtHIVYTNwcTPr5hOl5R8l7iVODiFGMcm4Ci8YEU5hJX25mSdntUY4OVQiCB/JNFzh09Pq9jInGxGtT0UyVyX2kexE0H3UkK+VUPvFAr+ObU9M0FdlVQ5Zra3RrngfJDhG0wMPRtKzZE5Hux7v3AHxTqW2Ff6SsMqBqV/2YykxZ6i0CdCYzvF7eL7bnDGhm9QdGPgfzDchoYa5UH7AMPVd5Xec2kDm98z4VMwvC1I4qe8IGh2dDFb/9oZgm71t34eFnwchNbQ3FkhSQXFQ29FMvKGQsXiwCibUrHGTZajLZGb0+eJNvkw2eQ7dkeBimjcrf9pRAdlcpLmhsQFtLmcHOHeIOLZHbeypoCy5GnN6dat+iiHT/Ii4c1eORVW1rTwrHvBwz/Deio1A+ZzeLt1VQBWRbxSRj9pvAN8P4P8A8DkAn+zFPgngn/XfnwPwl6WlPw3g97sq6xcAfL+IfLOIfHNv5xfO9a0qeH064PXpkPScZhlVpFkPtf/aBiPSr3fBRqjsQvmlCw3CZamNdr/9P7vW6+WYVfbR53wfK7YPTCZCz2PTTJWiAM7pg60MsIXZrU0jPTNqEPmyQRuSOTS3Rf2NhGgfK+vSNfpJ+X3mqw7jp99cL9rW1E+UUUcN8u8Ya01juXQP1IZmJMXG5m0Mczzrc/MsJnOdnoGNc3hunO8WUKquvt17/vz87L/xDY36mk2th7Kz++JyNn+zND6HPaTTxpPbzpZAb8LJyO/5fmiGsezbpscu7iPHprUh099vmm6t8tl75ufKx/sYdQsWiP0nxU3G75lszb3Ff8+ppXsjOB8D8E/7qewA4H9W1X8uIl8A8I9F5K8A+DcAfriX/3k0E/FfQzMT/xEAUNXfFZGfBPCFXu4njHC8lwSKl8cmmS9LxbpuX2APYFmLq10WqTgyIbnDCqsWj05+LJU2jCw8AU0lZtZXaxGY75vCJui88NYSRN+iyQ8PgG7J0dsWBZ/IlUxcA41Q1P7BJieCbqGifgJtp2B4387dkRAWBOzILwi2tiWxM7SCASXpf4+iYSkEig8zogqT+nHq55NzdiLoKhvSycWckTBFCE+2GArEAMgm6NEenURpTl2QkIAu2NkeEONj78ncnlLgVUYUHJrnkzIhO6M5+iyPLXhYALf5ZgSnIEz+DVFrPJBAIsL8OBCXkjaPEFbGpdf792eQ/eR4G3wPw54WT2kbZ83q2t+ZgMSWdmMiDKffy+M3j4S43DE9FntgZGze3m3iYL1N8v533oWwstqpL2NgVfvmtkLNgiOOz1ZUH+p0VwFHVX8dwJ+c5P87AN83yVcAf3Wnrc8C+Oxj+pdZeNmd5CdVBMl3GRCVt5WUE5w/QsEkQMTm1RdZ6lc4nz7eQhsWhDdJTb+tgG1irMIShDv7VWJTNgQL6Dr1cUOlthW8oYalE2/2bCnEaiIbHZvjclRuIG/0xcuz0BAtuZBCAtAq3I8ms+VK88PjFhcyonMWgCy3+VVi4SnaC/VXjroNGHk1borVQWERRou0ZPXWyFPc8yxdQVHQhzn1ORnUWzZnewIQm6jzfLvlVgk/JAupU2zSVvBzYg/MWf2U1XqRz/NtbRhPhX0lJfUYlYeEUJME0klZNrfmbVAkC2xsTj16Ex40RLHhSnznLLQl9Q2pxt3LNI2VBdHRS7IlJaFvNEHvFTOKw++JCaJDFefgkEBUh3voN5aEv1v7gwq+UzQ8883TylbooI6qic10n/SMvtw2fVDMxN95KkVxPLQXtqkwti9SkPAoVEPRzWbS2lBc4kLvfbDc3gB+bNKMWDym0cpqez2uJQss3V5vflT6oii5TBoXkaDV83pZ2iDr4GjNCDWNgIhNG40ULKm9HOGc+DX0m81dmYzLvy1xVG6+d0FujyOs+8apW4LwSFKuaXwh1Kz0nDg6OhOUx/vitttWrpsyQJA/dXdc2/tVDVSG55WjoDMMMCMhQ0lYTPcL9zVVKrVdeXuJh2b1EiGXIIW1aiJ4c2R4jsweY7WT+fy6UiNVg0gNkNq3BiKU6k5IyNlSh+6B5qS95/SRoG38s+e4gN9/bjtbAenwLSsJV6zyu8ZLclVgPAOORGIWAfYsneLV2VpJrbSibaysXGjOfnCyijALfSNKpTrLH+9BvayRjFmYMUFn1Qd8VU+4Z5rtS8/pzdOTEXBqFTz0AJtLqe4S+xKqwyTBa8DKPaHHyX5C3oGRYetz8PC5xAjOHtReaPPfu3Ztqkpwzo2SkwYnY2EVwjmYf0/A46Co5xILf9e23eqRdHVFGW6q6nlLPt1pmoe5V+ZSqtgnab5J4u/j0n2NydGFMyoq7Px71s2UTyL5ObLKa6ZGSk4iL5BeRaLunhqH0ZXIywLLiAQBXaiZWhtlK7jtmGJQb6pa4vu6Jr0LFdal4Jy3UiLpgNgUWe4equE53TY9GQFnWRTvvWws+XUtOHQ0x9UxAqxd33pYK2pfnZdSnScjEqiDSMGLpYdqWFa3ylq7Pe4LrMHLoOtHVi8JvO21xgn/WIgvkk6JdnIMv8JsZdWCVvY+hSyCBGGdUkLFMlMj8SLL6pbDoAqYBfKMYIxzjg5bdXAQx1UwHbetqyfdVy0kNcMkb09FZQ+SfRGNYSJGCyu731Dx2dU5Rye3LWkTWtMY7flF3oyjwyqRpQSM0tR2gYSMap89jg7fVxob4nmIbAWV0coq83tkU0+G/qMd4iWRUDOzslohbn1YlXg3IvROBXp2ycpqDPTp2glCQFjldZWVVZqzLsySqR9zWJKjv95Gs56M+Qvwj0KpSBa2lsnmn4SoieSzJxDsOvrbaepNHP3x+Pbk8nOO/qLvQLo8TyNEi5yRytiKqurS8xrBuI0vZuiSn6WbJpXnWFQ3Tk9GwKk12OWHQ3Wz6BniclxWLyuiWFzAAY59JWweaPvvRSHdJPzorNfi1xdRwH+XWCxLRCQvRRKyE6TVSlB1ODMJInBF8fAR6l9vQQhPlRyPASHguKdjRURDprZfkPCkiIVaRJPHX49e7ebvYYLO6qo8boLPaVcrUDcTd1870XS7r8TjEe/ahT5h4jPCu7P1LcBiK+Ma8zF6BI5wGbHRHgur4gI58zkV4lMVgfQ5O5QwrVcSVBLnhNpj1c3MS7JWwNbhRMwmQTR7aO6botK4aU4OEv5JmKN0mAg4I0eHvSRH5PjYSDgSvUr4xGETdOb3WGKTZ96LBweEAAAgAElEQVQMWahahFRh6R236zEfiTPDgpmSWge5jVFQmiFAbay3IRHHxh2NX9Mu899m9ZiDw+UB4uAgyqQAqjYng/rkTRz9FUhSbc3u7ayjv7HsqELb8Z9jaQ8NkonYN8t7l0lxfyL613t6MgKOoPFwAGA51I3fGv69rhVrDdSmLLZA5g/S/OAspfomv3RlfkJCSnUJYilhJlqg3sZaiRxIm2RBWPN4Hm2obdGO8RWNxT4W4OALsTznCMq5ibO5uUINcyk1Ds78GvsZmdal62zizHyXQBKyl2R2WmfjYM6RNT1ygXxsyNY5o97/VCPkAC/IZtZtZZZlm98YBsPGMdyXI1ADvyeNVbb5TpQXEozAm0fMyUi9nPGp+BpzonguU5nJs2TeCHuFnm24eyquW+wBj1WhPSZl4YkELISfmykJGZnQG2XnGx87zZttxSTbJeGGEbjRd1GUiQMHJgcvAJ5/LhZVGYSiRNYm/0PjfbkQvsNJSSbeE+TJXDcA51Vc1s6KB1dRGQdHUd/ILcBz+uCkJyPgKIDTqS0De46pDNVZ15KsIww2rCVOgEyeXWuJMk6QjY90rSUWMc2buVL53bEP35j50LH2OI2+c8Y0X8wC2j2UeXlWS41qjhCetqdjaMgsByFVRbuRTdvme6jdWyyyZs3F5sxVMjoQTspCKJxZynDfo4pLqKyjBNCU71wLQz9IpTjeF/fNbbB6a3wk3Lci1B3c3iIRRHLTjwkI5qCPylQVcJDQKENCs//fdk6AvEGmsWp+Nvwq8dyziTnXbXmhcprxUex+9tIlPtlMdfXYNi5xQq5Jb+tbZ0wzBCf1p4zO7CA4ksvbtRRtnNGaN0BwoCEEXYvgMEqzCbYJ3ZCwLT/mZEB5hvGfS3cP1fBMMr5pejICjoji5XuNEV+WmlRQlmr3jVOrOPm4iGJZTI2kWDrHZq0Fh87BORyivaVH5TudSng8Jb87IooTxcFyvokKpDudOUnUPZaKtcaGAACnWkjNVN2yoKyKB/exEyqqEx2lWQ3GaiZLD3U/kKelIhGocyVUgQP/cdu+mF6hohKEJ2NbLBUBQeSAmLTTVgq2WWgBpJ3RhKFDyfHFLLW22+8RgWBTbVMNsQ+emQk6c5gKCWMVvBHkcbf72vfBY7l1MEEPr7xxT7bwsw8eoXtRGYWXXo/Mj0d+j82j+y1CtDH6xHHhiR5TEo6QBSKrN/OxAx2FavE26LwQb+us7EBgZpQiIy7RxkjKPyf8vKmZ8yUC8166VP5N1B3nOCcfBD84j0lTVAtCAg89a+LgRNky5SW9y/RsJn7b9GQEnFoFX/1Ki0X14sUaAozxRgZrKid7LY9cdAjhGf3mAB3ZYd8ZhlYAhPJE3XPWO60eq2PCa05VndbNJwSd5GV10OyD2/MoO3Ms1hArO1Vl1Yurmii/CJ2wNP8d+1CQKgVwyHzZMUE3p4WLgsxNo40VwIHaYzWXb8S6VWMxUZQROjZ5B4IA3toQaiPGDWTT9k3bPG56fll1pV4GvRwHR+XxF5nUo2cjCudveT26d0hWGfHzCEGPnjW3jZxv9ViFxW0n/ovdu+Q4V2PZRQY0gt6zWT7P1fz7YZQ0fxvp3n1MdIACqWxo3utQBsCUPPzYxCqqMe2ppx/jB+dNVFQ+LlyvopqpoHj+9lRUqU3mH/m18wLbqg940Pv7wnlOt0tPRsApRfGNH30FADi8jLdfSIBRYjgu7r24cXaAJgSV103KV109fzlUR38METotgcIkUnNRHE7hydj4PVqD0naomaBsmyQjPOynJxZzRnDCS/JJC8pqKEFsG26VUoDXtd3XgSxDjqX6hvpqLaEqQUZwrIZZiBUhknEB+jThoYYa5OUS4z5IwYOt+6J4OSBLByl4oA3L2wYRcDXUREfaUA8Sgo0jOKKJgLv2VXuRIDg354NCv/ucpLp713t7JYIhLoWQKQCvV3uWjCy1vwrg1RpChT2Plwu1J0jWcx6/S5vVGc9fQ4+4vRB2OMaWv2eIjXkRcWTJ/NAswu9coEMKVi9y26ROQ6RmRdjnu/9dagjcB8nWRrwZWf5CKMuDkENI7zvmgwWtFENrEFpskz9S27wNshXVzMJIACw9QxX+bgOBjnJ7DwQVZieC/Tdt1kJtVBWMfmo25vRh9jlFmEb5YtzwywCDcBv+HewICWyBNRvf6OSQxxACIpcPgUSo7Gx87EtnI8TY+zrM3cxM/HBHorHiWUV16/RkBByA0QgSaugd94CUClcpLQsJJ3Q6Nz4PkC0oVldzFRd2ahUPzFjXCPSpEtZXfLJVjTKljEtE78cWbTBJkRGc+ceSTzzz493OoW+aCplFM3r0rpBsJtRur9nuMb8DRh18Qxt9EtEGYxPBCM6sb0ZZzpKk967Ns72em+FrzuffU0IvT8NOGzIrO7QxXhtJ0kjvXM/XmNpEmqZ2ODxJQqDstyAFqkzzZGb+Jfc5mi4nJA6xqa3INjJvgg617z4EOhfIyzyf00zVxejRmEJYZTRuu45VanvkyxiaMlp8Kd0Pl4/fvW/kelGfDowXVDqMGj42zeJirdBd1eBuIE9aLzlUwyzdVUWlzyqqW6cnI+CoCtYulBxqdR6FWyqU+KjLojgQauMIDlk8HFA9nzk9Vk8VWMz6io5gh0MF+zIxpKiqYLFTe6kuHC2lJvKujdkW4WbG3tvW6puKSFh5oQa6wZCwmagDwelpJ0Q7vQdawRZaFnTUxm0IBJNeFxIgom26B5DPClqkCrYLoIj6HByErtMGLQihRXisCOFkejpGbBQjwdnm+ECn3+QvhtACfjZLr3fSXI/5KXy/y9D2uAmkcSP6DI4NtQF+DoZcaB73XttUrxLqwSEmxvljRMHKA024Yd6Sq+GIQMr8HhMhVvGiG34Px9ByBId8GjGnKMUzM5RohU98+z564RqICxVPhHEW1qzsIiTU0xwvEhtjKxPCTklzMqoJJV23Wa+a45jFUEkKp+scasKtrIZ3kchc5DaAypD6aWZx2spYE9u5s/xC957Hfn3KQTFlkzclKhM5OamwFFg1LF1P/eVZ8RDWU3b961w9JSI/AOCn0c4Rn1HVn9op9xcA/BMA/4Gq/vIdh/jW6ckIOCIkqOygju9SWGcycw7VEIJA2qD5+kCItsjm1hah0LRxapDpCm96mjZjAFhQwzFZmY+zORHctgEaC2/UuW4vWULYaQEv++8ijp7lIKHoZYUEt3zdrKuUiL7cNm9CEU8qoO6VhIbs8yU7KOQ+x/lLQgoCTSm0SS0klHKcJp1segWYBihlh30cQyuZJQPp2fh1yxIMAkl+duPvbDFnZWNjHS3qZr5lyjBWRlnYWozvFTCBM/7NMbT8+wAdUgTJumvMk2FOk8UXISCz9hIhmdrgZ51RIGqP7j0EtmiP9+dR1TW2Pc73iOZkFRa1RfXGoKR7SEdveJi3+MeaRn4+zQnisbadIzBfIjbb+JQPDiTtblVUpguufq30KOKtvY7eyxGHOyMq59DcWyYRWQD8fQB/FsCXAHxBRD6nqr86lPsogL8B4JfuNLSbpick4ADHj3Srp/foAq2oJrAvrxV1DQ6O8WSkwLksQOQvR7LK6fWWKsnvjqm5SqnxAS2V0J2KU89vDtgMwVHYa1/Y+sraTgS/EGqKkBDEH74A7GMH6CctN/VmAQfIG1ls8nyq3yAk4MVZ6V+88cwJiGl8E4lzRHjYRD02vdynDH8LMrmSN0vemOK6kpARXBWbPwV704Xv1gQuJCGIdWEiPK6OYtAmlRZtuomx7dkmynwPRit4fsukPeomtcfXOPI5vwvs32WGmLFQkzZ8n48sGDPCw0Iav88z4YmFwpV+M3rkHDnsOyjkCOpA+1b2BCD2qJwCp5LAYehP3EuEB0lCZonwDIr8zs/Qn9k3VgRT3SVbzI3Bpy6GReDLprrfEU6aGLUvPCkhRiOPhwXOWf+VECbq0JNO2twWKyi6L1I0Pzj3THJPFdX3APi1HgAbIvKPAPwQgF8dyv0kgP8awH95r4HdMj0ZAQcA2BbVVVQ2AwWwuGoHiupXFnUishxCqKmroBy74HGEr+AuVCzkIHAJ1ZYIqb8kCMy1hn+S01qdZHw4VOfvmFBzWoPfczhEXK1FFAciGR+KQa6h/nqoJVQvS1w/9Al5qCHxvVjCi/KyqpcBgJfdRL7B50uva5sb8KLEdftkHyiMwMulEpch/NwUAV6SB2agLZTHznYUKN5bguBc+piOtKG+IHL0sgoeSL1l14OgG9cXIjivpC4YScR1EMBWjUXzZSH/GxIE50bMjg1LvG0yE/eFX90D8ipj35bEDfwy8ToWSD71vzA1Da2flYSGFwvIYDDO92w6HwEpY+NigrNAUfukVRUnTR8kvjd27scm/xE5OxJH/wYiVIMi5oRJ8VUCxWMisLWqEksAq/VUkIwlve6g/mqj4L6jvVoDKRzN5VldxYIXMCJujG6E6mcv7AALd5xkKANkYWhUMZ5ziDciU6kfv0eZ5jP6M+P5vEm6ZFWayu6QjLMfNKH8rYrqnlZUiljzbpC+VURYnfRpVf00/fvbAHyR/v0lAJ/gBkTkTwH4DlX9X0XkWcD5oKfyMgQVX7hcNRICTl2BerLrQkRHxdpNIuoqsOVKpLoFll1fT8XjP2kNjs56Knh46PFP6PRUq+C0tvzTqfjixmblr3uw0BMRmAE4IfmhFpwGay6gfTQPVGbr+Cquv1oXUpXFYvC6LkmAOfQLpyqe/8qEKwRKoAgBgn3sLBR766EKTj3chKii9Hm1/fSkxftoG4wJFtH3A/nBKVJ8IXygMrFJRd+vaBwrbUDc9qokGBCpla/zhlb9voIMzqf9quGb6KTAypXRLW8qvO2InB1WQq3t3p7Ad6861AUG1ZbCLdJ40xNq78Rm5/ye0X077kg31uas5Ss0XC0UcQushxrCk/rguW3vrqkS7dloRBOv4DnRaV0TZmW47u4D4vPtUdD7mDRvwvEeRZ5vkIXmrJJlGUksqmH5xoKZuynQGB+boC8kWLDbgFGoOdF8A1sVFfN//JkpRUlPEMWWsDtaaTHCMF6jZvo9ZgKyXeNwELvkdls/LlzfS+xkcCyZIpW75HW2uQ9j+h1V/e43rSxNzfDfAfjUzUb0PqQnI+CoAutX+wa9KORFyy8v4mi29NnQNaybpHSEBgAKUIwUvEb+8hIuzBjaszzEqbUcFbUfBBIXSIDlaO0RgjOYmIfn3H79xNcjbtbyUHEqi/dz7CjLWkssnGvxBdAcFaoKShfjWOX1Ylkj/hVOWEyFJoHQHIo4js8E4pdOnmZCb4zj5RIoCkPFbII+nuatDzv1N5811a8bYsAITVW4qauN71g0vfhuCixKiAKpOwjBeVnUURnf5wYUhh0U2un7IEMsKruvGYIj876PQr50ICngZcT+CuHDDPCWEht+IaGVvQ0fCwtgmhALQ3CsvVoo+CNuj+DMTNABCbUsYj9ihIbjhIUZeVxfCvywklSGCIFJU10SeKksq7AsKaulhNAhwOeE67ogISHJZB4UmXVXTdeSmqhYkfg+SB52QZqJ8A2VyUK1pTdRUQFztOQxKqrREmtPRRVtW729tln1O4zB6gipRlEge+TMO6Y7qqi+DOA76N/f3vMsfRTAnwDw+S6Q/lEAnxORH/wwEY2fjIDT0Ig4OZgBkQsmRSLiNujDqQSv1kB87BrQkB8rE39j4aoroKe+8K/FfeaUpXYkqAk4OWxDr1vF+TvsRND5Hypumr7WknyZGGdnrRF6QjX8Q7i5uhKKQdYWq5bkRDDgUyUBIpumA+hWOFFvltgDcqW6oBMqO1xjE/Qwi0daQOPEO7qU7+Py0Q9923UNPsTMNBpoiAs7ZIzrPY98xCSTZzAXQ9LC7O+MbOvx9crCCd+fghC/+djZyWClfD7th7M7FjKQ5qpdz0LKzJSax6iCzTti5Wf5szbG+53FkZqaMA8k3j0kRHVbhu9tOradfy/Izz36oBAiO/0yWTzfR0tJvpg8ay67Ge/kHvk3Cy8zE/TZuFqeTn9vTPt7YuFl5jmZkZ09pEZ3rocJOHsrH8dk37i6RZXKdqTvRyyqx6jg3jJ9AcB3ich3ogk2fxHAX7KLqvr7AL7V/i0inwfwX3yYhBvgCQk4ALC86ATgbwCkHzvFEJwSoRL0VEN1VYBOMWlojn00r4O/wyqvDqBATwrpbnHLAvcGuxAmLCV4OiIagk/RHBjUBBxTtRQKJUEm5bxWFFHn2AhxN1QDKfJo45h/WBwmYimxVTROTKt70oLFdNaE8HDcKoOyK5mXH6R6FOiDqIdUGK2k2nVJffP1hZCLQELUyaGriL/kbEXFbduWUECxuCoJcYjT+lE0kVaBzKMZLbRAZWcWWlAK80BkXTazX3zOgvQ6OjC0MivxVnice1ZSM7KuIJ/2mfDcrmeuCxOzZxZVglBZMnG8qc6GfM19u/PDCndvxGNqbce74/flf4cYW1ZvnBNHQnL/jp5G0SnpO1lwUXvCQi6hPGzB5egkIl4UE6LprNQQGipjF2bPrmoO4cFzxmRdRzok51tZTfMak2b5QoJ+tvDaVzG1ttQnM/NiWICZH5DCz1C+zuNn83fqNKm/7FB7xAsYGcGQnIO8xFFy+Iavl6SqJxH5MQC/gCZvf1ZV/7WI/ASAX1bVz72/I7xNelICji8YJ8CXBF+54rihr+F8HBwy7HmGdN/K7Fz3vgkRap7M7GPb+ZCrnF0kuG5DBgjduPI0oFyPzNVvdZrg8AJh1jq/31ukvUe0dz8+93L5hvfGfakmXx9bGMd7bmYugeiFwPkyaajs/OZ+94ilLAyxVVTa8HmjcuElb8Dc9GgmPpowj2PzPtkWZjIuvuZtkxCyl5JJPeLemCw7M0Fnk/HN2G18Os+L5UCmfSP1Oe9kltsOF/H7HokFKUZLfExnCL+cFwey+QPbRXh2EJyMQvXDgCpO/fcJJ4zRxB/0K/iavp72/y6S6l1VVFDVnwfw80Pe39kp+733GNOt05MRcKQojn+4/V6+MUgJwuSEztjTdfVVTgqcryNFIF/rAsmCLY+nXfH+HOFZgr+AqpD+j7IEyrPQ6iiFfMtQIE+/LkEGbBwdsvoigvDhEBwbTm45c2hS3EqWU0Jm8C+I3+PQAdomahZai24jAhcJK6uTFrzw64sjDS/KSoKPwJY0QQ4D0a4DIBN54/ecqsTpsgSK8bJUsH8QN+WF9V2p7Rj8IopDh6qXhVAjnVtgZZ5MoEeuagKob+bJxKZW6ATNQUad40KWZ4ehbTs5pxATIKsntfuKvlcESVsJxWjIVPsHk605xIS9Akxazr6DYh4EIGQqrh+IpL2IJlQLfWxhoUWoVhHibJElUwmibe6TUA6/r0AyRxN0tpWRybhZdcRuESrV4QClbNIeHK9c19rjsxYLi9H2/PsFslrT2mUSL6c9AfZa4eeaKOpjW28aSPTalGJfnekjTaHP9/n7Och7ON55i9xDrJ7Tm6UnI+Ckd/8gLtgIMQW1f51ShnPmYKkANGmb1bYaR4r+7/jNkKtfQ3uZDcrWCrc6UWJ/qkrkTzg6LPUzT6ZAp8gODXHKIWEVFucn8+MrPsJZ2+03dn7HZj2iJFXDZf4y1MvltuU5P5zrXTOe+M28pRmCU5UWyzR3+b5Se8QvGvkkiQ8TgIzfm+U7KohcZmO4MrQx9gVcuP4BW3N1h7w6lgG2KgxOs/eoAnhbpcTGEzW1fSnphefxmCQSJPe9rX8PrWM11wwtAy6jQ7zuJfKxCXE6D7bZrvX+dxCr0UOy9eFj2VNRgRGzsNJrBhDNaqSUti0KihtWPKcPZ3o6Ag7AOzuS8hxoHBw7fR4rynuGxIjzdVAQnn6LOnIjL8X9lqASx4Y4Oh7n6kQWPEXDQqvCnQS2fls/hxdERGaUx3gZx3AieKxxDi2iOB67FdUaQhInDytRBce6XX6PpQYxl4ixIsDRfNHUgqP7jZDo+/9n731Ddeu2+6DfmGs9e583N7GRmA/23giRpGj7IUolRQSt0UIxpSnYkhCpQQpBTGkhiBIotWgj9ktqwZBwMUJaCJcYsb1INVCSVoSENmlBTPzTmBZyr4I0Tao3ed+9n7Xm8MNcY4zfmGuu59n7nH32m/fuPeGcZ+35Z8y55lprzjHH+I0xHN8jHsxSKdjmVBRFTVRcvH6zkgoJjY0DKYiotSN8D2IjOZGUZSXLoxEG50TmUk2CY3evJD0I6c8ev2OSkO15lGYyHOV2nZmcZB3kUretLmSH37G5YUlHXIfkrsfv2Jh5E7J7XEgyJQIPMTGJJPwOO8QDMrZIJG9wI6kHY1k4REeP3+E2dm1/CuGWlHBGkwQ3sZL5s9U9kvA0nBi8nVloETkIzaXNR6H56O/V7oGDhIqG6qoP0WGDSj5xLFsyo8XfHs8Zh2XwsXA7YlRYzcUMQvLDg5x2EpkRs03sU2aGGPsX43/qxMzYo9v6756RKe/M6j4+PRRW8Joell4Wg2OpAnpvYhQ6hpjV011F/c2tblGUm9joTCVbz9G2ICQ49SMq31bFUuFekutZ3FdOkxRtTMYizsisS3Fz9PUsDj728jUiHvMpaV2L11EJhq0F79zakjrKAM+VrajIVw1bZa2VrKg06KzkwybUPhLxXoh2W0yDHlvQcJ2FNjKjy2ohrsvWXyY9WTsJSdDZngE0tWPVx+In3rAUaoyA0Yu2i9ND6P41pAs8VkAxJesv0Ji2zZjo5fKWJqXTJ0iSpkFbKd9ZVhVMzkwimbnb9ZTmkt4pGpfVZb8s1tby2acLl7MF1kLcjDEQfL8scZumaOe+ahhnpEFv1SRjBQBIjXZ8X1OJzXxVTT50fDMmHzo+Z5o3afZLxHl8lmL/PXY+YlVj+OAhkDHRXjt/MRGpXNP7YYl5iOxjp10XsvTrfdn0aqhL0cpXv6+ow2wC42A8KZePMTYi4cX5IX5y1o6m5V/zg5Oe00C+VrEeYoDeR2prznvgAF9wejEMjhSgvNmYgq+YIL3LU8C/2HKr0G1VkkJqLIGv9lJDQoMp9N6GqRFaCFnKKZM6HkcKLZazQjZvYmWqqW0xfMpiOBS4lZWUOCKWUlHoKGd1amVsjoJxOkAT97o1EiEhRdTPMFNRX+yap9btpFxakE8gHNYVwggx7VVIElLCyVaRkqyuepBzHweLLW983KDTL4JGITG99wE4MzSRhCdbkYSkYQbAgNmQythGk63GWLJitI+ChDLOJEJrSFce4wufQnFyntKckQsBP92/PwkO+1dRjK21egnOXGhcW13GxvgnQUwIS37Y8ofzp2RtZ+9ibHCTIPn3iTkhRktD+pLMpu29EMInyXEYCLaWSn0i6gBJown2C8MWWhUyltCQFO8Ig2PkeykNSxC57V4akkHfzADx+5qGZH2SmmgkwWlL18M39EvxqiyNzMd7bI7VWbT6QWyVBVXPW7lhAM8PHttr+q2ZXgyDowrUDSAst6v7rhde4SlJyC4JnQdfXSRd0yJgeZJVVIbQlBkQc/o3KcoGVNYFKOZoUAlkfFKXyvQm5sAGQiYzcvs4OSREy98vQgxCHkXOPU0rYXByujEngp3Pmb6c8SZAbMS3ZSVJzAq4o8GKGw8hsc0HgZAnyU4EnW6NpffNtCapjImfHYRMYSJUyeRegDcJ4Eym8A6ODtA3m64/xMlgODCMsTUvyDYntlkp7EVa6OR9W/JJ3mNiiXoYiFWJsdG4Ly53ZoKY8NuSzeLZiaCNa/GNIUe9PjnjKMEsIjbxk8T3VP3+NueHHYezCpvNB2AaNYOWHdRd4KpO9snk4OkSOAv24DuJOO2FaDPweiZGb7XvEaB7DwZDiZntw0A4WFiR5s3miXE3I0u1XlGSlSmtATNG7EhvhL5JoOVKwXfp3nzJE3TfL42D3vM0vq3Oqhom5JLLrN2RgMQdL6byaMyeoJmhG3lJ7tVsJqWddHLJ+0RboW4mtIqKD/F8VlQASWVf05OkF8PgIPYMCIGMcdqWD7KiwlwT+DgsrRBHtllJChQnG5Pg6BL9oRCzc0bEtupsdj3O1dJJfeyET1Ib4VO/baIpP7fnfKdDx8ci+7ym7yepRzcey+8XkP5QxpHFj+rJYCHmslHgzYcmOejfyxxoGImDhB6N7SgoKOe7BQ2UFv5M57rp9+XEvZfu71Fdo7deoH2pzx6YKrSHjRzVMW7kcFyDjb3v812wFm+TuJvH9K3xSiXAOLcfAY+ZseR8VqX05ui9CmlFlrKw88Y4p7GKKkt/tGvXVLwkDSHmPgHhKYWj0IGKKpWPVVSp/4Nv78jRH5cfxaJazLkfFHfbwe4sd6h1yTSwYr765j5tesXgPG16MQyOFKDcbhvWTfHjpdgRssQ2JrNA3bmfhEl5aSBhoC0iI0ssWYLRcabmJM4YyUT5BQ4y1gVQC845B36GwzxYJPO6kgpoBnljVkzkOLBQME1rKyVUVFZ3XXmDIQaH1F/MJBVSc/UbGdAWUC5n2uFXhBiLjgHhKOejdCnauNOgoof6ucmWV0Hg6CR85IWX82NjCi/JfZ/9XSjCCkz7cVG+UVtVhvidwODkjS6wSOIr6kSSOFVyIkj355uKZibNsVfKuAwuz1gQHp9dayqXrZ3GfWnedENdpene2D9P3443ZUGeE34yjAHiWE42Tn8GoulejiQGlnr8ziixteBDNrveJFzIl85DrLaOxjpi6JJ6CjJcAxINjK2kjOFQ6PAbL1tp+xkP0FXWOxca8NZHU21My6K1s+7qZWMTpo8BaPyani69HAZHFPJme4Fv52Bs5nip7VVvnoJJOkPOK4yZ0WYbHDSMyTCmZ1WnwSqspKKSkOwATboDbJKcEvXdkomik3PUcvvGS1G38mIvyVqBydQ6FLU8B/vMaiGgxaoy78RTFZxoMZndiko8phUv8BzJfHVrqFiATlN1LJJqMBS9BRaAZoVVMd2sTZkAACAASURBVCyfXSdSSG1RaZMUZxdsQb4pEWOrajzHmWjPEJgNWdGwJrsd+MFha5uTEJ5JC6l6lFQ9ilqMdjBsZh029SqqrZ9T0RT12s10kX0HsaqkjQ8pSrrhzFfyoswxtiqQI5V38aIqAng8iYaqR4EbYu7sE7op6hZxtWSsisexuqLCEs3MRqigQurBDM6hCovmJnBToUZVhLVWwwNt47aNmiRJk9CWX7JKhOfePxvJkiq7L9A90rJDXFpWU42YJI5kzli0EQeT1FiaDe531dNAcmJvx6OkosnLcd+HkGVmBipzjKoxAzWRiirGkyWIIbHKY1htLZbigVCPLKaeM1RDe3+vcMCv6VHpxTA4qgjLqfvVX9tgZIiTL4ASU5PsXY1pmYmZKYSrIFyOfzOzQAyDUzSFfgi1GamxagQnFIE/JWaAgunSAFROYTLeJDgDKQqFgXDsCYDizgf5REP5UpIExzFAALa4m25qW0Qx2YZbI7gnq7x6tVlEUSbmzTeMkAgxCBlKqjVl8DGf1OMsl4GWUbfQQs1qJFbljMIAWMqviBKztldH9ePgv0mGeKF8vwBmVWO+h74/kfF8pP6A7PhuOKp9eS/Mz2rNGEswhiz1OxhLdy99PgOY+3yjm6SMAxoMKD/Em3jdYHr4fYHyc4o6LLXUrs5u/MycpGeW790ExhUk+aL7DT8zI7kjkgn6CqFvci/9mZBxX0fvzKicweA9+LvVJceL/TtvzDQZOnCK+452GYh9CZAcz8/6PeEG5gfHnoIcvpXvL71PD+8vMb0cBqcK9G6TaKwKueTd6iC/MTJvkfq+WKHu40P4ylGkVdnzu99dOatVVFI9B+wqnAmyGFctb5NorN3pyfLJnFpVMNeQ4Fg3JqlRkRTI0/X9NU7Qay0+3rUKRS2vfh1msiVJXJYS5Wtnom71A2NAZuDbQCeJ8jOZwjfJRLteag5AGrTjtM/lITmIdud6bIKeTc339BYaf1ggBYj2XIMdqioOZl5VcDaXALT5Wfmikb+SJKTlb7SpT0CxdGbxjNuoCCu11vfWSuOQIJR/rqTuoc9tHdAG4M40VxpfZVENtV0qqb9ol0/m7wYyhvgmulTgXO3ZxObPJubJDJwYUcPArJWYAjFKnUpQ4W6yJvrGmLZbZYVQOJm3s1sINjGPsQG8SLmfqMRchRl2aq/77bXH6CSTbD9n7J+Fle/VbNpJZ9SvLfX32EcaB+UlfBMxNWyi3jOINieqwHl7amfcY613Tqn9f4YO5Uev6ZOSXg6Do4j4UsDgqNcdmYipSYDf7Tp9txKWOOqriHbSIVslEIxNYQlSltqwFZdLx80EfZVOwrPln3sw8UajMvYlVFOG0alrcUmNSCEQcpbgsKO6kQQnJDUZg8PSDcbjOJ9Hpt/tlre2ZnqPLJ2x8hUUSJFWsV5q02N8srO52AD3IGOmt08scRnxxg0w+1Ys8dV0JB1623REqh7ijx5B+6ByD6QFMgZHaZN6LgxOk9Bs+RKbN9/DNQxOf+9k/LjbLhmnlTA6zPQkJiTPfb/Rq2QmIGOl2q/QzfD8jN5hBjGvmiUwzChY6n0E9QwMGZ4dqp+gYwaGCY0YIwDJLN1Bxp3ah9VigV0q4cF4E6U/e6gGHb9Dr+nt04thcEQQMaUm2aumWHldJOFuEhFLvfnQW1r56LU3OiFM9300aU9IVkKKo1Qnt6tUf1SHvR6P6rBK5HCRojZHt/icgeX69HyWOPvn8T4Tq6Ae1e4gv7zHcY9UWG0sus+nYfSqIx7hEaPZ6MqO2Y0+j9vzOFjNxO1Sf0SH1cNJlUYEOFYV92f1Wc1Wunp+bvJljNRM5AOK34reUm2kirPEpvW9E8CRxRznM3OVl86NORUdWo0VxOGGLb7S+EiF9ZgkQvOg4TBVETH9zEx80Y9wh+fzhdMY9I9vTfxyTC+GwVEVrL/Rrsun1tB12xfDPt3X6tZS+VgPz9dFCSRCrDe5iQ2Lq2BkdIF/zUrm4EcqKtUrKqoqO5WV3e+1yOecjkyps9n4vk4CNQ7L1bE5DdeilL9JjWoJLI0EnasYHGQMDkuKLE2iWLYlbSaMEJezE8EcLNJOiwEiHoZqIAnTLOG8biUTfkEOMWHXUmPRZmeBvKi7R4NCEgO1URrQN068a8nzx0BhIQlAUQJHl9hsVkVyUDj7vbe8hsumvm3eoS7BZCeCNwSOZg/R7OfGgcLEMKdyaa3t/wQyNsutEl6kA/QdqsFaQr04l7gv9iadAcwh3bO+W7l437GJs+IKOG3zcOQJmKky7mWEwTl333FiSFwlY393zNiAY2PmqVlr8Tee6/e4L8YijawI98xffCORb3kkeeqYIcYWjSREIYXhA1jvB0d2Y+KkCJU04230MQvna/otnV4MgyOimD7Yrm9KmGdcQ83VgxPxgUzaGZlKKiqrv/26uJaZmsT4BNegVV215sEz1+InszKFI8C6Clb3dhyWOrUKli1/XeNDLhsDVqvgfG6vwkLl01q8/nmdcL82dEIRxWT0asF5w9t4ORRnx8mI59+vJVRlSwQDvV+DRhFgEbMg2vquBffVHAEqZENJKMTbnYlJmiQwO3drwdkwGKstZrER3tXimJVZJG081u5cJbw0I7AgdzXKzTvvHWFMzjXwMM3jr+GIgDsLu6Fk1Wb3XYH7GlZU4Tk4sEN3jBGi10wHGBwurxrjVo2wGDYWbPed2hJ+py/vMTh3AwwOamCKrmFwznRWWLtywwJVzSf3lebbGcABBudcSeVUxb/9HoPjlLswD9a3b9Y1pBtLj8EheqNwCcwschgIxuDw/Y0wOGlc29+8WjWM2uDQwWqmmhmzPoglMyH2tyU7D4785Fh+z8AIM6oaaqSU6H53rIbTy+O0xON32jQmxuasqliStNDWzo9JRUUYu9f0NOnFMDgAAoNzzZMYYXAOU6+iIpNwL5eoGz5zNCyq2HKqwONVyaoo5n9wio1Ct9VsOlWX/JSThnNBWg1EgPl2w9gQ9qgsgdOZT2E67u2WyRmF02l183IpirKFkhBR3N40omstns/OAt/MrTxZpWByac7NtKbFayIpyu3mYflmu6GCKZW/MbN0iDM7k6hLaG7K6rFlBBPmbQKNxptpcQZIoDhvkzkXxU0xD81hgzGJ+Gn/hkzQZWP+TiUkIWxGXiRO8gLFB9tcsifgc+W2JmkIXNNKUpabRLu4ZGKWbCZup1ir26QstuHyBkTSCgm8hiA2zpEnY4AkAJK9JPuJXbOptgtEyflhbssn8a28uMPxTYoRm5dLhyaWcGiSDlnfIaEQH1+TqMHnLzA98VmfyPT7vka5ezou/H5z3xFaQREqN2Y+JpL+mXQrA4EjXVJRjWJ/8bJkwP9eOuRzPMlQQsL02ccOp3CHkPNDRTVWT7MU6ChgJ7sEGEtw7L6ikDFMjXmKQ4mlSgBrUWBerc7zW0yN0isG52nToxgcEfkpAL8I4HtV9b4r+2cB/KCqfssTju/JkghQPtgWtxO9zK5aqtD7LbzA3Qr9kLbfU3zAum3m9V5R3KuZ+gpUt3b1PtRPQv7x1w+BdQPrlwkoLp0B1g+3E+WdeNiGslbXF5w/2qQmS5hss2rrfDe7pKYUAmiuBefzJhFYw+jytFo4BbgE554YnKoRhfx+yRIcS2stJKEJCY7Plwo+Wjbaa3GrmLZwNdofrVOS4FiqV8pXLbgzCVMtKNuzrFPX1tQSfl9zSHBIwlNqa9toC+5cOiRpMbc346M1LLgKLby2md+TdGgSCsKpuW0EnAxpAEtwCjEsIwlOEXVpl6q4hCbMxMXVVquCypm5ypIpZkLsadp9fbSGpGQStoDKEhzbEG8VNCeZebLnZNKAuxpM2KTqAN1FM5NhAtiFgLT3VXYMzqohwbmvmQlh6QxLcOwV4/m+t3LaRE8KKo/rWdQlMFWRLMusrb+LwNA5Ips8s3ToiME5cvS3Du6rdO0vmYHXVK5d22BCRu2ZORl5FR4G40Q7ILGUJZcZA21Md7aceowVFUtwVmQvxm38+/A1r+mTlR4rwfm9AP5lAN8kIn9IVX+Vyv4xAP/KUw3sqVOtgrqZiU+qY0d/27XOBXKy3QEUqkFgS00BmodibCovc/RnJthQPzqU2+J4nLKoMyRS4MBnLPAQDtMpmKMyAWrSC3fcF35osoUX+bghi6UW2sFuIRaMCMZJUpYO37L6iTyvEkcAZcBOSbYZ5RNimKuLn7Cqcryq0J2vRCMilYdpeNVsWm3p0Ex8SyeIO57Lkco5UviRmXhsNtlMfFtwJef3bftxL3TSnKp6u2QmbowPMYWrCs62oaLbrKkt0HyZTIP5WIkeSwnObG4dr3Fql03Q4158M0eYW581NvEzMTBVA68UKqysZhKXHpEJOtQZbyHG7Ew7rV0VzXOTTJtNVQfNEb+JitFhJsWDcdJ9sZk4v++LBvMG7JXdSs+LMSRMh6OJq2QV09If+TWcN1bN75wz4Yh5SCo37KUxPYPBf42iifNaMGJgVsRadBSqgc3Yk6oJIFByMJwrldt1Un3tp2ijrbBgm1VWCtWwgY0/BhPxVxXV06a3UVF9N4A/BeBnReRbVfX/eOIxvZckEliW+purSxKEV5/tWj9aUe8in2NOmQRHF7gvnYLA3tQPt/L7UD/VWp2pWe+AerYxRde6APW8bSBnSYyLtz2TBMcZmRV1kwbUVQJnIr0/m402Y3DI27AvpjWkQ+taOn8UIe520bJmF/92X1xuqeqxFQunUcC5vTO8nH9Elx359fmWcqTwrTzlh4Qmh5jYxqv5ZMtjZQd34yjoAgYXtxRm7M2zbsudBX7iLNIYGwApKjck1De2ss/CqhGuG07eJomNfZYsMZg6ehO9uOwRGJDkhC7UX8GIL7ShTkJYk63DEwGFBZruJfBC4ucS9jlzKnsJzkRWZVOahwi2uaq46lSU1Vvh58bvS3LQT5u0urUF2rPhaOH8DfGzNHrVGbf4ZllyBsrne1MaK5t6G5M0SaxLpWvPXwSDcUtHzxBrNJKg43MmQ2kJRxPn9JBQDWxFxRiah1pRFZWh1AgIJqiIYNoe4ISTm4lzOg8kO+8rMeP5mp4mvQ2D878A+GYAfxmNyfk3VfWnH0NARCYAPwfgi6r6B0Tk6wF8DsDXAPh5AH9UVe9F5BbAXwTwuwH8KoBvV9W/v9H4PgB/DA2X9ydU9Scv9wlMn9oWzjdTDnQJ5K+7T7ZYFfrYa8bbuHdT84fTtx+Ze0/k9IoZGg3/LqB4UA9JbMrtY1lDopJ8bVAbjhpeOqYk6tjt8CmNGB+lRcnbB1iYLWialAee30tZmN6qIXFhC6NK+YsKqaDiJLSQNMQYgl6CwtIh7tPrVPi7wWoLN7rTYLv4XrIERzERSNaBzwrYduMO6+jk3dor5dOc0Dzwe3f2k7U9uwC8r929myXYSqoe7n8SJOmP3Te/znwvZERI5SBVE70DxGyZFIMlOJOI44wWksT0EhxTAz5WglOU7n2gJirdnPTpSIJjfxs9luz0Sg/tGCC3ZGNaOykKHzTy/TaJ236wLMFp30dcY3AdfR3vuCMLqMckEQzNxPt0DQ6Z6iYTdFsLo5zXP17nFNUlOGZFteKMszyfmfhrevr0ViBjVf0HIvKvAvgRAP+DiPx7aIzPQ9OfBPC/oqm1AODPAfjzqvo5EflhNMblh7bfX1PVbxCR79jqfbuI/E4A3wHgdwH47QD+moj8DtVjpem6Cj76v9v1zd3Z8TjlK7ZTyCxhAn6vcIRRAXw5KAiLpgWo9yHB8bkxKdFKJzogWUsFGFhQTSJU4dZQSt6B5Vy8vklhahWnvQp5BF75WpKVlG/cJKGZalhWsedhm8RlLcH4aHgbVsI1rLX4RhqqnvB0zNKhpYYkpHlAFs9X2uTdIzLiNxbk7EnYGQsVP2udwFIloQ1Bvd0+mGaTxJCxW+q/ksic862uCyJ4w4jLjUHU1A5dm6PTWzCZ4/K3TY/ZODixszaA7p1oJh8oiE0lO1nMdSxv5HiO23EIgCKhZWZ13kR9GD0hmizFEJAlGzECgjhosGTKwboISU3yGiG8idL8SFwnPzmIut4ubn0H7rVUgBS1PPoOxtbrdiSO5ruX4DDgd9c/3cMo/ykdUdqY3vadtdS/u+M6IdW51ZvLlZ84vfrBedr01lZUqnoG8G+LyP8G4LMALkpQLInIZwB8K4DvB/C90r7GbwHwnVuVHwXwZ9AYnG/brgHgJwD8F1v9bwPwOVW9A/D3ROSX0KRKP3PUbylhbdTQd9t9bPGpdBG/rh8q1g9pzD5LiroxPrqKWw/pPYHiNgBxPZeIBXWv0I15We7YlLtZRAGNuVnuG2phWYpbL61LnFYZKOwm0Wv1vs/n2c28RQLLolVwvzTa2VolNgwDCK8kLRJRZ3yWtXjZCoFs9JpZsgFmt75V3dQ7MUbEeDCTwfnNyiZLhNjagj0Pt3bBZBjmY2EcByKx5CfMavOCMnI++BBPxpxGjErz7tyu+82/9zlZlTffUKexekwQm+DUbUyuUlKl8hirq5R0pB5jFdem3jKmgET7lnoVFZt29+oYy2MVFQfTbHOjSQXEfnJY6hB+iQBWnYUfHKMRHsJ7HzzzIe3WuAXq9Mn0/4M2SaMocG2RverIEqugjF7v54bLATR3EsZwSH5WbCUFoAMhS8L/MO3AkQUjxABlp3/Bn0x8vzRWbiv7Dbs3IjhinviA4nnIIOK+PLVna6mOQZwJoHy7WRXc6hvMmx+RMBO/ffZo4k/ME7749M5m4qr6n4rI/46mSnpI+s8B/AcAvmr7+2sA/LqqG3F/AcCnt+tPA/iVrZ9FRP7RVv/TAH6WaHIbTyLy3WiYIXzmKz7lptccwTt2QBJvL00C02hEHSmx0Owc8zm97QNcAPvcSwlgcV2LY2akKISlNoSTMZozqn/EZgG1LCVtesyEuLURDUlVsJhFEGFw7Omzr5pzLTsrKGBvyWT9L1pwv9E0XzXMECgEHznt7As1rFti3Ows0NRP9zUsnZj2ouLWRmzppBQZ+55iTTHbk/u2TVF9wWV/MedK2BKS4HxIvmw4gvjYGikWXLYI4nhQzPxZXNhG28qD3j1J+QpYpUV+bmB9E9gUgo+MuVdgItVVWIfFWGaJCOFGg8sbw7KVV7gVVbIOU7aiCqagmVlrot1bQoXFi7glU9Uwv1eEqvCefLqM5ywzIcEoKzYDyg0nE8xMH4uKTdQnMiM/ExMyldAqN4lk0HamlKyswhIqmJOsoiIGRpFULkMrKj7HDbjtWh4Xi4qveysp/rUUjLzu6qalUq9LJXugModiaOXjxNKrHsjMqrXztjDfyUdYtlOtbUVn/c1nxeC8pqdPj2Vwvh7A/9Vnqup/IyJ/G8A/damxiPwBAP+Pqv68iPzeR/b96KSqn0WTLuGbvvpr1UC89Z6sjfiTHnwtqnBAslYEA0PxoJTNxI1hUYkwDDVjYPx7q2GGzUBga+/DuoDBeapwB8bUMHNTaGM8cg3E9RmsawzQyngiZJDxyOdHoj0CKFLlHgjs4xB1vM0isYk+FgjM6gQhSUfQiw0yS2Girm0ZLQ6XzXGo6litE1YuYU0jILUFmZqzqL1/NnugKKtMSNWDXO4qFusYeTP1uoMx9+kSpO0p0tuCMZNLnGt1DvqzeeOzvRITQg6sU33VYHz6tlav0PiSutRUpMTAgPP92Y2Bu5mP0avMiY/9wjwznonVXMkpYtd+JQatzVlmWABkT8YHN3Lo6I/e/UOQMZmJW51KLCV7Mj6OSP70SfVVRfXU6SqDIyJ/epB3VF0B/I0L5P4lAH9QRP4NAG/QMDh/AcBXi8i8SXE+A+CLW/0vAvg6AF+QJjf8bWhgY8u3xG0OB2Z+ZMpppdWjXTAGp56biilSvPDsNdjNtpcs2eF6QJP8VMfmhHfgUtTNynsJjoFGy6qBvTE11zpFmIM1+l5rcSmP0IaqGtG9lxrehN1HBoFh2SPwuRaiHaoodo7HKigrn4v6dSUV1kJqKfYLcybAbEE24W7tsmptcWZRHMC81GA4zoTpWWqAYO1lX5UxP2MgcDPDZslFXHNU7Rin7sbKQGAgg12XQdsjU+6jvvl0vaS27ZpPzcnEewCoZXrN0imSA19r1OUYW4XopYjfJZ71MFp4BSbyO9R+OfaQJGA430/4DMrz6hulqb6obs+EqDPh2ZuwteW5Gm24DCyuVEcRjEz2BbOfywxCDuZEmB7NSc/AXAIZs3SIk3T1L6VehdR7Ku5pJHN0YjIsFTIuOPKDcziWzoz+KZKHHCErKlNRCSYsz2wq/vyG6V/e6SESnD8zyFOMz0AK4D85IqSq3wfg+wBgk+D8+6r6b4nIfw3gD6NZUn0XgL+yNfn89vfPbOU/paoqIp8H8GMi8gNoIONvBPA3H3AvkTpls9ZQI7H6CQhmR0SdUdEqWM/7KTBT7qaGCiImqanEyAAIFZVmKQ+ovgOHawyagaeMQ0n3RPlDC4kBxuWI9mP8MzzkdM14iH3ZZdp6cL+PGdfRfBxF/35XIDBv0Pt+M43j8mPao35ZWnEklRiBo/nvo6eeygcSI/770nM+atP/rcibsrNXkhmYXTshaQXll258o7YkmE1SGB+HZHWHM08ITBHn9wyM0yNphDEnK/h7fBwDY2k0v/s6WfrSexbmueEwCzZ2IDMxhRj5h/jBCVrxR+8HJw9YU589/SQtI9xUGoOriivMD45KBNvkleU5JTiv6enTQxic06DNhwB+D4C//UTj+A8BfE5E/iyAv4NmnYXt9y9tIOJ/iGY5BVX9BRH5cTSvyguA77lkQQW0j/P0pr245RQ4HIlIgbBPQWa4dKbVH60SFdOWP90GczSt9HFsQOEyI/zkEIMzTRXTbCDj4n5pRAJk3DwSb/1s5exPpkzqCvseIBiWITJUF7DKhBMHvjyKJu0HqUecwFL7jkdmicC1JcVxOjtLqP1gjqg9xgKkdmDc0SY8HQz6mkpEj44KlFiFNtqw2Grn6HmMynu1Vh2UNbVdR6Mv508I4zqjYQnVsfIGFI65HgGvG4jXpENGKWNiGAhs7dgH0FTYn0/2POwYm65/G6fVPZXM4EQ/x35ufFzUnx1m2veWx+83TCkFPR1wrhOpIIdhIgiDU1QSg0NHLwBZ4tarHSMWFagVf5P79zX542HGspPMVLrHUUouEEYquQvgaJPSTgQjmDC79ZQ9BWlBYsYDeE/pqSAHr6mlqwxOzzjQy7ReYyqu0P3rAP76dv3LaFZQfZ2PAPyRg/bfj2aJ9dAenVEpb0CxofiLaz9StPMQvKcmhfILbQLuM4dOJKSOAeD4n0xPh9elqDvvO0r8fQdWJCJws3onb1L7ck4Fmk6ST516M+BHt79AN+IqxdJ+DRNyFFH9mnPC0s//4Xy332RFxQzClefx2PQQaf4TS/wflJ4CmxMSBkkSl0t1j1RUl57uiOaR5Mf7I25ixwxT/1531O+OJklO3JLo6J51d8WqIw6wyZJFrgMqt9qN2WEGZiRlyRKeXkW1ahyodgDi7Zdl33zfPL6Qyh08BER2L+UKdxHqIOOz3GEURfxZMTh4VVE9dXoxwTZrLbj/0saZzxXTB3bUaz8c+VsEwIAJaWEbNumGiteREp+1sPSDAmk6iLco1NsphV8AJrvWGoxKCSxNrfH6e0ybaYWaJUxn4j1vUqCp1PTheLDNTSI0CYuplWhXP+0ACyywZRHF7RYNshaBGRoEQDcCYvJmXWrxBep2qlliYB5FRXE7maTKxlTcikWEglbS/U6SA17aQiwQD7Zp43szVTopFXd3X6SV2bjFT7EhAXszUcDLjcJZw/Lmg0mDHgoFmQTecEDMrW2zTNnGRfGiuNxO7LdkHcaWU33Ay+JtTcqhHrQybzBR96YobQQ51tRpwHiFVDFCtbWxxaZnZ4e58CaTpSzhTdi/oITTut3KzySpUYACZca4i2QLLKB5RmaMVZSHJ+MmHQpmJ8zbJY3bUqHyFOaA5swlNTiywIq8cawq2vAryLNvZkotyn0yIweVOyMQ+QziPYr15O0rcWt0723s8TxGqVd99zR6M/GsKsN2X2MG47qZOPXX/c1xrKq2Ne2EW5Lg7Pt5rvS24PnXNE4vhsERUcwfbGqfW5LgkDfilNiiSWKV0GXbHJZYDHTSHbi4riWfuqycVFSiREMjzMJKQN9aQ4Jj4OTeWR/nh0l0MDxrDUd+aw2372uhvg2sq8XF3qsE/mch8+fmrTfUZX3MJi5fqV3yAiwMBOZ4UMDMQFVkb8Q9CJnBtbx5ccwmE6WPglYulcedAcJp3H7qk+TBOMbZrs+Vx51NkQ20rJpBxAG2htNj4KylDGBmhkOH+b6oa4Qc6L0N+6bc0XZ8hSDFmrJyBgqHn5lsQWNJ0v0w9koDdEvPI5qGJ+Meh2LPgGNR9QBlIKtgmEbDnvCcYZcEwQAMQca0PffSlGTN45s1wuiYQMYjEDIbJ3OdFWGBVTEYt2aGgwNi2uvCaqTa1ZeO4dHuvrg0z6vuaDO+p6fp7fzeaa2k742lbqOkqsfzbgcuSEe//a6quN+UEFmCs+FyUPFxxKN6TU+XXgyDU4qibGiiciOxSjijAzoyqQe+VO1UUYZ3mUOawyoqd+63hnSmTOo6Y7ZuYvUEoElVweoS9wJLftxTLCWzuLoUj+mamuUtTyo1LWi24cfmwflH6fgEGAwB0+ZNhSN0BzYhO/LjtlY3OQukgTDTYvmLRpiHpYa6cWQJxbTZoglkPZJDMfD9YteOaff52UJrz8AchVvgviPqtgwttCbs6a1p/pSc9OX5s+GlkAeVNzjZqeVW2iwbgyPejiN++62TFRU7zHMcDzF3HGKiCpybSMFDlaQUnZ8bYGNkQviX+laabx8eMWMV2CE6mi8Wuw48CdfbBdQkCdzIzw0LNZLJtrUmJuYSxqb1vSPvKXBJxDxAnckZe1RpWgAAIABJREFUqfAkSWceLyFhr9med7C8mKSySFY1WTw3QRwwCyaX4JgV1SQn3EgPQX2fSa6ula/pcekhZuL/dJdl396nReTX+/obnua3ZHJGZfAONcupOEoN1bo114+VLp8+Uh367eswE9MHpZwGDInWXGc3vAvYjWv+FUYBLh+SHusH51G038EPzjjAZvzGiNTH9Vg/OBbH6bF+cGYIFjtpduPCRjEBRYnxdUAtXfd+cObu1mfhTTdoNzr2G/R6b8Q9vew9OG/o9t5Kok1jIWDuJJrG1fKyN2L/DkqOV8YqqOLMFtMWqidb35reRKsjgDuQKwj10SzigRldndXd18jx3SwdiNjuULMKCtiWEGOA6J1LmqKSg1k6EBkhXeMlhkHI/JwsJTVUjXdXsMe48PMCxszEsbdicen3UMoC5Lh3B8zOiKl5THqo2sckOObob9Uzzm8PM3104vf3NT1NeogE55cwPmT/5YP6zws7f0TyMAtnhdxuixvvYtunVN6sICMqCN+R4WcmRdnClJRTMDHz9hmWSbxuOSHiXNUskTFLLGaCGHczzYEX8UWuRKiG02l1FZbOgrId2UQU82ahpVVws32ozDScDBNSi18DwbScpuqqrVmrBwQV2nhEgMksxAjgHO79K202sZjORZ1RmERSW3b9b+0YgMjMX/ETb0SsKjSWSTScq9EmVomRsY9AEH03bEzQTq+J1bc5UNqYEI70JjqtxtvVxman3OJ3mRfy4vOnGPHlItwuzn2XrJqsHahuvh8qG9xvBoXv+3gfjv3EfxV4JIPcp7Ec5OnTSFLzVCkBmPH2mz6n0TwwIH703Pu6LAUapUwjmH426y7MsJskkL91YhDdW/MBSv6SRDpcBUj0md9kv1p34VFf0ycpPYTB+Xfe+yieIWml6NUL4CoFA+6WxvgAwPIbwPohSQTm2MzX+83PzQJMZ2NgOBbVhnU5h7O+6RT+c853M5YtFtU0VazO+IjHmjqfZzcTn9bqmJ3zeQt5QLGoOKzD/TJTOAXFSgEvR6EYWAVk4RbO5AgQS6gO7lKoBpY8gRz5bSJe1XQSjHAKgS2aJLA5ZwrFUEh65eUqKZyCOxHkOlWcsShaSbUgyFiZvCCzaqYgHAdWDdUMh2pYqqY+Y5zbfamkclZRMeDTshn8ydiYpP6i+bB2Sf0loYZhXIafBiU2QqbBpteVALW9tRGHHbB2PH4fE+GPGrsZ78k1S6djC6igNy4/9qd0KR2arj8B13Nk3Wf9PoiGjOekZ0L5OVzrO9Qx784YvYugYeRjJ5Vrj8nB7pqtrEbBRY0+cDyXqY80I4bBWT+GWFTvi+1+mekhZuI/+hwDec4kM4GMb+xIELLiMinqHC9/ITVsiV3FGZ9yQ+oo84bcYXBcDbJUlw6JwE3GVRRiQThZgjPFFjjC6ExTdZCxENZGRN1vDoOSOTmQ+dJcHZ3IDBeSMC5Gd9yIN/Nd2YUTYNtQQw3h/3cA0qO2xizMPi5NY3bVB81RW3yjz4tARxwv+KONh4GnzBxFvCtixomZAC3USjTKVtbnZ0dquX+nPZozdLS7pFTeNx9jojr69J70jhWPaDOQlfvp6QZDRNzdoG8Bja/fTA/mJNXpSPMGekmCc03S8dj0GEZFWc/1jul9bsNJgvNIVuqI2eHE35YbS8g6NBN/7vSqonra9GJAxqqC5cNN3fKmorzZGIFTbHqe2AcOi1YLQja6ysV1QoR86RT1eFYMLG7+dmyHFmd2phJm4swEWV2pHSNjTgHXYGQKSNJSKko1M+wa6g+mYaEXiEmaijogcSoFYSmRQcuT2CJhEp7IE4RE5sQMGAJ/UUSd+eCo27zxRwTqvu+tZgmsD+NJ5hLM5zTomyMrzxIYnLkIznbvyI7+rHdWI7GKKNRfAU7mV4VVQ6yCivJxLCruk7EYjMFh9RaPkx39HTk59D5owKN3XKiPfqMeYaIupZFvoL7MrsWZ3ONdQPz33bfgS/1cS4mJvEJm9Bx67E66vvD82BKrp3f03EesYGLYeGk8OESM+jkyAT9K/t10VlRRfsBws7UqGRI4c9ThfCL+FDPMvWH5KP81fdLSi2FwIOp+aTgZsJj94PTv9NDRX2fl9Jil0A9SXb6polTF6V9bHIFQNbWTf0gjWAWVrv0Db2mtxUHGFXEzTbpRfBz55B31+3AObEXVm1v7HIClLxQZW3O+jZNP3pzv8apqY0rifuMeeokA973SnFWS7Cw1JDhVAx9QySyVxxnRxLnd3i9LP6aRxOBtJDijfO5PB+WXpBVPKcHpx3Lp76OyXoJzlJ7yANyYpD1F9iwdPnjynDEzYfVV9xt8QcZeeT7RY781yTEkvRsZo0Z9O9YrmGZ+psrjlpCAuHVd1fQcRwzKnsmNq/797/E8yocVbknS0yjnttv62L2BPNcV+/utEMzbZJ6rYt0W93ngB0ee3YvxqwTnqdOLYXAODw6mWrpX6LZa1RUp2KbS8dLiT9VVMLmPjAoDKlj5uhTUDZ82Vbh/nHUpgcFRHUYTX9eSLBPcF83WblmnJOFZCQtioGAG5zVz0qhji96yja8q+8wRP/CsWjyfg2pWJSsf3auoGt6EN/lgSEDMDhmtJbwItzW6ERwzTl69x1+jsWjeaGPxDyaFF0bHm2C8wCjVSWblVM4bzV6bfxn3ELSPyq9LLt7VwuTS4trn7xhz5bKQ4PAztXSEh7g2vofmWxp5Os7lx1ISnxPZz3hjdltiE2tmIqsgeSpOuJFOZ8nvp6ovI83TMj8ba6ZIsFfGorS+6YCCzozc1it6Hiw5WxU7Pzi9ZI3/jFANkXvND06vNr2mgjqKtfW20cTZezJ7Ml7lTFTia3rF4Hyy08thcIri5qs24O5XXnmJKpJVkwtFiMHXGnFMOIXFU5z+Ei0+4VfC4JAkYa3iYmYt0tFEMq9keiy5KLQRM+2qsQBmvzEhhXEfJ1o9Pztoy1KbXkLDUpawbdr6STiXGDc7rfNyz+F4OXwv6PrWXX0FOSvcyk84YK4QmBAGH1eizRKakaO/HgOjg356fzYTbcY2AzbvzQePjSPmhMG9i4afm0rzbWHRphL0KmJMiTbRYyzLonFyHkUTV9owWKJWNSRqlbbAo2jizJAqPcfEqPozDXXjUun9wl6y1F539fEnLA1J3XxeiYGZOgYG29yZE74jJoR1KZcYGMtLDNBgQ2/PbLsHhKSDGRjnJVUTA8PPlDd/zr+kguolZ0ehGkLCFHWvMTCXnPgdBtu0cQxUWAAB4em97Me0GFMDxXl7mqssWDfzcMPiLLjDb8qHh+N/Tb/104thcFQF9/9fW3VOWt3020y9AbgZeT2LS1w4iYYkplbxSOBC0p7wZCyBoyARc7N6CgYnpDbiYGF2VLfW4lKe8EZcfHFea0h7midjo6GYCueTBIcYG8szSc1Sw/naQhIc9khcOilLSE5CJMyO9NxZm8Zpijcmlrg0R3WZoWM1F6BkbZQZFfiYMoiY1V9WzvORN3ZiBLxHkiaRVp726aRm4Hx38EjbBDMwrEY4si5JTA1tuCP11zUVFc9HX8dpYEx7VF/8v8vSlmuSmGBeFD2Tci31NN41XbJEAq4DhFO4BDmWQlzq+0jixz5sCuLwNVIzMTaFA2n2UrQjVwBGl6UyXJ7Uc4NyPoiNUhV15pnf9yaE4rVzP4EcbiT6UzL7PpCISmvdOq0uoSlaPFyMqaomzLjVmwGR95deVVRPm14MgwPArZpkQkQTN9MVCcugclJMtCp5ZPGi0BpbmUcTv6n+gU7kY919wZyqMz7TRHUn9WjiIuIm66rR56VYU628ev48rancQbXTOvxwJgMtE2ameWjZaEt1R2KNmQgQ8YkimxuzMCcnb3GytHyVwBbN5CWWQcQC9fq2eLEvmyJkbYTwOTMj1CNTF5/IpGEMFIbXDeYlgYxF3OFdw5NsbduEbWMNhs43D8QfzYxXd3U4qrVC/L3jDYh92aRNj+ZBqb4lBhzzBjSi16uOIkDpMYiY6/flDJ7uN1CXMAzaAFweDPZR3wKa+24eLm0QzTon6sbGnRkBTpeYGZ6zhyRmfBLg18bU099+V2TG5mgs+/7EVU79MHneE3MEpPqX5pQZ83AWyMxQ9nPTxkRjIDzgZYONfeElpifaHY2b6g/vrVDda+zu06V28HlNT5leFIPjqWLzhQMPfAlEXj2LY2mAUDFJEaybtKaSC1Lh2EcbTmZdSjBG55IkOLWGlMWHVCXFlDJVSRFN+UDzG2Mm4AvhdRb2VYOwNqoqWKitM17byrWqhC+bGoElWYJzrhyLKnzfMIPzGAnOuYaai2MsCdPe5oYlOFXVvQBz/rmKSxsWLQmP46qmre+pZl82HHZgIslO+LmJE2UhaQSHLmCMRI5xFCdNN5ij/Da2bSyO6YrQABxOgeNFcWiAPl4UB3cEmqTQ3uZVc8wroy1Eb2F8VGc6b3NmuVXErfvWNO7Alwn4fjVtqIXmuC+v7F1ZNYc8IAaawyUEfsZGHczu/UpMswK17OdbNUut7N3hvlfCrtmcnZXUSMQcN1Nk9fpuPcdA+U7NBOQxJLUelSmNixNbGY76ZiZkVd1JTzj1aqYez2J1qEUH9LXrqMQSppDA5j7GVlQKjkS+7zunI/WYra1nVFdRLXJGhCSOSX21ovpkpxfD4KgCy922Sd0qCh+L0ZgXt6iawoeNlCzBmYzZWcUlOM3R3yYRIAlOikV1TYKzipt7q9KJmz0Mb4zOVGrgBEoFauRnUTVJD2xxk5BUCUki4tRMYQegFKAvpCUCHZ/U7fdK3KtG40KZAxQun1ofm66dxS6OiWiMlryRt+Fcfh0+yCf2x6SdFGW7Zjwrn9hH48gSnHjWQ3p0qmepDUszhLbR3qleuCmQ3XvUS4+MhiCkfxM4XILAqK9GABEqoYV+UM+zV4vDV6zITIO3pYdtDAv3PUtI1GoNJniSoNFwS9t3Q3PpjCVNSIpFJbx5956q4wlyFPR+/gCQWpYZnFw+epaWlppbJBUUHQxGKeObYw44r6aR7+tfYy+O/N0cgYyBYPpmjYDIs45jTj07yPiJ17yXnl4MgwOQdOVDdYd8fPS2sCNNghPb4XTamJBHSnDs49Gqj5bgOPOxTkMMDsiJ30MwOAkM6ScoibxkubSd+jowMQN9R2JrX4ze8SO99JEfqi0uMFWXTFvb5rtvy/54emutXj3TqynCR9HYG0uvMupPzaxmUuonhWeQvPizn5t+nD39EW2u16te+tAP2dSXTt7d+IZqk4RGGidmakZjvaSGGjGxT7FljEy5H5KI/3pUeoh7CNXLM9ljn5iR6fP6a++j64GZmpEVWmZgBlKUQRsgzysfIvpo4X3qPR5n6dFeMsbg40Urlq2nKtXBxdViUWHBHdi66v0mxauK6qnTi2FwRICbDxoHM39K9yDjEioquVOUyZgadNKcOBd7/hyO/IpHIddw3NdhcAxYXErUYYd9/KFOpULtVLeZsTCo9SESnKlUSDUA3dNKcBJ+wX4Tc4DDFJKevAU9VIJzjNHIcorRws7JFm2OccW+g/b18+8RPbaQQbepMOi3x8QwULiBPCOf2zHt0YYYFnXjjYxpG/3RffX5vHGyN+LeOkewr9+DiNkyin+j7sak00anigSuTUDzLcUrpGlMrNbzPjmf2vZWa14XQYPHZHWEaLD6UlX9cJGfacyfh1GR/P7yPYziLPE73s+ptztgbAL/tv9m+uuRdPYhzNi7JGZsLzG5O0Z+wNoWRADVfXvDGG7RxDHjFs8ZTfw1PXV6MQxOrYLzRxti/rQ4Y2NMDQqgFoxzEdTVZMyAS2oUns9WVGUhU27zG0NWWLKGVRabbKt2kh2SxBjGhjfa5KyP8DV+j2wOTh9xv1Ffixx+Dcn/GF8Ngr2nXmDDFpFVVpI8eD9BYyQmX5UlCAdSFuwZm7YJRDtetAP8qSQ9oGcpgQNIQFFq7xtGJ8GxfhQylOAwvWsSnEmyKoudv42CbY42iUS7G8c1Cc7ICoefEktwMsg4g4hHKip+/Xx8JFnsJVlW/9DyiMdNdV1SRA/pMZDSS76NuM7bhGt8CO3HphGjn8Nf6G6teGzqMTMj5ofne4TRqSJDM/GK4GyvYXAeG+Kh0coSnEXv8CHuHk3nXdKrFdXTphfD4ADAsqmXpo+KW0mFJ+NgdtazuJQFALC1k6Kez2bg63mgolp5iSrO4CxLcVVUYk5qOABktRPXW1hF5ZQJwLmWHBDTgNQJRFycKbjf9MsVUX5m2rSRLVocdCsAzhbaQaMNB8z0Eyrls0n2XQ1z+XMVB0sWEdyZ80MCJLNPmsJ9D2g3EKz4mDhQp5UHgBlUTgBdmtdzDcwEg5IDgCqJtjptCmAJ6WhH/5ainPzkkLgu+8+JtqqBEeF8CpsW/kE0X1vK7SQxHD29pWaJwjAIJ9FmfzIPkeCM+tZus7wmwdGD+z2S4FiqwNB0eZQewoB8nCqHnlW5pjJkleBooz1WD49VVEWz3yvPN6Cw6DAqeKG/k7RKY3zO6ByopifI4fNjCY4fVrRg2iQ3Rdrp9yRfgRt93i3ylb952vRiGBwRxbxhacqkgMd3snJAHXCc27G6qq50OrcT6hyMktUtlcrJUkuWiD81lYrJAMyomIoxMBEos0yh/vJwACleVHW35mspBKxTnKbA6czb6UQlFiEz9V5VsIrsaM8lTNB7U+1RrCk+HTPtGHcskjOZkE4C738STWbgbRwSlmxQzGKOusRjWDXrF6sfEppJ4OM2upPESVDAgNUwrQcxaZNkYKktQ8botHZBwyVTCH88XAeaMR098BSqri6YCgOcQzyz0qYylazmMokBPw+2yuF9KklCnLF4HMj46Mz/EFnAJVXmJdpHqdKcGI2HbBoj5gh0n0mFtRVPXb5j7hIyKaug+gCklcacmDthemMVFN/vSKK2Vw3Krt2auIA9pmeliVk1MzBxD8yE5PIRg+f+noChpEbpHnuMTW92fiSpuSTZGVlRneXOHf3VTZR/p1/Cb7w6+vtEp5fD4ACJUbHkUcAREpy6sqO/kM6IqEtolqXkE6Wdbs+Tl3M8Kfemu04uqanJK6/gftnakkk2kM3DG40cHby6pIEkOFCX4PQSGsbYANncetHivjN4Mc0xpeDBOUexppTGqpTPUpaF1Gm9l+SFNoo2HyEtKcj9pdO7S7qCsch9tt9JycszYk1mCUmlfPZVsmiXv80vW7Mo5QcuQ9LCzmlvnEpltClWOpXuNrkLJ++j/Es+Xi6lp1RRwfPjNyyM4sQ+QdxvE+N7mPZEzBibRIdvo2B2J2KepgJHWiRTbrK6cmYShI8TeIe1RkFBMFiiMZiErSNGx0z8+flPwqrRHA8q+YWpwchbKtRHSK+E5oSejcrwWXpfJbM9KRSDYfgO1FqKkIaNLJokHQA69aGPj26Vxsd4p6O+R2liDI4C522EE04kwWm/N/IBvrJ+6oDS06fGyL7lR/kWSUR+P4C/gPaY/ktV/c+68n8XwPegnZm+BOC7VfUXn22AT5BeDIOTXviiKAYyti+w0AfGZuISptycROD5820NRoleUAcZzwEsntfQyE+lYt5orKug0iplEpx5ru6vJtHeFpebaU3YHC+H4mZufbEVlY0dCClLIZzPLPXREpzFpD8xlU5biWFhCc5J1CUNk8CdGQoUJ/Kr0sYhKSI4g4Fd8kNYn1MJ3ydtSmPjMRq20K60WTNt3mhbMM1tLLQQm0RINfoWhCSJ+54ktqtZQqXE0hWjt2CMk5lEsRL+hyUql3A3I+d/uzoYY3BSvjVSbvcQ+ci7p4dgEx6iUmLgNTOFSVIzkFIwjSMVFqu/uA5LazwEC4/J64aZ+K5fkuCA6o9u+QggfGRFdQlkzCrF3uKwl24Be6BvL2E5ksjkOtfvZyS5YQaS67BfHc7fWYjBcI/td9HnD9XwPF8TICITgB8E8PsAfAHA3xKRz3cMzI+p6g9v9f8ggB8A8PufaYhPkl4MgwMVl65IAXCyV2n7uGf4l6UVDhZGgQOLpWgyrfaFawnmwkHG7HW4diBjM/tGgRgWiJgM1QiaWdYQLcdCmEM5uASAxrSCAm9qnAw4FpWrpTQwKym2FElCMg24aoglJC6NIjUNA5+bqXlIjUKKkk3Qc4ynvAEB7JiPYk6Rvp8lO0pSGVu/cyTzDv9h88rgbmQ1zQjDwhKhkRVVU6eFBGJkReUhKDTfu5/jqZ39bX0fSna2sY8YBKa96pjGqsDc5X8cVlTc/5EVlc0FgEMrKq4X722nguL77Og+xIqKnUH2DMxTWlFdY160qzOyonoMyLi3xHrXxJ6lj8zEgYM+CWycMD0J3yPej8XvygxsSaEkjLF5Ic79vhnAL6nqLwOAiHwOwLcBcAZHVf9fqv8pPB//9WTpxTA4igAAz6c1BcD0OgMpjFZxUSyIUVnX8AhcJt0xNszglMqBNMM7cFGgOmA2GJIWgBGez23bb+B7pkL5WrBYOAVoRALHXo0EwOuqNqBsX86bfI4HhcRksKfi1neOJm75K+Fa2Hy291QckcoH5Qhvww1A2q7PGosYe35lL8n2fXIeB9UEMoj3TP1b2+RNmFV2dF98v0ZjQmZgFurH+S9ijIYgZGLc2GtvQaa3DNqy2fI6uK/soTkznIszpUHDN84aKt/2nHjzbfczHzKUxLxzuVUozIDp8H6YgVm6tnZfq3/XeeMcMyExPr5PZoCsAgfbTHgSIXD5AQPDMc9GGJySGI/MwIzqH2FwmIFhdVU/B9E2Z6TngTx/IxwMMwxHVlSJvtOKipesqEaejBk0bIec9qzt3c4cUjDy48FZeAaRCVN9Rkd/un8e75D+CRH5Ofr7s6r6Wfr70wB+hf7+AoDf0xMRke8B8L0AbgB8y5ON7pnSi2FwRBSnm80Pzq1C3IeNlcd1mQIIrMRMSAk35KVEHRGNBZXy/LqoL8hTqWEhMKl7KhaVZBruXogZjOvO/UKfXgCY07+pCqkwNMWaMqZhlVArGFh3QcFsaqFVk0okVBuKldQ3sYhqijVlaUp1xcfBtK12yI9M/eVbfpRvFWYqb9KebSGEkJoog2QtWrf30Qbj8zF7PxmsO/vtXFJBtVyOJ2XtVgnGpxBtVtUp0eHTu5cr8rM+uB6ptHitHNHjuome5A21p9EfqDMGJ96/pzzt92kkbbqW+s2ZaYxAxD0D09qFFCaDXjUxJ9cYmHBIN5YwWX0gh2PopShrxwi0PsZSr1BBZp9CWW2UH1rPpHBpPzdAZjaOnPQlEDQxKt6H6JB5aveQ619yJHjEwNiML4ho4hWr+8FJY/3kxqL6B6r6L7wrEVX9QQA/KCLfCeBPAfiudx7ZM6YXw+CoSphwn2voyOkYPAYZx8ekq6To36YvryUwLiHBCUErezpelonMvOtQgsOxpkrNsaaAJqnxuDeFYjoROLlCHLvDIOM+1pTd35mkR3GCDdrnWlKsKT7t7yQ4ElIOjlW1o03XDFDuVVR9NPGRBGdtu+tWQ5IUg+NctfnI0cRD8sRSpSyJsUWxvwerG6BmTTRYPZbvd7sm/ZczoRpSh4VWvWmiUzgy7ZEZOFt5Gb26m1+qs7XrzcBt6vP9bhsNskrRNlz+f0pzBk+CoK200bGayaSnzByoxpz1+b2KitVMSRIheTNhRsXZbcn5Ri9A3x2ThHHiuQxGM+ixFGbEnLa/jYE+lr7049uZ1g8YksN4TQPGo/87M4zb+K4EBX2XdESapTq9hAeIA5Yle0cLJIGeexWV6or6lCzHb630RQBfR39/Zss7Sp8D8EPvdUTvIb0cBgdw66V5lYgvxcjYo7auy1WyXrr8IR+FDpCikCvHzqNYThFbSof0RRgQmstHnopTWxPnHqwihXTavWO8a2ccpj0CpbLFzWH55SnbSxUG+aN5zeXHEoFr6/ZD1vVr4voRWPMh58enEGsf0XiUhOQCDS7zA4Pkzf1t+780ryOQMIAUYeio/XH+VnDw0KtmCc1RnUv5R+/iES6pr7OjS5t/Gxd21yJjhqfHx+z6u/Ziv4cUVlbHH97RWjaKIp/Ln09q06dnnMq/BeAbReTr0Rib7wDwnVxBRL5RVf/u9ue3Avi7+ISlF8PgFFHcvmkimtObGjsm+7xxnzj5LbsU5+gosZoJQMLkuBiYQwNUXrQkWQr17SokbfhD4LPkxWwUaypOn6EkysBFzg+JC7r6jMdpeRkYzXVt0Wn+KOD5I9BqAjhvXTeLryhnqYjdVzq10z3ZwsYgXuV5aJVonmL+fFoGGw8DhSHjRaoqrvHEKSUQ8pV22bLm4X30NI580TyGBqsfQl0V88fWX0L0ueuRJdhK88Cgb0HmM3ozcQ6Y2cCmUS+pDOm7kWFbk16Gurdsbf2+1NoJSVHifWW/PhYnrreEYjUgm35XjbnMzvjs2wsJT3oGpk6ll68IYiBV0nvJsZxasSZmMElLtGvUpSqyO2i16jGXFAuma7vN2QEDM2LEmIFjy6lRBHS7DouqkaXshFmfM9im4JqX+adKqrqIyB8H8JNon8V/paq/ICL/MYCfU9XPA/jjIvKvAzgD+DV8wtRTwAticAA4ZgaIbzI5+uO6IylHtxAwNsdWOpeylBrlAo8zta4lO/GzBWiqKVq44zzIkZ+1qwrH10yikMnMwcOSaCoZgzOyjjg5vYSCSeWJ8SEvx+xsz+hYuYhm2saslZDQnMjsnC1r5gI3E7eNYSHdeJEoZ+YFJbAxzUy8EV8FvnvZHZ4IE6XkXEMQ+JkiSpZ0gcFhXFI18KpIwuX05Tar4d8lNsk27qDdysX9qKCGTxXe8FZk4eNEj29Ze3pI9Fii5ngmpkebddqUCftk75NQ/hEHdySNYNrGDDH+opVbP2POLfnYOWAuRylLO98uSfDUT54uSRMfWwfIjHLyXnwwZywhOWImGNDbt2tt80Fr30cwQDuQtB2QDg6XZcBeOvmOAAAgAElEQVQY9SoqtqKyxIzerKGiEhToFm2ZVVRneb5gm8+dVPWvAvirXd6fpus/+eyDeuL0ohgclpJY8pefjnRSxswQXzPI+CiVa3qV3Vhis7lUfqn9kXorjesaHd8Ag1E4ap82KRp/nPyDiRNaZEvyJtwF8oyBAGhMD3syZoCzg4lJitLKg+EIHz9Ew7EndPI+8GTc+6phzE60i+vHeDKGMJ0Y34gBYk/GLF3oPRmHJ+j9+FGaJVgbBo2b6K0S85o9S7d0KgF8nQszXhqepaVj3LaHthLDO4lgZvv7bZwqcc1AbmYig3ZwGb0jP//d+jghnvWcaFN9xDe+c+SHJpHp/Ra1+5XULiQ4QCVpjT1XX1MkXsA8nqCHqmDJTpKq2fhIwhMMacafseNFZlCVvuccPa2VsSO/5JyRcHOex3OCA5UzMSH2ffRSuJGjP05hvq/EpCBdXxEwASiYNgnNrCeUctrahhXV+2Jgj9LHoO37sk4vhsGpVfDRh3G78+0GADYrJvKDU1dJzBAvAAwmLhYzqYaH2VAXiS+K7VS6fdQE3MVKKhs9NhMP8/DitA00yqfpZCaufJrpgb7bIuBj7s3Et8WycjTnMRC4mUK3a4vpVAQ+N1UjFlTykozw37NoSUDVUEu0i7s1+hYBXGCk0edZ4eLdUoMJua88bnt40fc9xblSQpUqspm4n2Ip1hSbibuwpsb1mcDElXRbFWE+vpKERoje/erkIljjFPTOlYDFpLNZa4w7WUIRvYXmOrD0SrTjHis5K4nnQaDgGu/LUoF7Ooob7UrzsJBlTTud2z2r0/DNS0B9R6wuIJigPO4oZ8dFXM74H0vNbUDMjyslqH6YfceY+VmnaOcCtyisANbKEkeTsAbTwwBxZt4tsbk6S6yAYDTdS7ZmFVXkR7tKoHm2IGsOIbNEpd9wWY05BChT1tFmbZZWI5AygEMzcU5Dx32KoVTpaBwF4h7ZP07cjSVFnpPX9O7pxTA4pSjefGAYnBVlc/RXblu5zLHozTfVGRwp4dUYoJPFFB6Op9P+C2oxrLbFbK5ulVUruaonT8ZsnjktxdVL87yG079t5zqXMF68mRc6vSmmTc1VpHk5Bgyz0B61q5MA3Eyk8trGxME2b8lL8lwnnLfVRqC4NdoqmDbrLgvAWUTxxtRmWnxMZw3pzO1Uk+TETv5FgFtSbwHNqaAxbgLFG1P3qcCcTC81NocbUq3drcGAzVQeFkYCtja6pc3cTtSrhqTjxGb75OzQ1WPBIyVpzywIc3qS0Kwlt23l2aLqqG/21nyyjakIJpPEkITnxn3VINQCCD7ghiy0YvvbaDvzZM8/8FGTqI97EWbY4dKZmSy07qvQcwd5rbb3X6lcom+1mbH3dZuTIiiGyaLPcPK+w5WAtW35MT42B2cJzql0TCSyBCeFcjiS4Cj8xWRPxYzRsftiKUsfjiFJTuKS8vdSliJxcCkS8c1YgsNuKDgx3ulYBRWSmNTWDlZy3Q/OCKDc512KDJ6tuvRwTJzsfVi14l6bCuq+fIi1tsjhVdvvuf4m7srzRhN/TU+bXgyDwxKcMlXIPPgADlRUD0kjx4FRdigjDclOV6eXCAGxKLHXXnYEmK4JNtc8H4cUpdd7ryRBWdMJkNqRJES2NkaD4z4BJuGJ8mEsql3U7Wi70H1aOUcbN6mNIvLPKv4y9/GxnLZv4JLGnOL12FyDT/4SYNLCp3aTXAXWQEp2PGcbjIpCCs9PtLXTvqk0ue90ei8hpWJT8ipI8YySifmWaUgCBZIJvavFOmmFS9QkmFI2m/c5E/Fvhc3iq5JasfA7QJIOxCY5dCJIG9aq2dTdUmEJCKit9x3la81t2fkhm5LbF5edH1JDjfYxbvL5QtyIapbgmE+mlRiSUTT2iRi9XoJzySNxb0au6Vs36mMJDrCXIPR+cnpHflbHEltisdk+p8dYBl5iVPZ0x+tsn+8UJVRUE04kxWl5RU6Ynjma+BM6+ntNeEEMTimKm9smVUjBNiM0FOq2C+z84BDzYb50klUUi+UpGOdkJ8ui5D+nuLl6mSR8L6h4/rJODijGEoxNhFAo5PSv0AYeDEnz4BoqrWCYYjNeyQ8Op1hc5PAEFhZQfHLcn5QVJLE6sIhgzM41M/JsRZIxONw21bcNyUGyoQJo1hZ72qCNrgGH1WkUYvSiPGiQa6UOfBxMqTGZMwN9qe8RRqdpi2Ijc9UWMmaBAcVA+9vjXGnGjkSEdaTYYIxh6sG4E6mWGHStIIYJeU584xbCNqVnGX0L1U0YHAfNjzE4K/XJ0cQtscSlx+BUuoeEwcH+urfUAh6GweG2bK00mjPhe39LDE6PtQHlR46mwnfF4KR7Q3yTI8v6SyBkx53p5U3/Kgj5QqqqmXnbMDgWbHOS0zNbUT075OfLPr0YBocd/c2n4Gpke39lpoVrymopvvZ2VZKKKsI8YNeulDCpTCEcSsW01alVXJWjWrOllW1UdhIsNXk6trSKhkddAhxXxMLyGD9cbF6e8rtFcMTssPUVOwLkzbBSfqgoBEVDdQY0CQqHcnBz7w5bFKbkuS2HkGh5cbJcaHxCjAVjVRZFYmo4PIT1XfzBUzgFknT0UgLG7zgmJpVv7Wo8s0q0U4R1YiAaLin6BBqo2DSPayoX907dS6xY/cVODm3+TMw/CUvlEIFVlZmXoMcYHd6Ajd59sjzTNH9n+sYmv59Qg9xx2+36VGKeGN+zSg6dweMSiWejPifbtwdiruidW2oOShmBWrOExhkw+g4YR8OeoC2xdIgty9j68Mg1zzo4obBEoy/vDRl2wVnpOt7XnoZ4/kXmhLbzXgoUrhvGBIauGJCtqA77NRVVm8Gt/rpz9LfqGQvWMZH3kNqa+GzdvYj0YhicIooPvqqJaE5fWbEx65Cb7XcSqJ0QicHRmiU+oyRsHjQqLwpdx+VhVk5qMfqmplKxIrAto/ZxohwvVs1AzK6jjkUEVwgWPln5IhwhElZVBwhbmdWNjdakC9lE2bAnq0iSAliXjJMoQngS6psXeDYjd0/QksddJDZOk2qxGXkAQslkFkF7USTpgV2eiFkNyV48g1k0AkFWo9rm3TE2gp0JOZDv2xnhEgfsZlpPp2aS0BjtKvvFn6UV2bSYsEUlmAIG/zLGxliZNgYrj+crJc+J4YjanMW4E3bIJC0EBM/Peps/YmQq3Q/jZCZiSNy0nnEymqVujO+ZiMlMtG1OBpZQLG3STnIye334hB/5wemlMEY7UparZNyNxuWwNt374B2YkM3AJ6FxA0CHo+klMJbJFnuWrvrBoYNIP2R3d3EkRXamn8bOOKTuYJb8+/C64sz7GXXD46j9PiNz85reT3oxDI4CWM/bwnRPEo0bqjBIzNyIUPwp3Z92Wp382+eXoqhX2PSe7ohxYaaGTblZDfM26bHtxp5U+zqXifZ6esYOXUopKjiu6/aVpEAcKyiPdTA+YnZa1PeeLtICPYomnsvphDrgjdkRIfftfXXjZCeC7OTQy7t74eEr5fu802CVNkCuO6LHz4Pr9dHb09h0/8tzxvmV2hS6vnbqDWlAXCvGc4mD/GTls/1OXd00r9zncExE72D8o/l+qsQOFN+qPcZ+cPrE0hz+++rYDsDCvSPC437HUi32XVQATBveZpITtZ62PirWslwd75MlvX5fr+lx6cUwOAAiEvh9CfPw+63wRj0WlSrG0cYR5uNKgF6uz1gXE0GwGXmlyOJGx/OJtovSa4lI5QOQ8UqxqnqQcTJNJ5PxXd90SkobVMqXtPFxrKleRZWC+XWgxzg9CY2bVVo0bgQNLl8H7dqcqddnxqc/JfYb7siiRGl8rU3QS/ezzZMQE8BrlNVn52rJPJb+jt+8CehBflLJYZ9GjEwuj9X+CId15EyOMTOj1DNmR3UOcKGfmPQYle+1NGJ2LY1AxH1b4PIBZcQ4Hta5kjgI5yXT5l59dRi6gt9Q/pY11+mtpHpyzAAdRRM/SmVjcsStQU+41dsHtX2q9Gom/rTpWRkcEXkD4H8EcLv1/ROq+h9t8TA+B+BrAPw8gD+qqvcicgvgLwL43QB+FcC3q+rf32h9H4A/hqbQ+ROq+pMXO9eIPzXdVDcPL2+2l38CbLEvJ6CQA0tJIngDBZeQlkyhlrA+6gqUyXA01TftaaqufihFU/Rx83bM4uR5WqHmJI0YIOt7nipZvwSDI6KYKTq5txWmvS9n0N6pMO3iYGqBDr0gh0v6XL64qoLUMUW9fsUx7TamCEraVCZbO4mF39oCzcuyWanMIuQ4TqlvbH3DVxVWj6mQFRIBpU+iTpt9yDC2glU5YdatpLYj784IcKp7UYamyOyselOnl8vDGSCPK8bEQFZ2zOdO61jVQyrXSbQz1d7Mq2tcZ3r2B5lTd47+GL/zNo7+CkgFxSBjgTNMI0d/E0lZppLB2ErzE+pGP6O4CgsgEDKpvybiLNixIgkjtrY2r9uMKaljqN6UOJXMCebHm+kBHZPDVnyO74n6TfUc+YzvARqQ2N9UyaBwn0uMk4AClxINvyta56auXqi/sjrNkl0fgYyV6uz6jF4S86P6qpL6ckvPLcG5A/AtqvolETkB+J9E5L8H8L0A/ryqfk5EfhiNcfmh7ffXVPUbROQ7APw5AN8uIr8TLTjY7wLw2wH8NRH5HXrpDSW/NDKT6skWoiKk48jBLL1uCVPfMinKTPn+MRnTU6O/Av9KReBMzTTVwN1UQXFgcWyo7ePc6ps5blUHIXOYiEkUavkdyNjaNl8cwYj05VkfH/ifSWqKuzPR+KZNfGW4g+aJV73ubNZkNRaXzISob/iSGAGrS/goYoAWjU2v0phmiXsbMUA9/sdW04LwjVI1NnZUtjYKZoYZoPBl0zNAsXm5v5jECBCTYVI5cCyy7CfHXvDeEurkbYP5YcubE9E2Bog9xjI9ZtJ4M4xy9W+iL7f5KySNyFZZgvBaHc+MGSCluswAOVNAfbbfeP8tcVgCfi/Y03EKb+GbKI2bGDmOIM7MJDNUrBIJ541ITv98KbHbkozHiThNkdjbdhtX1B9t7/y4GOjNVm2WWn4w3ly/1Q2pJrcr0kki6d69DgGTkrUSMSeHnoqZgb8AGMaBdOaI8WmfuzFxMZZZT81zcZfOeL5QDYr3o458yelZ3TdqS1/a/jxt/xTAtwD4iS3/RwH8oe3627a/sZX/a9JWgG8D8DlVvVPVvwfglwB887X+3fw7OdKgf9L+NT842IOLe181dVNNDfzcqDaV00ilxXV2bVQO/eYkTMd7TAV6eVE5SLIpkx7cj+RF81r+rl7X5qHpMWO82P/BOC3q/FFIjLfFRz20/+dMl7p/7PvwFOldv5Gn+r4MG/QQeqrqqhu+rvZPs+qT6/T9Jbpdvl3zPwN199dM1+Z015bLoK624rxV1S3dRnXtHq1eA/7GPa41xmResO16oTb9P1UM++Y6i1Ys2P7JGarr9q+2fx8DyFif6N9raunZMTjS2OSfB/ANAH4QwP8J4NdVDQGDLwD49Hb9aQC/AgBb9NN/hKbG+jSAnyWy3Ib7+m4A3w0An/mKT+H2q9oLO30KKDfbKXKmX1NVnBT13k6WQCHGnrE55sG4kCfjsh2PJw1T7ukUJ966Vo8FJAI3NdcqmIkZMmnOPIdKy7we86lrKtVPiBOZU5etDGhiZhOxM1NlKqxVBROpsPz+isLMfSaRdCoyiU9R9WCY7MsmpE1xsl5I1cM4HQFJvkCqpm3OzhrBMbOfD95A4/SZfdVQGFE6wUYrhVEsSXIRFl9FMnh7ZzrbSQ54g0h+Q9ych07K2NdVxEm+ZyDiHjFcyViNMAKQXsKMvA2zdGkxjZl/uyX3qU6zQyD8gCF4aBoBx22zBvYqGzanrt1zTRgTxfC9SH0z3cH4L+F4HpPGsqHHp4eDgq8Puo8WDlxQUWmuz+08UjnkIj5HtWJ5TpDxa3ry9OwMzqZG+udE5KsB/LcA/pn32NdnAXwWAL7pH/9avf9S27JOtWK63V5yUx1NAt12hPXDBkQGGkNjfLwUYLkLR391syGd1vCDs2zt1qWE/5I1sCz3dzNWC6dQgnmpVXBe2tK4LAXFzJ9rdXHx+byFRKgRqoGBsPfrhGXdi1krgHujXVnuMW80WlujPUrnWlJZ2eaqxZoqWx0bi3TloX5wBozWleR5GEDpxtB7Oj4Ts2b5SwVtHr2n4mhr43RwMkKytkDDXFgZSN2oNnr5RGz3aEzOosFEMgC7MUZBj/2XhDl80NNUbmPNfk8SEBj7fE4GUD7aaBIY+8ssPYeUizSd+/633yr7iEfJqkdymxGT06ufhkzs9vvQxzmUQg6oMGbmoemhEjGWSD2E2XmMh+NDGqpDOgwyPunNrvx9pi/Xb/DjSh+bFZWq/rqI/DSAfxHAV4vIvElxPgPgi1u1LwL4OgBfEJEZwG9DAxtbviVuc9DfOF/8WI/gZNg0vNDJGxiaibMfHDYTN5Ax42TYTFxYMlCQpBtBR3eLYgG1E8XIDPta5PGHJrfcIqahVzuMraiinYOFkdVKI0unHh9g9Y6srJhRscWYraTYAaANm8sXOnkXFQc+c7vGmOwZmHAy2GbFrqPvvAExA7PS+Nx9/4i5QmycrW+6Rly7V1nqk3ERDvVSHkc8j4ny+R4UOd/nJpWrl4fTOgKHSp4rtghiBhUbLbuvSZSCwHb3RV6cuX9PG70+dIavAyXTG7UtyGEtvEj29JpTwLgvTja+qiEhdZAs8lxHir96Job/XI5EPV43+mZ8zVGohn7dYGskABiFarB6QJaosFSLU6G5HJnL9+rxEX6n73eU3IrqQpuRlCcc/q04u5nt+08Klnq+pqdIz21F9bUAzhtz8wGA34cGHP5pAH8YzZLquwD8la3J57e/f2Yr/ylVVRH5PIAfE5EfQAMZfyOAv/ngccwIB38b8lNuAshaPqqYbvYWTQAwm5fLs3Qqqv2XZgzOdFI3UU8fV4mAnapIXo5toTmd1iQRAACcQ/00zyHhYZyPiGLeAl6qCnSKOmGBte7aVVAYgVJTPjMhbOm0EjMDZCAwexvuQcamWltVsRK4cgQyZkeAXM4g4+SgEHHNbuz78sJKLuGghmGOXii/aTI10eNFicMY9EBMtjYaqaB8TELvXFqMkYDeayqzeZChisoZSyGJAufT/XBKEoN98Vulh5iYe9+PXO8fYi5t9Ub9s0Qt1e/qxAAtT4f3xRI1ZvqSZQ+NqQ9dweO1NLo3VinxgSdJ/Lx9z4SMGRgAyRwc2DMwUc/a57yRWbhLJGnOUnk3JiaxXmB+OD2kjUKxEs4m4NS2LlaXpL+mT2Z6bgnOPwngRzccTgHw46r634nILwL4nIj8WQB/B8CPbPV/BMBfEpFfAvAP0SynoKq/ICI/DuAXASwAvueiBdWWlk3FM9+Rp+Jb+pDsuFaRPA97jcKMCqsRYlVkfzjOHKycT3Tp9MT0KlkHqYozPgw+PnKed01yc638Erj4aNNg7M2onuUf+fAQxObJ40vxn5whIPCuChgz49dGFBmIOwK8Tmwl0o3dJXQaqgXG7LA7/oTDGdxXokv5DW+T75djVSmEyhHqDPCGFRtmUbboG5XTdVeHGYsymL/w6dM9D0R5SXMS9Pg5HWGe+nnivhV5HMwM2szzcx/dFzOc/X2xVdOI6WOz7kTb5oS89prNgtMbzAnPWWJsu37t3jkx79tbPR22Te9f/JHwapLb+g2MGF+a9wodmopPIMmrjS2RPvZ0zBJHtsTqQzEceizmOt0N0Ex5sM2CCX2wTZGCos/L4LyqqJ42PSuDo6r/M4B/fpD/yxhYQanqRwD+yAGt7wfw/Q/tWwQ4WbDNSXmHIaLtp64IRqYirKlWwXoODA5/tiMMTt1YrmkODM75fnIMjgipW6o4fmZZCp1yQsWzrIZ1KWmhMBr364Sz4XsklxsG51xLbMZLlBuO5r5OtOmE9GPpMDhi3j4huKNxWTtbLBSE0WGAsxb/mM8a8aKg0ky3EYs2x6IS6qeiRUe3Orw5OO1BLCpWwZwJIzRLxDuqioQdSn5BaFxGTwe0U3RtwMHlvYrKxs2qI1fd0Kvaq6iy+svel71KaU97X85u85XoARohHDwnorjPRTz+lHb9cN+jaOIAxxKLun1ba/eoaOKD++qjiTM9ngs7R1SqE+os8idD9LI0InblXgWV6+SrkRUUcFkNxeqvSNu70GG2vJSY8RSLig5lw/KuB6V5H3kqHqmfOCBqL6mhhumS6/TSmN3w+Dma6nenUo/887YInvUjVLdzaQv3qsujJYjvml4ZnKdNL8aTsSqcOZluu5UOgFZNUcF9ESiSpQpTMDWMwTEXCi4ZUvI3Q47+ZmJ2pik7+nNJTRHH+pRSHV9h8XCyFZXCvupKzFDvbK8O5PGnicq3L3mmieFYVJPWJLp32mA8RpzqZ4oX5XF5SEWVfdFkx3ZDPzguBdJHq6hA49r3nR0BMm32gzNSUbETOn8eEqdMdrjH/mLaPQQDIdR/K89+cCT1HdeZdjAZ7ASw7xsYq6u4nOdVkB3i2fhZgsORykcO53o/OHadpCgafbP0yMgJ4jtkHzs8V6sRoPtJ9yWhQimS74v93CRfNebkcDusVAkHhkyPJTgiFFkcgbthCY49owp4jLednxkdX49wake+bNjXFdOmWemYH6TUx6piaUil58ENQ4rCMar2DFCB4siPDfdheCWWno0wP31iyZQljeUAqrqT7vTp/hkxOK/p6dOLYXBKUdx+VePQpw+AYuB4jyYeu4d05hApHpVLc+K6j1dlvw4UJkd/rSzqFvImLJuoQUqoYaZJPTAjqzLcBH2qaZErqf9tAUJW9/RjbSJ1u47yqUSATZGSVD2hJsqMhbfdAnnyBrQkRqCGKqUbCzsJBPZm4uzR1qNhdwxOMBk5eKOVMwM0cmBYRHxTmyXGt3MSiHZSDmd9mQGy2sw8FYSzvQp2IhjzyxvglPoOes64SdBgNZElvi9AkhO6XgVj92BSLw7UyR6BQffIjMLK/XTPETDmSaKt5IfzNo7+nLGWUJWMGCB29Gdur4A2fpfyKVKgzt7Rn8Q0JHrrCv9AhcbXNuXt+2TslY1DxwyQECOFqrs5tBT5sssrAgdpF3p3MsOkF5if7X0iJmTnyA9XmAyjkxibyDtSiY8kGdx3zB8xXAMV1oiGtVkBlzRPcnLrqY8rxVH1NT1VejEMjqpg+WhTDRWSUmwzoFA3E+/jUKkzPpHXM0EX+6570a+NyeNZkXhEq7g+Y11zzCvAMBrYyktYclBcqrL9bf1UVwUUX1RSuatY4vR5rkE7mx+Lq4ZUQZYucQ+szgo1RKBgzrWQWqczA7dxUfsjM3FTE52rpE3toWbirP6qGJuJnzWsXs4k/DvbvLM5OKJ8IdVb1Wx4y21tZFL398gWWrnvUHNNINUaIp9VI/aMWO3SVAsbPZqfXv0lhCuzMbEKi9V6I8uypkaK/ADEhh+SkRUVoD4nvUWajw2hRhlZ7aiECqu3ovL3q767FVVS0xCz0XB26vPj3x7VGakShcQqrLbrpV7xjKM+43Gyikn9/ww+phm/AjLmUr53TizwG4GMDSyZHAp2UqLDWFQdA9OTZ3XUCKdTwSFi4CDjVc9uPfWxJcWQsXtNb59eEIMDnO828FgJJ3fFpCYi8aXWwOC0StvGs2KIwWkxqlrVdQkMjqmrgGAUaiXQMJ3uVAOD0+JCDXA6xCjwfbEZth5cr9Qn43sa3ShngOv/z97bhdq2LOdhX/WYa+8jRRK2MblcZIHyoKeYgEH4PgRiQ2wjmxC9KSY4SImDIEQPIQlYTkwMjjGXBEIEMSYXR0SCYDt/4PugIISJCHlQkKwEgu0XYWRbQrZiJJwf6e495+jKQ4+q+qpHjTnn2mftdc65a9XlnjV3/3ePMbqrq76qYlq1Yd2YGqFNL8ei2lVDV0mHK5zZOA6IqVTX2r3HTNw2rseYiQ8cz/h9QjYTZ+aEJRbz85gdtLGfnBCl53kx48ghK3b1aE05HAAfbiOPGIEZM6PAssDzL74OUWZBxpsEg6g4EYNga8PM7kJm2oyZseNwobFeY2C8b2JC7E1fGWujIbFiM/Azn0/bKdt0mpc/hIxtYibDX8XdfLZ5tPz9AcDaiW3TeCF0GncqY/0X5+qp5TXLOJ49A2PNDaBwjLXC0OghAxTSmEN8Da9TZeItmYGpJCnMpMwMjM/xBgNTtds1VKedxzbjdq608UrfXPRiGByOAQXAd3bHlSGiibPV0z1Ulb3HIdZchv3gXKNrgtQjK6nkAXcq2yA3+2a3+zfHdzQvwgQwjoOtl1h1EGOShFMQak+I8cgqNInfJJqv+vbDkszBFYxz0TS+PqleFDkQpE2ArWxOkufFZuIz5oitnk4gcTyQ1Gmg8s6USlZBRT5s8kmddRyUMtZ1xuCsZNW2iO7iWI1uQr3EGJyHlt0NVME2ef2qYJscR+qhhQuBh0YM28G8UtvUtxZrcqJ3yoPl0rN5aMRMNvEDfyH1Uhfx019QY3BYssLvgMe8Sgzl9H11X/Bd/iJI1khZwrmNSQ8wOD5vJOxdxuBEmRnr5HWvYFwaTbhrSEmHCm1bn8ksXabnkWPnSfJwzEwft+F1tNPesFAZgw2syAq8j09P5UH6lQa9GAand8Flk760pYeF00F5U0fdw+iwBKdiINjRH2NjcvlIF4FHFq/MppcWYSDaoq5CWPoUtJJCNax+OJB6jqKNW6iGFI5BemBImoKBvlU0cZc6HeSPG5aNQ2Eb+0UYjAgCKMPL2mbKgSVVFN1OLwICPzSSMJHOyA7Thxa36oeEs8hBQllK4X6JKBK5MhNFfbsER0autf1g4StUEvN0orojPw6MdTrYyaCPTOtr/E4+LO3ZSTrYk9kyrXFYnkU72fQ6Dm1mwDJWJNbSJRfgg5bL8OFm+QJmOHcmzIhyY3yaQMSRzwd3looAACAASURBVOOm+U7zukYzuPVjETfPksDb9ViaQkwI3+l8bTLTwObU8/zu8YOzU1EV0p+KjlRU0CsqqomxeayKavRrEhxOCy8jhsURWbA84xGpeFVRPTW9GAYHgJtnr5eGZdvB3fcNQpqjlzAHB0BA2/jYtYursZgJ4dALrI1277drQ++hfuLyholZu0A3ddDpRKopD4lQm4lfejs0E08m5jbeT2Em7m2jNhMv81WAtPmKp5/5mogwAx9jatnM2PJ1NhNXr28bxfveyJzbGKdsom75jay1ugLvCFvE6+nYHFKvMC7CRvGO8D0L3UoV3HZYW7Ha7D3lG8MyGDrZ5pXVAhyx+v0a7dhqmgWeAni35SuAi5VtoY5530nFRyBUy3+3xkoPkG8wbtF2MFqKUMO8J1XOInDsmT2b9+TNapUou2qMGwgplCLMxxmjZNphtjx7v8bvVaKM6hhX9GvrHXM+972UZYQKUe+bx80+ks7FJYmZeFZ/2Xt0SRgdraUsqFVQ/JWudJgzQ1ypoMYlKzMDszO+bMFlbRyfyjqVSRKgiXmiWqkMq5tmFdQ1iQe//1X6ugXbHO18xvibV/oo9GIYHBHFw5st2Oaph4TGvo8Ol+r0Nd9kwumfOMZmMBXGqNCHvBojkw9sxuC4H5ymicm4bG1f1iWkL2vgY4yBSPm9BfPUAyczzNRjrAz0tUNSaIP3tgmseybQ8iX5ognQaJ/aBsb2xN6NOd9ZPgIczzGq4nZmfcQB2SQwH+yPZRwOwRTw7de2LnsijOlh4LPlAdvGv6UpiDnh9wJRNokoCmLz1KcivdHnY8kPQFLhMVWSkJzPGIhcny17uG58WfvLwjATj3eOVWtuiYhQNV0UOwkOW0KJhMSWVZMXZJURm4Fbef6c2RLKQy5IZtwWKlOFS2CrLP4vr5NTF5fM8lodUaXCYlUtdbkpqyJ9fuzsaBKoJV+zvUXgCoNtWIoxL5Ad5sfadfUS9m4Pxjiur8GR80EApO5uODuucH95a9v/npNeBThPSy+GwYEKzu/NQ6W6JZVFAt992Mk0MsqwqNrjUpEKqqKj/CbhB0dVsTST4JC6qsWHutgtklVUdMMecatC2nSPCgrYMCQ2DsLasB+cVTXhYFiV47dEGlP2y7K/RZ4au7bPptonKj/yAW3VQZd97IQ5cHfgbqcbfPQdN8Bx0Ijnl6bcmk214VIZO7gCczGrdxKWRULSwZ6KG3gsY9EYmsI370aWOo61QT5s5oNnAE9jLs2f6cR4IH6b5GLG78zEvmpmCublmLvjsRgdMW58x+YylTO7I/UOg76TisLz48BXSk9SDHp2Xm8qE/uElmORop5CaR0YKJ/xJLOKaYyf02LhWMKz+t4Ayg8JzgwinscPJAFsqWJqCO7kKNxCxujsj/R2TUVFAOUxhlyfJTwc8yzNyVTjqINtGgZn1TPOeF4/OK8qqqelF8PgdJD6aGVj3kGquyTKi+2IJTHN27t+m9C+120D42C0Q4hDNXCfVd0+SUIO+yUpS/eNgQ5XjbRUD3V69E9lDubF+S4J0bixDSsg8XTG6bBVmI0n1DFCm9u0yfqBUEcLz33TmOiw5HGnjR3Rdhx6ssvnIJhjDsGYsYQrnkdswKxOqA/fqMcHY6MbL5t+O8PC80W9ZrPlFjve20c7J+lV8HvpOSnN90Tpc92Vyscct74VLrmYx+0g2GK+Nmdr70K/qzXhQ36kxYEf48vrNfJzPc5bSaWVmAxiYGINYu6MyfNfzAhozcAwE884lEqFxQf+2umQ173ju72lU1DFXB15Gs4MUKTNDMpMOimPJkz6nkFJeygxbtinX9BxlvP2+x0qM/EHPG808Vd6WnoxDE4DwmswxZTq5+0A6uqqqMv75tIeUD0gVE+XdfGP90Qf1fls4RYW9M1DX6OglefzgvNmDr607hgEVXj6pYeXZCAO0veWv9b5l7XVOBgVV3OtXZIPDqML4XuMWHw9zMSFygcDMYdiaAgV1cDJbOPTEC0PU+NI51AMyecI8uExpCkxDkvntk/I5eNQ49tdMBh8eN1SUYHXFVG2UlHtDoMDXvSaqun69v/xqAL0CuXdo6KaLb3sL0uHQsqzPf8JKMwqqtQejcm9BhOjF840ZwlYlE24KnLGt/jvmLQ/fprLImHizwFZBcBCZuLd12SvomrEQWqSrgZTOBwYxmCPVFCxNtcvXKwCQpOkYpqZgab5PU4YHKtzpa/51eaxyR1j7dBkUu/WkSZNvlaXnyPRZevypA2i1x39XXDZpX1M+tgg9pdGL4bBAUKCs16CQVC++hAxU8MqKmtjaR3LhlJsizqjYvWWpaNtKiL2RtwWxcPmKYKtpboKFjdPDKudhUI1LCTxSJ51XY+d3aq72oluiY3UTpxv6qpkEsqWTpCEy2BfG2wG7n3YjU1C2sTqDqE2rpmBzzQOPbsd03gAOmAyhiQOuP3uMW680fYR3TKNv0XXLHXuseKp6KkxOI/q+2Z+5ugeYxH0ocSHQ8UM3UN8wIugnKhU71ZdNNEcZmHX7vQg2YKMpXVWLgVq1WncNK7dOAj7MrTnNSMAIHkb3jE/JJXh8XldegUk1YvLzK01ExDIniRcRx6LOT32lDxuS19F8UZPWz/1W/Kc4GPFoRLhlT6QXgyD0xX4xrsHAMBDX/2wWzcThwWkFtJwxgcAjQDJbkVFZYRUVK4GUwF6CFRZ5bSSFZW0fToHYGwE9GUrqzDZJS/FPSQ1TZSc+4Xn4VUb3X5sMxAHJ68UPZdvdqtKcvtu5VjVxKqb8AgsWRKz/V6mdFZRsfQH2NRMRX5Kp/KL1o783OcFjfVC40fS8dO8FAggaIBJGfsRapy4S/P7spJqMKmR+FC2dieVTuTXa4mOAM3T3FwdQlIT1axui6j17AAwB9MM54fRblJhabTHFkG2qpc+S8OirjGXlTdi0VB5cJ+qsVjsvC8dDnahaHtvxDYQoXRWNYWwTtKcjVY6zVX342u0KDzfEfxSogyyioqJU0aQ0LjEcG6tgqK6vmZhIcVqJMbYcCBMo/GexcLPVlBbcurvFsZmLeodeTLeqbB2/8wJ7mSQ01QT+/IYK6ojxueVvhj0YhicpSm+49u/AQBoS3cvw6e32+1kUZgrhCNneSN9fyeqfN/w75G//W7qXyFLBTj+1AALY/c75cs+fx53eNcl8DEUO6d+mkXcATLuaUNO42UJjbcTDERslHRiUHqTnJ7GHZ14E1w/wLr8NLKkyEmpzy1pDogZYMTsdM/41ojiM4GIfX1z265uExbNh+lwo7Zbqmsz0TBVpnSORbVKHBBLy8773Jqa+uA4TmYanmJyEde3aoC3GdRttNC8To2dvGUfPOwbiM3lfU0kO/Ib88rxpDgoKRkz5lhU9lvzmuzmxWsmOWCp+zSS/fMY+eNv11A/cRysflVFFXPkMjZHV1HRm5be4aYuxd3lFcYLyWePY5hklw9g87O0ayL6Ovh+R6Mx91yH1uQKRpDrzeWckaLkI0/F9bgzLukxxH5wntuK6hVk/LT0YhicroJ378Z0l6W7yXjbggItgONyqrhRt+he3al2KRkoLTaqDyFmQh7zsfAGGPWlTK/KfWxiBuyeMd2io7UJQG/dxy0R8rUlt7zbfU/pJIm59Z5VAOLKd4n9Zn8tFah7EU6Psum37OuxiiqFxtC8RiHZ2d/qQcwnS0KAOLRU4H5wZukPMPIqkLEgp7MkxFQ2SToUd4GbEpxTyyDjaxKcUXe/IkcSnAbJ0qQrEhyeL0twuPF1ehlZsgTsJTAJeH8ggVFKu/m+FpKaIZW2daDnApK0Ff0Ctepq/mYZZLzKwNisiFhU7Mm4P6fSSHH3OfJK99GLYXCAOIjZP4Ljylp4BD6W4DB4UXd5/JcZjdbCod9sMu5YFgaDHNB1ydJ+rNk0+PjLYcxMAitKiK/Z1Hf2VjtjcHLbt29QTXCVMzgyM76GZ7hGSjdpKL0XB2vEjMCcDmQVVeqHD8gJ0JEOzittMzCVrdqYIZGp/x1Dgry8wVSEwk0195ms1pKFUcFskCqPfb641LKT2g7BkKDF1Fml2Gng9n0mKy+ai9A6rIrdccQWZtlkOhaM564IjMbMwNg4Gg3aWuS22ZcU5w0MyZ6BqayRZkupeKY6qYDsd9SdraSs7So+8DUrqehjX/EoICaAMl6UvUOMh2FT7lSfmc1prJgYmNlTcoSPCOuwyjIMGGqpa04KPwsJzis9Lb0YBqeJ4u2bPSLeQMZ6Cc/E66UlDI4zJ6IeEFO7OEAYiI/c8vsqtBFFW5dL8zJL6+7or2tYI629RcgFcuTnwTg1BLArWT2t2hxr05TxJBT9O92mIz8545Noj/EVjFVxz7lKFlO0rtwHY2bisBQ6mI7NwC0/m5HD23Nz8MkE3fuczMAtP+N/rL14Vh15Xq0oH7dIwYKYl1J6ODqbDnHq0ygOuozjAR1oSRpha5bWai8hYoZldoLoZ7XcJ6GJ/GlRp35mhmqdmKRoOx/4iZGhMfFh7usyrUNpwjw9a6MG9dvIbElXeuv1eYUUZninLtomVXZmzEhlk97FglEQkm6AJBciKRTCLIHxudn4mYEtGPhZAnQrFILXQ/Yhcy8DswvuOY1zjJ+Zp6l+wTwl0n3+Ptjm6PWCjvWKlVTXM97jtw/zn5oUewbzlT4dvRgGp6u4CXdr3cW1rpbqcbita3PGQbu4Q78mYS01R/w2inw25Q4mROlgxxT6IDwSC2ECOJq4lQNWGCPTU3oCtbKflrQRb5IYBgITE2K31REFOtJtNqtKeRvMt85avBJm52X2dEjmwxMYG6gWZbn/WT/P5QGU0paRn5mkeVzAOOwrlZym/H3bLOU5UkF12bc7J1Wm10f5FfEbN5cVSq/mwLirI7XkrOKwdkOqoLuyu76LsTI2piOvy4yxwpy//V1IIjNbQnH/PLPZszCbv3OMrYXCfHAMLR4Lm3oH1oa+b8KGDZN2+/Y0TSg5ciSsT+TT3PZ8aH6+kt/Heazj0K0/Vi+jmbGhSSIYPX7ukcaWWEVlgC48dd/12JhJmslCvZyAq7GmKr84H5teVVRPSy+GwQHgIRIA0Ea3fWAnoG/X42XpLrVRCcyMCN3eUAfENGZo0R6bxRJgXekZFFyBkptEIMyGuHkFsDhuaTJtimFGqbvD0YjbsbIOYNb5AIp0SRv0dN3kf8kxSkaQ1x0AjkCM0cfUPh207An3UIU3tb1382j5ZG0hYJc3CRw6g6rHfDjf5oWU7we05LxGzwEArkVg/jzTLVVjRRXjk/Nv1L/RJ/vdmQ9Dex5HmuEjrXHFmH1MSn5rpvR57rMp9xFVjOhd9fjScfTMnAELJqNkgBDPnyU9gmxxeM1XzjXoYnjylik9vrNFN2k6+cGxvw/tW/Ct+u3HHbzS555eDIPDG0SjUAfH5a9vFNWth6mTCS5bOjEN52Dq5StrKCFLBGeAoMQMKd146UYkGqEYNNRljDM5me8bRFgC9jPD/mTYiootmRQxTxaBczBBDtUQfUfZVXKohgf3zyNlPoeBMAEzO27jaOHDJb+kubMVlUpsrhxOQRCWTieaIwdvrCKCL5JjEoH6rqyoolwdETznB5O5tGDARniLbb7Iv60/tqLyIJMkI8uRyrUctxEzcbxm42gKyYTN4UQcZbJ6omfGss7EyFN+SBeyZMW+xUpqMy4I1l+OWl8xpWwlNazgYj7Wn3Uj5CNmSEVkV2b2fTNbSXXyadWU3T/Q96Lz3OIfjnk68GVTbWMiIclinzhz28BQCd3jOPAxxBZSEZVeUOFxjqgOsRBAamZmdzgdUnOph6tZdyDjVc943545VMOz9vbNTy+GweFbkGFZAKBtaqtFu6urLpfm0h6lzYU9IK+9QYrrHef763oJr8crRcbupKJKQStJRcVURgQnOvfak3HX8I/Dda1sJx83YwzTCQnzcWJlAHcORO2wJ2OODs7Rt21jv2iEUJjbjlvdPl8REcS57ZVuiwPUynWtdIyP/eCEOq32gzMEe9uhR9swY4Rc0jXhZ5LKMGEqchs2rpF/nx8cVvPZcpeYEznG1zgDQfU0HaCCaya5s5pwzpvnMOdfM1F+LB1J5iqqmKGjNoFgWD5Eg1BJKW6NCeBnc6xu8bJFO2Pv2h/4o0wUusbAzNKjtG4TXifGsqXT5ewI8Jv6qlR4qEM1uOqLJT9JjVerI4+YnVGuTX8XnJ7xiFToocrtlT6MXgyDwzfA07LidNoc/G1/zS8OMDwPX9a4ybP/Ge0csDPSjdiKyusdBdu8Y9yMwcnpNLc7zLQ5NtMMMs6O9PKN09IvXTzkgsGVrXx1oLLzP3YgF07jJDEIVaTyisHpUJdAMJiYQzVcY2BGfgY4X/zxBXuiAM43GJgzMWUoNuQzMVcLMgPjbffw2cLMlTnau2hIZKTFAXvumVExUh15vH6sduwazGd61hT89NwZ8wQvZGkXAnpnPy4jL9oOMZqBSy99xtjY+xB9GyV/LRprAmTGyKyyzhoHmEvAqL8zWT2pIIDyU79KkzMQb6wpSdd6SArXBH4HQN/ThR7QbEU13uFKGsEXBE1rxhG474k1Neao9H1QAFDoVWn0bEXFuL4KiCyS03dm5ndIhGZi7NXtsrFPVOo6kYwfNBWVSB17/LlDNbzS09LLYXBUXAIibQlx9xqfjUtfVkkBNFmashKIuPkVupX5QYHBUQL0ioQDL07nGxun5/lsP+7cK7LaSXd5jGup6jXR8mVhM3DGuLhIH3CndaLhDC0529OsBlnmQ0CQVFStKAvk8BVHKijLtyaGpY54Oqt3Hryfayqo0Xeov1jVQxIAySqoB1uThrQm20yGWgdDDWX5rB57aMEUzCqoB+tfY0ysHlNSH7paT0Ld99BAnoxDnWgCy5OI/14kVIrDM7LNMZiMh4YEmLVHNsa1HbrChyLnb+OWSZpl4250ABL62NIeyJPxQ8sqKlvjVUc5WxN25OcgXsKD2WNfmjieA52cQZL5+6hOc59UVEef7+zMrzx+DyonR382l6mwr6tmxmHnB0d0V9fb8HnVxHUrJqqpHM6hUl0lgHy0dtD7bepQrJsY/oJ36HrZxjr+Xvpv4dLefXD7HzSmVwHOk9KLYXCaKE6FWXeEUMAWZXyosJhBYQmNm4EDaH1/twhTbgEmFRQw1DkRQmGBbmDiTgzYuTePE4U1xuiqoElFxW0fqajedxrXlmUYHAB4X7XdGt3qW1JB2Zy7iqebZGDc6qPUuUd+bNys4pLUdhNTnY38dz0kOHz76orUd0gjaM1IYrFSvrX9voeU5TJMV2jN4GtW1TW13kWJCW5xIz73YELSYanAO3JO5zwlSUpYgtOKvndtb+VZGsGm9aDD/DESHO15XGNMk7SCJDg54vhegrOSRGUcwFmCc1FS3wnSuDncBDPEbAJv5D+pvyRlEfjlgtvuSg2S1RWr257CDw4zPcmMnKR4nH4kZZn94IhI4jjm8W/TirHOKpvpgGUpzJE/GSs3j+/Ihw4nVQ79mKm5JbXJY6gxONfqRJ8N5At9/FcecMLbGyN4Wnrlb56WXgyD01Xw/jIO+YdlhdqmzZIa39QjLhT7QBEJ9clK/mlOhXn0eW0EUo0Dd+3ikbtlupW6HxwVsuLKDIz9PcLgMCaFyVU5pCrzOFjIfnDcgRypQWY1EUue5j4VIfnhdI7TNMe5Shibbpse94Gt7wDXcvqqrNLiQy/XBbL5O/u7WZDjYBk4+aLxoaQD2McfcxGVeI/AGJyYM/tGuQTvQeDfOn4S18vz1XTzDrXiSGsSkobZJ048j4z7iQNbdgzEjP+xV40ZiJxPuCUgOfqz9OTXxseUsUq87vYWi3Ld6D8kF1Mb2LfH9RIjUKTP3og/1A+O+f+Z/eBEEMy8LyUpS8HA8L/5kGdVVBSSqU78vgYYPlIvzbxExVs8xtHfEVYpM4C2Zh/OEjxnIM17iHnrV3oaejEMjirwnsDFfuH23aInYLHRsLag2wXhcdiSaaYmdb1UBvlgsnaYOWGTcI4hxZYmNt5GDBircroywyFgi5CRH6LznYfm3aht7Ftd0d2Gmduu6wvChqeF4AQcZ6vTIXvUt9B8hfNtfZSeNbXGpt7shToJUzR+cxvOI1I+m3p3V8kxJotkVlN7s4ovgX8pPfmIET40cts8rt3a0FIOi7Txe6FDea47P0v2/8JtLyKbBVZuQ0iFt9qktz/OqNAzsHdhaYSbQ0jgGjGFJwnVmogkVZy1x3Pv3jZZFiLGfc1KaqxBqA+zWvU+Pzi8JqPdYz84Xh+Zqcl5xbe3/eVI4EeuGLrm9o6idHPeLUoqMu/zvro+rvRbd78rxoa9NXfUnoz7YFGpjFlRdWJ4wppqxflR436lzxe9GAanCfBmGfrWh2V1Hzb2ty2BYH+s2SOTpA3ePrD8wX6a9p+CIkp2jDVu0jlW1tGFIkTj9WRu3URmJ35xa+c4NCFliVuzpr75Ru6HEPWvmFQesJtSviEDw9LpRDdrvvmzD5vZAmowkJafJThHlk6pDZeA0HpUbc8SDVJBJSuqQqqgsk+b257zsA0tg2f35bToO1llCUsSakbJx0n1RClWFvKByUcRp/vB51KM/Zy8HIGMucwtyy5eG2/vTuWCM1jPsAfMfnziUjSZiV9hZuaAmaUV1ZH/KcF1KyrJz4TJrqI6qe2YeeN2Rx1Jv5vv55zOF8gVFopB0NDktJXfYha2t/gW/afqAX4M0uP1eKUPoxfD4ACEy1gXumVsH8qKUAtp3vQ4SrZ7OFYyc+ZwCW56jRQBmMdwD0C4Xdkw2VcNMEkJ/IaYgcNxI89AX2AclOzLxhizE+EyumRLDvdjI+rm7gwE5kjNfqsnlOBJuh/QD8QBNgnwpx1/XeFW6SKKBxu3cKfBMj2Q3xwQhiTyaVPuITI4ScyLH51orM+DcN5IOxO4NvctHkupCXzc7LGYQcRvtrLp5ksH7gNhcAajENIFBsnmeFDWd0zXxt14Xg0BmEV4wWYQcRx0galZRLzvS8/jCHB0gJIfWrbAOm1rYS74HxrSe8aMwInWZyEpir0bjwUZV9HCF4kDcY4WbmO2auwZmZ8pS8Zkypvn0jXeP9Es4WFgM+8GubkrzAkC5Lszi/eErHbaYViuAYENWH9QQIl55xIupaLfNl7Ln8O1jH64jUo6QwxQmuNE9lHqVN9BxpsfnP4O707fqNv4SPQYX0CvdJteDoMjitMmwVma4nTaoonb5tIUtrW2RbEUsQRYerD2FpYzjSyxtr+qizMKC9VbKPAmEBKfhqwq8T5Z5RF7Us7/FJYEH0L5xrvvm6USc3qoXiSXv/V7+9tUSudlR+OrtotZwsP9hTRCcju03weTIbv8OejlY7arGduzS9fcHktUWHJysx8eNwORqT3+Pd8qr+XzujKgl/N5njrd/q9JeBIGhyQhfcoHSFo21WMJz5F0xw5PRbwDvNaziqf6XXyqYCsqlrJVbbDa+5qpdol3YQMDLxfYnPn9quae8rnvOzA4Vb38bNTTKulRh6ICH+cyR/0Fc3fkB8f6XLHisrHeXc+ppVGPgcev9EWkl8PgKEtfdPdRtqaOwfnGu4cJrxOFzdKpI5znPSxhym35qwpk62+Rniyh3OeLgECtkkDGtokyHucdWWgxoxDWL9mKin3bsDM+v+XQLTJbI8WhFz5EImDnuE/Ghx8WWOL5jNtwKyrNPih83CrJAsv4RctPVlSifnqxhdbKBw+Bo89kJeX7HEW3HtZIxEDSzslWUrYmotlKyvr2GztJ6FYNQO2wCIrnUVlJ0cWSLKFiSAyoHX5waL3pwAxA+Ugb0oK4EV+4bVubFu0N8PF2OJA0JwDEWbbA+cnSqUV5Bh/b7xMm6yVkKyubs68lvTsmEWq8xggGxqQK3F4OTMmHYWZgfG4SdS7Fibr2bEWVmWZekzjQ740mDkhKrxgEGzto3letqEjiZ3SPFVWac4GH4XLZP1fNwHDSY6yo7gEZl+Ob5+htU5+S5UOfBfH3+EpPQy+GwVEC1z48rC51MYd/w6Ee/LfRwF/ILl2Vb7+VFCPE//s2TQRON6MremwGEQN7C6kMHOWNwjY0AhbrHmQMOqSyX5sIMbGKuMO4IYK3DYbVWzTure9Fwg9Oo8N8kQgDoX1SCVFdYKgxlI4NDqcQuBryQ0K3+k6/3VqJrXqEIn5L+ONR8PMJ6VodqiHPy2pdCMC890VjA0Bqe9TLvxu14aoUOjjnti395Ko5dRXVhfq+dCTAbPgLCoaSQzHY8xqWaVGWVVTsjyeeB/vNiXdqaXsVFYegONG8bCxGvK6sogqfRiONVVQLfSizHxxbV6Fyo+0siwm2aKi8PEo6A5xp3F0RLymNP1RUOFRRMTYrsT7p899zFswEOBPM72pqSxKTMKuortkZ8TCYKeS0/c5I+alALulYJcR7maVHtlCRNjNAVSyqFMIhSWDriGTP6cl4jOP5+hKR7wPwYxjL/JdV9atT/r8L4N/E2Db+LwD/hqr+vecb4aenF8PgNFFnavQgFAKXjd/3te9YHsTf5rcT8fRhKh23S9tAO+JQOZP6SxDl2UzcYj3NYQlYgmMSl50Ex7mJY1822+yTBCf5uQG3Ld625bAvm3cHfnBqCU42QQdMgoPomyQQLMG5S0IT0wYw/OC4STaZ8CiNO0mH6GbN3oiF8m1el07m3tPGz9KfmbdVzV6UnbGkoQ+Jhnh71qmCzfJH2UUEZ7rJW99dB3M5Gqdxs7k1SXDYa29IUzT51WEJjq0Jt8cSHHS4N/DkP8fGgSzBYVXUQr8v1Kc/WjvcqL3ZjJzHytIXk9q0dl1FtaZ1eh4VVYpDRfVuSXhmYsnPU6qoMhB8Lyk/oiraODDWLJnIXxkb//soFhVbV6V5yYOrozxUA5pbWX2zkQyR1V8E8IcB/AqAnxeRr6vq36Zi/zuA71XV3xKRfwvAfwLgX3n+YuHTJgAAIABJREFU0X44vRgGR1Xw/mLo+B5SkWYSHHGw7Nrj8GWrokaMSqfb+drrTafTwVrp+5tEe/NGUIVWYAp8Qw69EBv8cQwhl27cArMc0C0xar+jzHHbcnVTPML3ALSGd0zraNv6kBtUB5Lq7Yi4CB9w9zLRGTs0vRfURoWZ4XoxnvDpMh+0WpSp5qFpTOy0DkltxgwCMzDMqACbtMIYM0qfsTsVA7NODIy1uxbjWLvS5eI2AxNqvXgBheo9VkUF/76zo7+gLJnwOaYnmNV2RpWfHJ5XJ6lN16nf6VlfU4/V466ZoE9De3eq18pu6y6T2m4jtq4CgNP2BjY0Z2yY1mcO1XAr5tgT0u8H8Euq+ncBQET+KoDvB+AMjqr+z1T+5wD8ieca3FPRi2FwGJvAHobP543pWToul5CQvHePxewLQwkn03DaPjneEzjf5Aj80macTB5j7civ7fLZMV6TTrfj7DAvsBEzxmZuufY2fKZvbdXsbTg7fQsJUpTPde2viZuHw7yQDFhfDaDYUKB861vTHD2GEWGLOHbPGPf4TQ6anS50ACry5pycCNpviQN9JSmMq7mIUbgoPH7XAgVh0altSYckkNf03CmcwXTg8rjjN0km/KiVCSejPgZXB2p2msjO+EIaoT5vlqaYFEYxSVO2isu0VszAWPqRFEYondfnHgYGyFKYhP8ha621a2Jg/GLCjghBfZPqlxnVBIKmeswIuDSswIokSQilz0zMEQODbVk6qZk69e1lmGG5wsDYmB4Ti+pobo9x9MdeoTtQMn6PweDMl4+L7dvoATJGxxxNHAAe8GY3vo9JT6ii+t0i8gv076+p6tfo398J4B/Qv38FwFeutPcnAfxPTza6Z6IXw+AAw7swAHR64y18w3xLDUdwuQ23dHrEm3hTInGFSukN6FajtSRm3Pbrm5RvegcXrUpkfs2SZk5jh2r7MnuJ1dE4j5bm1srfc9O7ZXl2KNp/5AYkN0d7q/7jy4QE4na92fEfgOSgsKwXmrzx2+4NSr+nthkzs1LazgnjUdsIRm84v4wyJgVi5jPFk7I0ao9jhqERqJVwMJUZOK8Z/15E3CKMY4ldMwOfiR/X0gIo3fptNVGFT4KQaldDksGqTo5FVUkSmVmb+67UcNy/apSpHBge+eABgiHiILVMIak52ONwHEMrmEy4HxyW4HA08aZV718I+seq+r1P0ZCI/AkA3wvgDzxFe89JL4rBsfhOD627yTibi6/bi/1w6Vj9hpgd34VLF0nt7Q6+HuDM5UB/sYge5tlm89CKo5YkPMNHyfh97pKkU2+deUOk0/f6luJgVbtI8umyzcnzKGBj97Hu8wEM/yQY5WJecaNkfyMCpICXVi8wCOSrBrHBDaZvWxOhm7eEGX2AjIPxUGEfz0jYp84b9fabQcbB7FLEb8Rhs9I4BGFVxIyAgsDgiMJCN952o+1RztpWhApFPC8xG85QaqpfMW98iPei3jVyJuSu0rcpWQwlcOmeKv80qS2t41mlZ8MSEL/vhIQn+dFhCYlktV6ou0nSJ1GvUvXIJCl5DMbmUMJjqrJp3uxzpoo3dY+KKllRpflO78ruomTfMs19sqKqmLtboRquqXpWWIDN7iqoFZckuRltr3jXns8PjuK+y9kT0a8C+C769+/Z0hKJyB8C8B8C+AOq+ryRR5+AXhSDY9QBNxln0/GVgl1avCjeqGYV1eIizWib1UwRiyowP6yiWgXexlyXVVRdp/wCKAwA73rLQOCV1FsHIOLoe5/Phx4HxASQ1C1VsM0jFRZHwDZaNYC+rKJSz2dAba2immMzsYqqjEW1lb1oqEnYbN/atHp2aLD6TGmcbqmDfFiyVIsC108Hat60O80l4WLmg4naPsLYjLKTKsUOh2kczhTy3FLbdqhMEoDpeXkZYuIC6JvXjTE2V9vWfFhX4QB4DmkcNK+0Zl4m17IydFYnFZVHPsdtFRWP8Z5YVNW8ktoONd4rAWmTGmhfNs11Yk5mxuCxKqqJ96RxjEKfJhYV93mUdw/+R1xqM83VVFe2r28AheekTxNb65H08wC+R0T+GQzG5o8D+Fe5gIj8PgD/JYDvU9Vff66BPSW9KAbHMB/Dyqf4sNJmaYdOuqYlUKb4IRkfwarBAAXIN+NokvXLAcbGa9ImXwetDB88yUJL90wE/wWAxW9P+4CZ1kaF72EMTtW2QglTkbEdRpdU/5iBiXzQWLfDIfV9HwNj40y4jO1308xc8bi9bcSaXGhtPNYS+11J88rqqtnSiX93DVArmwgvxPiwr5pOz2bG2GDrdymYwgyozYe4S6k0DmNm+PzgJElSp7Xu/p/sjI/XUqJIYg5Y+qJVnwdlmIGxt3iRzBgxg1OlH0lojugWA3HoqO6g3mOA8qP8sx2Id9FThaFx6e3B+oUZ+8ScFhicXd2t9Q5FF2NqajPxb1ZS1YuI/AiAn8bY1n5cVf+WiPw5AL+gql8H8J8C+DYA/92m3vz7qvovf2aD/gB6MQxOE8W3vnm/S1czBUZEEL+sIWXRTWBqZVLEb2eSKilM+MVA54Mpm3KD1BYOLFVxXAFH9D4TI2Ef73Asx22HFGWhW2KYUzMDY4deZnBMJcfOzWZJyFIcPEpl+WDiw9xvqNH0dqhtv0WQAZ2DWeEDlQ/FsAhjvMZ06G1l2JWXkdLhdnSosDqjsjRK6VMbfKDOQSt3dR9JrOL7tMRStyM66obT2dt25XuFMTac3lO9YKQdo6N5/RKeRGIcHCTU+nOnf8lHVGB6AE1qOG4jGCb7rigwLSh8BDG2i2QMThXSYKHFqZiapWVmLbuhu/7AE5PhqnYtMTgn+k3FnT4VBofKPBaDw64ReCzxvtgzOGaAjtbJ7KIaNGFsQkVlqvsz3stvl218FNIP3ws+qDvVnwLwU1Paf0S//9Dzjebj0LMyOCLyXQB+EsCXMN7/r6nqj4nI7wLw1wB8N4BfBvADqvqbMr7IHwPwxwD8FoAfUtVf3Nr6QQB/Zmv6z6vqT1zru6vgt88PAMYmFU7cVk9bCysl3vAsj/8CeynKnA9kBsfbxmBgALtZF22Db7/EhHjfWcrCInPbRPmGegmeKt36TRoxTHBH+ok2eAYtzwEvuR0jltAwo9L81pw3+EotwYwMSwmU2qs2hFltMadfM2MvmZYp/d5Ls04bbKXKAWpw5z10b71r5RJzQkfWvYJ5LpcAy1N6ac580B5jnCrA9L3z+VC6ta4f+ryO6lZqKS6reswI3EsyiVZ8D5jGtItFhfsYqoTBOShTpc3BOL0/YmbD0R8xml6+7vDIgAKIPhWCZTsCmzxgF2xT3uKNfstxQ09M4zL2+ZLIfdHpuSU4FwD/nqr+ooh8O4C/KSI/A+CHAPwNVf2qiPwogB8F8KcA/FEA37P9/ysA/hKAr2wM0Z/FQHbr1s7XVfU3jzoWiWjiHDvKPBkPYOAGPG6Lg3vZ3BtAAtk5iJgCWGo30XlsHNlzbrTRRN1hHxB66j63veVruoGO3zm4Y4fZQAuU2qCFOAAKc3qjfD/k+foE8uJLzA5ceqQJZOy/egYZR35wUiI8Lrq+WxgI4YCOSWzjP9OaIsJD2JDHmtGikArrIZoL0HSP+XLAy5h4sDLD+iXGl4Jt2m1fEWKMngN5bknlmrG34eFFNyQJ+VlGevStPlJnxqHOBC9C69OCoVgkvA3b48iA2jEW69ssFDl8xSLwdWDm8iQhAWGNMR+Wtmb2Vlsb8Y4iMdtGUjwvVjezJ+NFhZiMkHQ8CDHeEu9kvGchKRQgHbkLSU4aXTT4WXqa7vMT04HMFLP0Zw51Mdc1SSszT/zqz5p6Z2bca/XxgZtjsdn3m9Ou+drqpMCbLZ783T1iYFyCXY/vKoN+EGzTiDE4r/TFpmdlcFT11wD82vb7/xGRv4Nhj//9AP7gVuwnAPwsBoPz/QB+UsfX83Mi8jtE5Mtb2Z9R1d8AgI1J+j4Af+WobxHF2zfhtEnpMP7g+UDS31vlABx+8LNEwTZrZmpYHeMbJJcliUYjcwYGrbLKLUsobEMOkTpLfvhgOgo2GFKW6FtJutWpENcbmI/teRSb4pGEx/K47zl9xl2McRyrsHrRBpDXfuZvjixyFLGuXfVQguRlyudSE89rEe4z2HHG6DBomXEhHFWqalsACkBKa0DVGL8yA06reYQ6sn5uFd6pI0v0+sE7yO/Jbqwg7MaE70kO8VCU4feFmIYjAHMC/RbvvBT1KqeKkb6vm8ZVrAGnXwvW6WuGfIGztqpQDkBeM26QVYkzEDmFcijyrUw17p6Yxa1ewtyQCmuqy7RatHAKtsnMjJmJn+Qt3ugX1g/OK+EzxOCIyHcD+H0A/jcAX9qYHwD4hxgqLKB2RvSdV9LnPn4YwA8DwJfffju+8W6oqMxEHACWxcoq9jGabszhA8WJcfHP3ob5wAwRbT54AICduZ1mRmH6t5XPm+xokx8+HyRxo4xYNkrA5lX3IGFuY6gkaCO0v3Qw8coxBmfFh2NwYjy571k9MtfjuguvH7VRHXCZqYgx18xVVjNUVlJVH9fSeY5M9+rxd8zFfdU+iI4+qVufWqhppnSrLzW+h836HXOhcMndjO8JfMqEVZkkKl1DOsP9sQRs4N+CqV9oXwlJX0h4AoeXXQIESWKg0/5UxLnKKvXRN0tI2AfPToIzPZBFa8nYGHtmzGca39n+CTMTUjFJjH1KZurclEQ+98fqviq8xQjVsOEk0XDZmJ1FTtSOSe/PeN/2uM2PRSMsxSuH85T0mTA4IvJtAP4HAP+Oqv7f061ART6FWIVo89z4NQD4Z7/jS+qRfBloy6bUm/fiZMo9qajeE07HLWdo962idg8/OeL13SRaAPNP0xFA4Iu2EL0mr7sBYObN1DYDNuUeoEwzdZ8ielt73W5BDDImR2y0TmetTahtLTiNQchj3FFOvE6uz2tSeTLOXnv342APuUpM0MzA2HiYWVMqq0W9Me7tWSfgdZS1HTe77JebjMr828px3KfF1QV53ivt/IyDco/DdthDPTJ6xaBZ2ZgvM5yk5qDbtj+jDixL9Od4MbpOp7YJjCv8XOnd4b7Z03Flhs1el8e484F+mdbS50zqpdGGfQuh9liWvQVgpwU88pKs9N+5rjMQ1F/lRXlmUvjy0NN7EM8E2KQfoLpu1RagW95eV5IsDslJZkjY5ULL03JiRmWvotqXX71eHatqJebkSKIxe0iOTu0PzXEaq9U964qznLf0Wh3Vriu7XulzTs/O4IjIAwZz89+o6v+4Jf8jEfmyqv7apoIym/sjZ0S/ilBpWfrPXu33BmcsTe9SVz0W9LjrZ9jd3l+hagOa+jwCd74k4hv5PeQMIvIGWJeN9WbxOb8LyVkf6x8QZY+sqOb3h2/6QvftISeKA5DO6tKRX0STz31nJ4PWdsZ/BPaE68YBaRuHSEgEFtE4vEiykiKCE4p4SDrGb6vHUpNFSBIDuF+pplPbxkitIaFhCY6RSmBtmo0FYzy9sDZKjvxIUMJekoXyKwnOWIt4DrMEZ6s9ypEEJ0lsNDPKj5Hg3ONF2dlk2b+L6FJaHw6fUcZMhkQySXiQsU0jPwqwF+Vd+9PYgCytcS/Ph5ZYdSy+Rm99g9wEUJ/xvL7tXlVUT0vPbUUlAP4rAH9HVf8zyvo6gB8E8NXt71+n9B/ZAoF9BcA/2ZignwbwF0Tkd27l/giAP32tb5ZSAHvsjXYCX9Jvvp0D8JvwRfOHanTLV825i0tiFmgS11r6pRuGJrdtN73h6M/mkSUNHC/qSELjGAfCxnD0al8TvpGTlGXUpXFNdQW1hIctuPZ+cLY+wTd12eUj5cfcr7XNkhHrg+vZ+BYh6Uu6+e/jRfG8+B25qKb+7PelZ2BpJUUJSUnG0Vg/p0nVGHXDz82Q/mQZApdV1BIFXhOWIOV1i1u1rfGJ0ju9L6yOTNKwR0hw9CCdJTjJzJ/oqB5jcDKWK+bgXobLNchtsDqS1zth5CidvSRXxNgnTjtkcGz86ZCvD23GbJUO9g4YjsqT8Iy1mrFPo95+nsxAzm2XY76i/rqWz04Ek0qOINsNArG9WB7KUA0PeHt1fE9Nryqqp6XnluD88wD+NQD/p4j8H1vaf4DB2Py3IvInAfw9AD+w5f0Uhon4L2GYif/rAKCqvyEi/zGGN0YA+HMGOD6iroL3l3EXWQppjUgcJB214zv+N6dLr/OPfNVc6HrsIQMg5NwtO/qr2o6DM271e181wcBcUxOxCTgzChxskxkBrsvjYm/EjOnJ3oYHsX4+4VaovSM1U4X/4QN6f1hniQarmbjsUPUo5TEDE+1dY5jmvrNqIdplBsbjc1F/3AZb8DCzccTA8Fit77Ks5jVmBsbXgNL5mXofB3Nn+phb9j12Luybx2iWdDIGp6Ij6Rvn83pzPyzZcYkZHfIRlmPf3zTsUb4cl/i/sxGApYf/npEfi8LSulm6s0ITKNklYALnYLuoS3myn5zYm5Kay8YmcngAMebOKGFs9tkp/5qPHWZQzQ+OYsUcqmG081Jl4t8c9NxWVP8rjnGF/2JRXgH82wdt/TiAH7+370Zxn5ooZpiPEhNyV3s38mc1UoyjvoGN8nbQxWE8qyUAA0XGpmiiWJFQT6R+6OYodGB6GyoBsJ7E5LbRnITFzOxEMLBISuoB7ttvs5Q+HLBtDAerDiQ2KQ6ieKJ6HKsqmdtaGUpfqR8b0kIP77JmECjf3n2OEnPkWFSd1sDNnae+7S3jQI+A4mIifQKQemRvGWuyLV9EE6c21jWY4/mdMlUO982HLKuF7DdjOxbSHSwNYCd3QFbDNdTqLz4qBPm5J0d/NhZmjmkulePAnaPA6nu6/1NOxNKXx9b7UEaOmc971N3X+rkGMGeruqO691qVHvVzb7iEa21+Gj9DH0qCxSU3TEfYnI9B44LwMa8DL49ejCdj1aF6AuIgZmqAO/p7vzYHE1+mzYBBxi4RoB33PXkytvwTfTfv1qxGeqCv+R3Fg3LfKKrOeJlE5dzFmSGWOLzvgrMdTJKlLNb2kGbs61o9jjfFKodLF+9fkNVIVtckUDNY8Z213XnzCmnEpSO1zf1bvQtJYXgPyGtiqXleKT7XlP++h9RLKI+B2asGwwFiOM8ucVOsxlUsksbtYRPSrXmosrxtH07kn3vkh+lurr8SE3Kmfdh+szl2uP5Qf06svmmknjt3ktb0gU/jVUuAXyGv1oocqgG2PlGefy/Yl2cVKugdnqV8jX6zZMmY8GQWbxImAr1mU+SsSjlSQfEaXKNZRcXp8+F9LQ4Wpx0d/rP6cI+vife5Yhx4fbjjLOWLArdiUQFD6jPy9/NLgN+p7WpMOyDyVPwyS11oPUqpEY2bQcYrzi7Bib/PH77hWhyuV3o8vRgGpwnw5rR/YZfixsKi5Jly7OnjfCnSRtvkeE405VWSjnFDtQ1DKN9u+8EALeTAjm/qAIMtub/4fTFgJY27SWwOHJWbxypQZxg1STG4H2MsSTrDbTd4xPFGbbM0RWld3T0+QJHKQ2KWfNIIj0untcDmvn+/ZgtJX0CMGeMXwllgHCuLKEmVgpkcbe/XZBzF4zczwqEOzM74oj58ARdh54e0bv6MKA3ikkxRnleeA5te+/Oj9XPzafC7EOO4aKzzIjGWhSQdSwtpmi0NS5sWeh5tmg+DjN0rrwRjY/V4rOzQb5Hcd5I+UtsuXSEQMj8PzmcgLa+JjTs54KPngWLPSCDkTiD3qR02Mbc+8s4ku3ozSNl8bQn2IOdVNVlTVmD2eQdNptr0u8xHrCuT47RiCjsz8NFWu2lplcZGhU9oWHTZ5lXL5J9TgvNKT08vhsFR5APmXnXU/NqHqoc9BQeTwZtItaEs5Hm4yXSobfzXSUJ9xGNmMOwRAxRtZ3f7rFKqfG2cfONQOgQCHzL7GOH+V1+TmBcLybxtGlCD+gAuZLrOB4yPfWKAkkrE58dzjU23yR7jIAdlBQdrJlI+y35jTVtquz7ghoov+o/8YJ4aPY84wPlglKnt8Y+V5s1rxmsl9JcPN7dqSnW3vq+osNhKidWOrOqMWEBZdebt0XvEKq/st4bapvbcqIj+lr5qQO+Z5LYr5sjeP7YMSn1rdCrU3oJgnshyPvXtTEjxflhHzACwhdbMHI1vLzNHnk5lou1rzNFoeX6n09CB5IyUa6hoyQQxjoYxiCjKzKDlWQUaX0EmjtyeLR8F2CQ0jME5UlE9tzfjV3bqaenFMDgAcOmGjiepB+VXwNQZZHwmNZL619bLfN8MyF38uYuri07TPmTqobmut01tlPmkRmoqSbWQ/ODYTZN2q1C3xKnMsaiSFRVLCTSDiK2/pMLycfNtO/pmx4FkRZwsb2772NnjOew3S0NszJzfafPjW18VY6unurF5H4F8K5Axj5GtpB58lOx/JYTWs8PGCKcQjGgCCxfj4LHOVlRG+fntiVWXJAAbdbntqi6X2Z+maV4zlSoqzc+TLbAe27eVEfrNqpq575mSUz3J9cbvkLB6OA/EWiY1GS3q7E+m4F8yjgfcDqVLrjO3AdRqrOQtuPDTM9cvnV4Waq4OvfKso40kiaG6QFaz5/pUbyoSYHp1CY2S8owZneUZj0hFLXV6pQ+nF8PgqALnzakfS28Wxs9sjv6+sS7OhFw0b9Pv1mB8ztvHdZJgk4KRiI3yTLvpO8J8XCQOaGZCRtRtO7CICbF6XdImF30j4XuMOti8HY7f4Z0pIpVHPaFxv++BlxCJ9joIv0P+Tfjex47YbDNnC63ZTPw8narsZFCgpbO9a6bcbCU11iAfJIzzqEIuzAzTnD8fHhEWgzd7SYdWL/qcmemZMqOiZTq3/RR0BPi8BbKfpXhcj9Vb86E7WxJlycT2W0O9xOqviwbjYPksZUnSOskqKj/eJKspQ0Xr2Yf57AHZgfACH4BISCp9/Ih8lg4lKZtKYpSSj5wW36H1Lanu1jaZZ/OzWzXHS5uDcq49jB9s/t63P49cx9IvPaQ7lSfl9YAJBrJqq/SGbO/LAVSg0yU2pUNhvXYAJ1NR+fUiaJEHnPTFHJHflPRint7Y0Ixzjw218m786LazALbom1VYWh5kgloC0eR6wLoPocoEk/OSiWpxWB75yzjsj+sW42CmgGM2VWOepSxz/vyb+3yslIWZCfZFM7c7m3rXZuL5ObKUxW/+yQzfbqh5PDyXIzNwZ/SIIa2YtCMzcfZVg244pSzNYD84zFA6WJj0MYy7YYDyBRmgvOt7GmuSKhnTLJHOAGbLZ4kg5wutD7sy4L457hnnK60757skBsxYMBNOPmAKJl1VMYOELd88LWcT71h7Hwcyfoc9NNvAmUGaPVjPVlQz81xJbubgqzUwfBs/KZUYQJzWHfwe8bsVFloMcK789AzpkKY0S4+gxjk0wqyi6uh4L88XqgHQQ/9Ir/Rh9HIYHMTH2wHM3oQ5FtVM6dDb/l40DrvZFfioE6bX2X9MuHeH5mFc/GMPNdLseM/6YBF99F3HbOJxKfZ8Tao3tZnLDfo0niGqG+BIjw18d/MnpmvGyXBbFU5GdPb/sR9DZV6uXJ5wMgmY7QBOSeMLM/FgfRcyNVfIB4GMT6Tq7ITB2YGjpwd1DYRsvQzphvUTqoMmdTRxxuBwNHE3uW+EQ5GI1XUcqTwOLGeepnGzWqyK7s4qJcs/tZqpZvwb5689pCsPxYummvP5Wwnga67rlo0EcubI8sEMxZvJrgxaB5YlpC+MAVpJkup1mYGx9dWDfK3rHlmY1cE2awlOVjcW0hSN92Kft/WRLjTcd8y7YgrYfUUm8nXVB9AYABQdvV+2tjeMjp6x4lyO72PRq4rqaenFMDjDhDV2DY/ATYxC4Bhy9GVuI7W5/a1wPIpojz3kpj7TbWhiZCrpyoE4dm73VnpccvftVZYKt2gud8ggaWY+8phCglO1yxKcuAEe9xnP4fqaHUl75jwt0iJvls5Um3lOz+qt/UFRSXjucfQ3t220HsyFMTh8k+cDjvFC3p93FhIegKQzGpsL3/BXnccV87R6/H2wNCBJkLbyC6XP0h8gmIc5XzXA8aqTuboxJCQdYinRLenQgrzeLIWyJ8wXlJTvTHXUZ6nRithvWLV7JFFN0qHZS563HQnr9O7O+B/G91QS0Tm9+l6OzNVzvza+/G7Nl5+nkngI2t6TMRpaGajilb4o9GIYnOHob2wD57X54c5mg6WuV+qPFLguybhHqdSwv/0ANXbhGj0Wee+brDMK0WFy0jcRWzql9kLYMMpN+W45IvW6VJZO3C6bMyeTeyp/aiQFGgW3uoEhYAlPpZaax+c3/F6bj7vlDykWRnu6jTUiSQ0Lnhj7kZUUsJfwHDn6s/KCcDQ4pCj5gSySo1GzCTNbTlmRWcoSdTcmNJm7kxQGSCbosWZCbWf/PSz9AYDeQm2xtCzhYcYnLJ0kSX8Yb2NzMZrzWTpkxJZOs4QGGMyF5bPEjZmdhiwdsmLcNktoOKBo5eqAVWVjzvGbVWHA/vtt7kZByu93mHJHwrynsS8gJlZ7zkyGuNRIb4p72dOy10c8U74F8nvne8MExmaP1OVlhBhRheKyPbVe+MEZ7X8aefXjaPDOT8OwvdKgF8PgcKiGnj6KSXICuzWPdAYIj9vW+PeaxKtRxuvRtz02qJHOIQ8Mv7+r2wMILIRJYWulENdH3zlyctY9WzpbMjF48FJssqySPpMlE6uMLG/UjTHzBl1Zf50Y4NyzM75lwnxcNMJYNJEEEk7AbOw3yzOBuisV1aUH6HghwLFCwI78YiOO2pzv8yIpC0f8VmQwJjv6ixt5HPaMwWGGCV5WiQnJ0cJn/I4iu9tPGAlK6/SOMDMxW8/OscGSRRhJQgKroknKwpHIZ3wPj2N2Mjhb19k62D9Z+nML/4OWpSgO9leQ3xx+B4t85Py0ZjTGqi4zJpzv7yqtOWNZrH2jHYZlOh9ZYuXg7uLZVW17PfrXd1RbAAAgAElEQVR3o/RUj74xtoCa861MDHd/oOvEnFSHPvdfOmm8wifExUlcRdVQx6J6bnpus/RvdnoxDE6TuF32Ljhv6qqTmL410s69+cF5mT6UbBK9lWExqpcLBigfLpIAmmwtMJtbW3kjPiTED9Qoq1SXb5Rct6sPu8QWKaXrVK8E4NIBwmok3nQqlUkGHktqo1I3VSqWue0jM9jKRT1bOll5ofR921UbcfhynceqkWRKm9f9lik3WfYnpqUCcPI4Kosw//f2l7d4jlXlzxr1IXWkjmTGp0ues4/f/jHV53fuLhHpFbp2AH6W9Fjp7Uws1QTyWld9CJWpfFB1yQwR13UGUcSlwSlaODEqVfgLBkzPDJAVX6HJAsvnxRMsFk2mcUcGMZQSjv442GaM//mkN9uIXiU4T0wvhsFZVfB+MxPvZHZ5hGupPBbPllbVq3gNfzLaoLT53weHuOo+jds46rvC/aSxHIyzYhQUcfjP4RKqOc8MTNXPUf25uXkcj8HBVHOcLZ2O2rhnPHPaPK9qg5+ra5GemBSqe9T3tfXktGuu4O8NtnlECZuDLHGZmeB76Fq9I5wHA5Gv5c93c2YGr93bOf/TMEk38XKfgtFhacpj6CkYx8O2t7/3NH+0rk8Bt2EGukOxbiYiq553IONVnxdg/EpPTy+GwQFC9SEC3+lypOZQHfkBmWKvIJVxce2NfvmDJYzsjvimzhtBBTxMnowpjW9jOSRBlK+8/7rHVtLhc/6D2MjG2Bhj4B4ktok2ydgHV7FQWrZQ0RRr6g1ZmIyBaFJhvZ3qAkhBQkfbMdY5FtWbxmat4uqdJiPPyLE7PZRDb1qwCC2pxwa9ZS+EyOoxzku+QLbKnyzBSFj+RQKDw2N738XVOwLxujxuU1VxPhsiK/3r7WKrNf7rpusiW168x+9FXXI41oxu7W45GO/PmxYM5azY/WSZb/D51m9tK/hbzW378xDdHe7z2HoxbpbQsRUVj9vep5NG/ilJDg6wQwj1JUte+f0X84OjbHlG+ZoP92Rhtf098oNjBRjHNssl/HnQt+/Us/Qn+ddilVchRWHJTsV0Hamt5ryKWNJRKXVmcDTXCyeBPczN0XcqKkt/LlLgVYLzxPRiGBzGZbxfG1Z30R3pjK8xMSarqBSBJ1mV1DC0EZ4LHM32+Xg6B6XkLzswHTU2j3EynXc0qu+BI2lD6zq1bQxTz3Utn9Vcnq9ZXXbZJtxT3TiMzp3X1foIJoTzLxp4lxFdW70dq8e4kTMzbmm9rQ2eF+Nq8lzHPJDyjzA4znAUWBbOX6f8la7kGWMTdXmec9tjmWxD5vyMwTnC74yedWo71tfe/0uv2wYyvsfa7cWapTWhG8Dsa4WZcA8MSgchWwwd4Xu4v9J/zzTXOX9YUUWflRXVSgxRUvfZu0oMZ8KqTNghbrvROnBdb7Y432bLM57kjEviixenswp8xvAwfmeHrUFOM5cY94KM83t8XZ2LKS/Gp/57tvA88mTcqR6Xn397GtYdyPizwMO8xr56WnoxDE66AUk4e6p83+TgmKDbZw5a6VYJoNhC9jFK+LwQARbbhEXCgyrVU2I8+EOurIpYCjNf1pzv4VsX3cx0qlNRo3GXFhSPvGXcMtXel98T3wBvqWP27dlBZge1UF7OfwwG5x6MTjAFx+EUKvXWkaM//l1ioor22BGglQGytEKnNiomg/uqxrVjQtyCJ6u/GIM2q7/4MJ/z+TC39392Mji/Dwwy7ghmg8OnKDLQlxkzoyqfu5oBzN4njXslacgRCJm/cZ/XxHgwgzIzfTP2rjJBn+M7Jdze9KkOxigqsKn5IaCXGOjq3eZ5cdvM+FYMDDOAh6EcqK2jdItAfoHisrFsfZPtzPScVlSv9PT0YhgcgK2X9n5ulNKqQ27+d7JKoHy+jTVvu26jHTAQz0VHoNxHtUHtHMWVuRWBnXOumZJbuZl5AzLjNjNBe0d/mvI4n4P/5bZzG/u+9/mj5dHeIjkgppBKrnJQyKbeVf4RA8sYKpslm3qzegctm4xHyAjUTDi1B/p9K1L5eB7jH3OgTpuneHtxceBAnqMftWFTqIZQenHohMrJYBe4dZJI9K3Q7HjP68Y8/WIjOd/es4eWD2heV6Ps/DDSldo2WhKHkxmPHIhzq0p7SnUkK+pLE3rutwIZVyBfEbjPnFYwEkB+F5mqd7XTus/98B7pKjkS5czejSsqpTaqULkuMXleKc7t8bzS4+jFMDhD5RAgY6OQ4CgWd/AUm+z8gYakhrEsOeo2gBTxeLY84MO6ihvD/d66P1wDEj5ObnLQRpyzh/QUFil8453TOP1IV38Ejh7t2G2PpSt2uD1OgoMCoHyPBIcBzE8lwamlKEft7X9zPh/WCiRfNfOzYTXTLOHhMpx2KwyEEUt40IGFcElp3Da+pXYieMvJ4Bxigtv271qz9MfyT/RbqX5uO+ZUtZ2wKNReeM/O+QmvAsqjC5e3xcxTceGaj1BmzCqqzMR3ZQ6+z2vUpL4UNaE+D+ZdtsffrmiqWzkvFRHIBlVo0tDktKVb2sNrsM0vOL0YBgfIIGOO0wMgmb4CedNh8gNL41bVKdDjLQkOb1azBCdtpr6B7+fRFb6JHY2v5++7LHNEicmobj6bQfWnoWsOFI2egkE7bjsYliNiyRT7oLm2iWeVpqBS57WD5TuSDh31U+VVQ5Mp/aiM93/QKUtkGDxdMZbzYWTrJ3TwiEQ6YzBmKdhIoxAdB+s/q2c+Ft3q45YlViqr9b/noK+3mBCja5ZQlQVZsnakPS2157+VJCdZTTQzwVuRktlmlebMoAEbs0gqzSMQ8Ri/UhrPS3f/jnHZ5aFjlc2KChd0zVZUqhyE55W+iPRiGJwmijfLeGEvvWHdPvPVAZRxex8A4rjh875fxYtSOtQMTMxMyDKlV7etCj9gVG0CZbnr2d7WrVvWrfx7MDizdcfVfjSrl+YDk9Pmw7pSUc3ehk0dZIdGPkCzeomdDHJ6pd5qEu9IqFrqWFQZPB2eirtmT8Wg8tHe+J1iVa1Z/XXNk3ETpPyKkeI4V4vAH+Cs3rI1W4p8Qfxe6XflRXmua9/e0tSlF9fUX+wlOcpoUtVYvnV5zYvyw9Z2jkVFVlQt3ouw1sv5/L6eZrHtVDdFJC+YgEXyc6rUX7YWnG9z8663v/wdXvOSXElIAycvicFyo4KjfQs1Tie+bymlicB0USvaDyxTDCj73pLk+ZitYUOlBfeDk33gBMj4uUG/ryDjp6UXw+CoAt9Yx3QvvdFmXt+wF1JJMAXuRmmzIs+9hPJtfgAFyFjJmxb3swDZZTpvgDYH2q3c0Z/QzYw3runfK5WZrY0WCTNyZhQacRO9j8PYx50O1Kg72tXAGiDa3oVToPJzOAX+PQfMrMrMB3fFMFVWViwJkYN6cyiGuQ+5kl+Nu9N8GJtzxDwd5ScmzpmZjB2yPjifpSKVZIolTxxIlMuxlOpI8lRhhzClz8ysXMmfmvHy1yRZ3B6U1MbzeO6UkHwM4gsM919deFSRAvSmy9JGs3prbusqgHnqb53yZcobY6g5nCPJDjM1RyBjt/Q7kOBYlPFZUhPzUFQWVl0V563Fs644y3lLj1ANUfaMC96Vc/s4pM+M+fnmp5fD4EDca/Fp6bho9mR80YbTxr08iMZNfmonNnBJm+ic31RLUB97C519VpSAWYRYWGgD8MOIboCs8uJ+OvXDFliJOaCyJSNwlM5jIQbo5sE0zZuZo1m9MTMpaV7FwZ7WW/Mhbvl8267wA/OYee46pd2WZ9XvyEzVms1j/7zRkXPEmY6saBj3Y3+Z2Um4n9Tvvjwf1iq3849UJcwUMHYIyPvBSr5WZhN1JUlgFb7CBAaKzKS0YnyM72mSBzF7Wp8pmahbnTSHYwYGKBgM5byYY3UdVIRri4r0QI3UkiPWYwbKxjfXn9PHGOly8Dn/pl7p6ejFMDgsVVhJ0ewxhqBgk/FgVHI7LK638smhXsFgMAh5EXVx6SLqdZN1C6Ium5hrKeGhcACITgX3SYf4L5Bvf2wZogRwEDHHf1u/wY35n6pt9JB6cSDDIyeCXo12fgGpR1Kh3DYle12ed0jcQvSziObgjLThGiPFa0K+6n2t07q0iAG1iHpeR6hE2EFhFdATPdYjjw2QbeFPjQNHxnyEHBhyft/yVw31zokefG9C4448Yxq6SpIIPtBHYmoLofk8kPpGIcmJ4IP7ixFv25gDzj9BXBS4ktqO3yNmZm7l5zWJWwI7KBx1t3GRXxsO9BlnZXyHKQApvdt8cWH1GPvMAbXhKtWJweFP6mawze3vh6qo1r6/6BjZnjIDhdmEnxk5H7PnC+XnkAymehp+ovYMiW9nNLGZucrjjn8ZtuaEdjUcg2DBswfbfLWielJ6OQyOwFVGKySYHPN5QfGpLspBHCVtDpZ+1m3TBcCfb3IEaOk92rh0STge3l04IKbjGqZgmlbOal0m53AMnmbHcH7jpRsZ35JykM48HmC7bW+/ydI3Y4roGlcBlXmTS+JrZKruaxX4MvV5UP4eqjBF8w3wFrD4MbQH4GpKnyVTnJ8sWop+Wd1yS0XEar02PbNqSs7HEgPGB65OZY7aCnxRVtuNerI7MGeaMVEemBaCyq9VRTvVmzEIV/oc48xpt9bsqB3+91q0Ibvj+vpY7qHnOqpvHdFHwz4yvuB2XV2f/OPULR6prqrfIssuFtVnQa8YnKelF8PgjIM9Ng0DLJqKqrXwNHviW2mfJAUmpdDYjFiCwxgdo3GDjeuYkNQohSygL9xvkZXteI8+T8lrV9yIBrBU93NvjL0JCY+1zc09SHhgTu7a5VjaAGAXJsKwQ73HBlWt2Ta8PRMjtK7Ud9fcDquRHBdE46ukSivlz/XcWzTdIRmXdFmtXmCwGOA5LJxDelThlkBYrgq3pDyvEDRsz84O9uhfNTNHls9qyZWYicRcFQxRkjJSGxUAnBmmriF5yu3Fb2aO8rOrGSCbT9eMeWLmqJPkyeculpbrHeGSGPRt/a9rnR/zYn88GfRtkg4OjZH9EkU+r423DUzj5jaydE2murOfHKun+yKj3MylNZTuK8bgrVKWIBmxteUtM/JO0kQg9mf0AAsn1xv2vKAZlLTRShJ7IMbXENLHBrmqrlKsr5iYLzi9GAanCfDJaWifz2vD+3WwLRFbSjx8w5BoiP82UkL9n7ukQ8rI8zVAxk3D2mJVDh0gjluxOtwGkDcfDilg0pyFmJeL5jJVJPJ0CG31lOpxvJx92AF4eVdXUNspSjqP23AAdMXnetz/LP2xvl3ao5PKAfSbpUZWntJlypvb442f02cA8x43Qs7kpjEo9crz5bp9umruXBZQvcNxV7dVyve0NKZjigNJ/KZbmfze08YR2LQqy8+xikBd0ey009qp+uBIWEfrUK39Uf5R/XvKGPG7UzEA8/rdCtx69O6QhXeU10kqODV4DYTMkmCW7hoxRkk9Lb7D/C1nKzR/dwinkzBKW+KlACnv60VG12BZLujuyfjzQfoqwXliejEMzqqC/+/9g/82ZmbZJDhd6wjTTMOHx/72VgFVGWQsU7p5AJ2BwJW+/ChcAlOjTRv0ywPdfSCojvueAczlOHhNtr87kPZBeSnSfU0RVmDXVB9H9FgVUlWnakL8750n/p19HdE978JnvT3OB9q1MnKjXG5P0mHITE3FLNjTmetVAGZmfBhb19PFRH1eJvm8dKGDmzE4ijlumNWt/C+taRwxE/6V96T4x1o88GzKHW2HeifyU4gJYOcH5wiEnFXdxMhMfV/bU/fg7m2dNHBas6m57QMRMPOYwem+7sTgYPi/Gekdq1y2dfgGen+/NbSdCf3yrJgY3cb0Sk9HL4bBAeAYG2Zw2FlfYHCaY21mK4XA5jBQNbYtCx54VonbTIvbxJkCS3bifFQJv0NSlIbA73BATOv7fEXKEiL9HKizsoZaOZ/643lVgTytX/7bEXOxNjkf2CRPGvkseTpP3/hlOsTK4I4aQN/kaVdDEuX51P7YVOyZaspjSZt7FiZrGe7bVQW08fPhK0C6iXJwTJnasz4tn6OD84HPZVnKMksm5vwsmTJJpR4eRjPTMksUbjE1fEAfl7mfC62s4u6tZ8wLq594YKwCqvoYzysuOZXUYfg8ivKZKc8qKkWowPkitEiOwJ79Bxnzpjmkg+dH33Maz2UUwk5FPM+7vPARs91FysvPiIIe793c/7q7VEZlWxOO38VSKIcT0DfBj202E2dpjl++dMGip62/B8jmydj0/K2dPP+Vvpj0Yp6eQPHWHP1p8wOfJTiBwenkLE2G5AbjZqHJcsbaoBsCOVljXzWumiFRzSKBsekC/5KlxSaQMDa2sRKD84aYJzQhjMbIG+OOg2yhA/Vt0Tbr+9+2wOAIsvfaT8x5GR0HvqYt5xuxE7U37IxMMjj6k213Y+nRUb6t07nHIfCW2pYet7x78i2PTetXjU3xk4XE8TZvDZzKnG8i9JMAbwjMZdK1iwaOyPLHhh0HA+fbZv6+Z5H+J1T3fQ9Gz+b1Jp1c6v+N9yjLDOw31+V8ViO9PRi3r/fCTGVIXxbRaNtfYqG2lZ6Hwt7M0fYo9LbFGncCSDWfFx2ACIzOqWXrsBy+Jep61Q2DozJ9e5RvTbBlWVf4d83rzU4fzdpNhXB9ZP3FKu5sRRXfno2EwdPDieCewWC8EGNsZsA4sF1mUBMHDk07CTEa9qwrqe+Sak1te+ibsERMfKddViAoY2FplqsGjkd8T0qhHdCh7sl4C8DZLzjL8/rB6Z8rldkXn14Mg6O0uTUoTm3ziVMwOA9NyYyXGhFFd7Srps3KPR8TA+RMCplyD1Ph2OC9DcDNY4GQRiQT9HSLg+e7xICGyv5uIPs8bqNTPyzhWSRE6rOJegBiFasxT2SizvlLiKN8SxlrZuXDQ+pwbEhiDwAXjfxG+V0keb1l0/lOBx0zSkDebOd874fWQZXmJvFOOANLv+d8NvevwJxt+m3zTqb7nF/8ZmeQmH5bWQYKp2dN61BJI9j/EUuj2PpKUP9mSSE/P1MdcDsuHUR2+sjPwyi1LfUc7rE8OwJHX5MI8ZirvI9NMwZnJp0YQZaczcxQ1fY8tx1GZyo/l2moMTuVL5sjSeGw0ivKM4vtfeuuHSt75BfH1ZG7PsbsIqxIQ7s76MbT0KuK6mnpxTA4HKpBiYs3CY4ygyOKNxsDlE2t6SZFTMgiGrpnYoAs6aEFAzSyQ2LANz3zjSEkEUj+SejAYv8l0XdmXlyCs+VZXTs0ou84lRfN+UfWX2+prjFmjRg38/miQMr3toX19YFZEMn+XmzoLJmqfL40OqyH/5LYLVdat9F3bCMPIh7vq+FYombPYxEloHQcJMxcOTM7SdTYqu2Bxj3f6tlvETMNC3kePrUsofE4a5BgxiifLbQ4P932t35W+r20PcM0e8+umCfGlM1WVBVD5L6NNA4gZlo7rQ+r9UD93PKInVVF+XCrmBY24b6lBqtweDM9hgG6B8itOGAE7qh7C294mM79l4zF9fx7xpEwVRqMCKuoKjZgqJ/kat8zU2N+cBra58JM/JWell4Mg6OKYDIQOmPbdUTY83CY7o6bTzAKlS77RAfqxQ+ScBE1DoTYtLMEJw5/Bkh+kARnGhsfNmsxbjalNXbsgswkxdwFxpi1qe4c+4gP3DGuyA9JTcz2Qua7wyyZGDMcr5kQtgTg0BjBCLCjMHfGR4ybEnCcJWoNKCVqDxLjqp4HM2695/z0POj9Y8dyQFZLsQqLGTeWqJ2kfh5C+c64IZthe9ui5Lwvq1uYMQOAtWXJmeWvmpmrJbUtvmbMPNmcbT1m5skY5Qt4jlGPHfkNrFf+bk6keuuaVW+83tpDqsTPozleLt5nzg8cCkt06VlLjEnTpSjGZB/kzCg79WzeXqq3EGuTJW6Wn8OdJEeXRDM+TwXJmWBSNbHbA+xpRVxMeqpo1Y9kSbWKip+BM+OpvehDYru6Sma1NFRUn630RKGvjv6emF4Mg9MheNf3nyHvI+b8j60ngMcBID8vNI/4MTP4EKuju9s+SHsKzfO9cYTuCS0AZPzQvaTIovvbY4k1CdPY47KVOvLaWKxsMunVyK/a4zkIGKBZrwcHXeS5hysByf1vv0WzlY+P1SQhCIB6WleQ9Ira4DJGCwL/M9wNBLO9aKRnSe3GsHXuP5gQZ/RpvnunmvFfBpQHMxMDNexaGn9jC67pmSXnn/uXjJ2DVhZc3A8D8oUkVlE/rym/qwyaP5LmVCDjqu2Z1WHrNe7H6B4z8aNYVJ3K2L8Ge2+/jWG/PDsm5hWD87T0YhicoVaJl2cldYuXKbygzowORxw36QEz3SYlWqeNPNogCQBbWiE2Lr558U2ODyw2w64OLGi2AOO69o9KLDxbAXF+3FZzn17GAcl5zJ3yJW3/NCYrr3zjlpTu7VXpB/WYOh1uVf+SpGg5X+gmXJq8HjAzfFjfozqYx3TEhFiepVcMzM0+lG7qepuhU3pvfN3loAzyzf+IgdnNRad3tUrncc/joudkabGWMdj0Pu++g/j2FLlMsjzTfb7Ph6Qo/K0YM2PSI6WvZcYC9TQvm88++Oncf1ho6WHblp4wNrq/gPA6AdMzKdpIz7TwgzNT5T/K2pzbVlWISCo/MzVcf/YvZf2ZmfiKFZfNTFz7/HVhC+TwvBicV3paejEMDoDwjgm4gz1Oe3CQcfffp/SNhJhXEN5Kc0TyvrUvCbcRN7Mwg04ek4kYl/G25boAICn2Ee32PQ7iYYGiMSKzQkKYynK+dbFozueDNsVVcrWFuBzawbVAymfvztn6y0TPAEdefzOpRNAFrUV+mhepotKa+bjDmeKpyMeU/8axRbHeydKJnwfhmpYqH3ApwYyJ6pTPdS3fiM3fP2m6yxttZ0yUtdCrd4Hyue1hRWWthwqXLZ3iRhwSmfQ8iEnq05otPvA40HlNKqeU3PY6MbVsjceqwqwKNisrr+lts1XbomCUM1lRsUQjVj7Hqtq3zeqvoYGK9bG2Iy4Zy5TiAsBOJ4c5daiXWG3MFljb8IkBCpcUzLsyg3SeWI8doHxicBJAnxmwgoORG2E31s7eqafLpO2pPdakjExMfAnzfduO5P9mVXZ8ewtOmxl4kwcvzyDj56XXaOJPTS+KwWFyXXeLF2oRc/4XOJDLrt5+o2GJheWfKJ2tPtY1Nn4hPEm2jgj8DvvA4APN2uDNaqTt+xx4kvFbqT3Oj0NiCktAmzZ8vownUVxMX+71KCK4aJ6XxNZjOvWxmYvX9dLks4Rv355OzNisRoz1y79n4nyuR5CjHc2g1cduSdznYwTSV86K6/U0S7XuUb3dlGptSSyZ2qm5cJBOjDDf1K1dlg6xR/FKOpScyU3jAjZHdjRmpfRF9+n8m/1KhSQiXoyWfCJJYnZ40qyiipWM7/7M4DmTQNFLee40L4kD2MY4WqPv5kBFFfk8tmMGxvKTdIWZEHoGFXUMJmbXf9H27Mk4oqBfV1Fxfu47W1GxNMdBy+iOeRmm4Z+timp8G68qqqekF8PgiMCtqMa/x0v8sOxfqG/tDVnnPkiJ8XiQ8I/zQKJsO/jPyhGoOYK4+IbGkhCAAnn2kA69aT1unSZR6PH7RPqxhxb+fZrALcFGX6PCG7pFWv4AP5okhG/1cb8897AyEyg+WajuGnVtXm/jyp7yre9PlpjXWcQdFp6mcY+0lv3J0LjDIWMwVXPfs6O/t4umvsOCS5NvoGpNWKJmFhisMuQ1OwmFr5jGzebRLHkCZhVMMIhs/SVgKyqW1uVbMTCYxjcscfO2CXgte5XQaHvy6bKRbRwnwQ4UPvqJw/Jt05JRuUc6ZODoVeFR0K1fYACcHQM0jXvXN4GCl0ZSFCHmSSaQ8XR4drZwnADM9tCa1ABmtiCrQMhMyRS8zX5wqLwzR8LF47fmd2Gfr2Ue93ek8mTHn0f5rcVzn6mpEgOZY1GJvxexOln1zQz7nmYW3gDIHYqTwQiwoOn+ehNxrl5VVF90ejkMDtQZkiNKfkpcEkIfkmqImxEbexMyp6b6LCFxCwA65IdPF3h7Po5pE/MNqRj+0QbEEpzHYD+eirL11T6daSd9ecS4QxcvvtOyVdjN+tzvI/tmYmlTp8P6HmJp3WijrscStUeNjfroZCHIah+2Vslnq2apFvI7J8hrxpIpl1QiGKnxLRhDGRI7dghnTAWrNAGWGgbzNPwB2XOPQzKkpCxZjDnwmMB+lugCwL6GOFSIFOtwzRS+8mrM/bFX4zTWjUQ5YrqmvCPzdqPKzH1+ja61cSuy+8eiY/uqYzr0ezMzqWV5RrJ9VvSqonpqejEMjkI8wCYQN1ne5N9fRv431gXvKayDUdeQNJx7NuW21zJCOdAtnTA4LAlpIlgLCc7AfNitNPLfkSQkbrytbHvkbxIGzePyw0bq/IjcXbctApw06q7TWnbk/DPl2zqdSDx9UV5nnUT2+/yFbqWsBrESyQU8aNva6l06b2xCGA3xPIUERkjpBkhm5xmMbXPMKhO/4SMO8RlvMINgM+g1JIEZMHs/KfdBeI5r5bn/+YrOjMwR3WvR9mnpyEFhKuOq1WCv04HPlwHEe8Smxh6o8oABmtejYvpAF5qk3iyYxSRXECpE45vnEflRdpH9O5XrSJkXDKyWDBjTtXfhGqvP6r453xi6Sw88Dqve+DGHjyfKV43vWoLJERpxx4JlOwJP8racyXNbNemrFdWT0rMyOCLy4wD+JQC/rqq/d0v7XQD+GoDvBvDLAH5AVX9TBlz+xwD8MQC/BeCHVPUXtzo/CODPbM3+eVX9iZt9Y3b0N+hhUxt0FQccL3TLzdYJIe7mMiIasVOcMYmNZvhliXyl9higbHiflsCGGbxoFP4qCKNDOzJLgRaJcYFugFV+n/IZc2Q3nkZ1mwht1gf53nOWVnjbyBvWTkx+kO+NFlRJvbKUJdJasamuJWcAACAASURBVP3K4XZ+nXhe93Ihn1bCdlT9nmbdHxAxT7syXnafxhiczEjF+7xI9MM+qJT6Z6uYCv/DjCozDRwssrLAYuuwWRoRKkjkGGTbX2bCuS7hX1P8NVclU/muUzw7yW1k6z96ZvSOsnXYLMGppbdRoJLAcJ3ZlNrfB5fA1sxRskI7GEe2gNrnV9HGjcJ0Pgfk9HHSe1F5Sb6oluXZukpJrViRSMNJH44LvNLnnp5bgvNfA/gvAPwkpf0ogL+hql8VkR/d/v2nAPxRAN+z/f8rAP4SgK9sDNGfBfC9GN/F3xSRr6vqb17ruGtIcJbWw+HWxuAsCKnO22WluFRhGs40rKSCCZlp1TjY2fst0BOTlKyRFqvL2Ij9R9goP1sE1W1bno9ray97Ud5uSYTvGQ7xjMtobg4/MAZWV9El2BbrO5yRBR6haWb6gtGLUWZHftvIJ8aOGbMTMW5stcY4GGf6qA1vjw6VRdTn3pUYIkipgnLGSPLdL8IESGIEKqZw1foWHvOt2RQ5+P1UVJn9cl4CfvqhJ5QuKdZQNYs+MTD2twIwH/nvUWUJYrQd705Y8sxMHDMhzDzZpshBYKuDuBFjtAPj9viTg6hOa0Djn0HIwVwxBieblV9jYBR7BgbIjOO+fk7g4LJAzdQcMceziXc1vszEFWU0Myc+LvKvU+VncDK3q1i3f1/QcZYRQfzS38FjUVl+f49v4P8tZvaxSNHLlfw4JCLfhyFEWAD8ZVX96pT/LwD4zwH8cwD+uKr+9882uCeiZ2VwVPV/EZHvnpK/H8Af3H7/BICfxWBwvh/AT+r4Mn5ORH6HiHx5K/szqvobACAiPwPg+wD8lWt9jxAAm2GxBJamLXboqCPYFzlNTIt9TGG1M6yksNWNkiytEGKArLWTZDE5WxvZTU+QGQEGXcJ/R37FCIxwCXF4zHnAHJZgW5tGDJBo1Osd0kKaw3VtdhGWIINebZbMmA0GyVciAWYdjEumsRyryAHOKrAtdJmAwCH6FldpVUzhIqwyzABnU+Fdupag76SGkMiP+hl4zSDj8LRM4z4AZlfg6PdXgNeB66rzxQJHHrTd0Gh9NIGfbV1cWjG1/dvWNrLZvo11RMm29dadmfiJJBdsJn5RwrKAQMYS3l4WshcPoDBLXSO/QSfP0SZhorr07b13J6AZ4GwY1Xc9m78HOFpwJi7RRsB4orOpRZXULRJfx9ozMsNVRpodIVr7/F6GlRUr6OI9y9Zfe+kpm+CzN+QkWaHyTMzgrJPa2eYellgKZtVZcjZLlUa+eL3wUM99x/hmbM5584PTseBB32zzftiZhYs0+po+Po1d63kYHBFZAPxFAH8YwK8A+PlNUPC3qdjfB/BDAP79ZxnUR6DPAwbnS6r6a9vvfwjgS9vv7wTwD6jcr2xpR+k7EpEfBvDDAPDlT74tpDWtx0aSDqTtUCQGKMWfSgBNKk8fUKON7Yiq8uzAa94rPuQTY/12nTd9+L5xRb0+1QmMCPmZKfyXCNVVxsOo5e7rmUgaTXYb1qpC1mGS1jbjVmJefPudn8WFcDSczxYyiuhz1Th1xwFN6dgwU8hpPm6fe1iqKRgrtVcnHOGW2LiMcUmqGWvB4wKwRamu+g71TSNTZG67ExMez4P6RsQoG3imGAfHTrOxnDvNRzkatuXHmDrUmeaV8G+qgctgC6MzvWspxIn3zdK6eKYdgjOtvR/qLSRS5k9GFWHCTXO5kKSjE5cx8G3Rtr9fxFx52yDVleT1TupB2ieSl+StWyFRhuHZBvsQjDwzEEcm5iM/w30rb8hHEpxZjTXTMFHPzDPneRvYl6kcAe76P9j/TPLaIFjUpPoPEBlfcfgSO+EtvvWg9S88/X4Av6SqfxcAROSvYggVnMFR1V/e8r6wyOfPA4PjpKoqt0ydHtfe1wB8DQB+73f80yrETKgHUqTNYFNhrdqwqt3es4rqQuEcmLofKnE4m1VKeFjYA2YvdDjwoRe+b6KPOFRC7D7nc9sM+s0Hqt0YI5+ZEG+BDlcGxi5S1zVKAF0c0wyundMruoU/qNIry61bbd+Tzqoo9nlU4yIO2pA9JuoItzS3nVSgVIZVa3MfXbVUre0DVcZ8ZjyTUJ9C4+iS4x2lCwOlg96jHahV4KqtkxDgFwEWhrCkI27+HDA0gPSxXnOcK5eIqtKhxkBfTUFPvW/7KSG1HOOmeSHK8/PzqPOUVgKFqe1O/RPvtH2r8c6M/IwfrH5zf4NRiYQKe1i9ugev81ArHuTdouorPfIcXjEvsxrsyD/OxSU4ilWG1H7V805FpdpxkfMjZ/FpSDd/PE9Cv1tEfoH+/bXtPDSqBAVfearOPy/0eWBw/pGIfFlVf21TQf36lv6rAL6Lyv2eLe1XESotS//ZW52wFdXCKio6HFzCIx2LA04C4toVOJH5w4lAyY5V6SFvcZ85rccmQjsA+xCBKDrVDVVO1OXAhKyiMmK/HQN8vJUB3aYlq79u5dumPau4+ICbpc/DNLbOt+Vj1doisfsm/A6rllps4Byg1HTxTWqrNj4ArW8OfrqKBKYmHbjsT+YYeA1sTEiRL4iDPR88t4HIDNwu+wZyoMHiYLpH8vcY1wn30D0SzFtU4XuYGN8zh+1ggPLI59hDJOlAvJcdGdfi/QhhikhiYF6UZxBtiUMB0iWhxDRplK2IY2ix28UZvwMcY3T4dzYjzwxEFYuqYhQAkhBy/aluhcFJ+YWkhuczx6JyNwRb4ofEojIMzllXrBaqYYQGBUDvDjpWfU4GB0+JwfnHqvq9T9XYF5U+DwzO1wH8IICvbn//OqX/yCY6+wqAf7IxQT8N4C+IyO/cyv0RAH/6VidNFN/69uy/jZYlXihzALWcI+o1i3ub5Ju6UT70tnzC66QbsQr56GBPxpKYFWYQvMyWxxtlitrN80W2EGPmiBmvKv+IuQr/JLmuNVjlR8oYYETGZqavuyj9JMBbbhsAevN158jYQ56/SdqICRnO9v5/9t491posuw/6rV1V59z3/R7T4+np6dd4xo+xwZA4JigimBhk/wGxUQw4SJaNDBYoVgKIPxKk2MQQEQRKFKKgxIoNDkE2jpPAQBxNEmFiQ/B0t2diZ2b8UNsez/TM9HT397zPc6pqL/7Yj7X2Prvuvd1zv/v1d8/+Sd3fubVqr9pVp07tX63122vLsbU2aNUu6R2nN9HHFmF2aLvZSL+LOhqjK6iepS3Sehy3k9YWxYjCGb7DlPbWiA7GbQpT9KfsiMcuFXWEKj2gizZKW9HoaA1Onm5LiyNKv0v6nbRYn/4+OPqL6U1Fcme6kJ8aUPUyEYnIN55XXsBQRTEQfOsBPwx6aRFBXWJAn5degV3Sg9JW62hKURY38yz0J7T2tiS9tTqI62dTXxgv0xRVWYMTsCKeVmhVlWSdIiulrkqlCTR50nqccG55/0oanDabLSW+pzU4mvicws2SaiCzpd5JDZ4nEFMBhGuFq54m/lNw0Zf3ENFrcLOh/hyAnyGiHwDwuwD+bb/7z8FNEX8Vbpr4vwcAzHyXiP5LAC/7/X40CI7PAjPB+uS6aRnGP1i72ej7xnG9o75vpE5OFp5ojYtpDGrQ7YyNuoHOR2F6y4k9DB6LUR7ITtQq7zxLG3wLOdKi1VBbpqV0YAow1hRFrcEGuAdGOKNEmKrq4Gh7HPRGk5Aq3RajFxGHY2UzuGQmlkSs9AwttkZIElajUwzEyJibHSbH1hVwQzSiVdWGuwJp1PYkvYOUWJZmaBEUiVUlAXRkKr5lKt8EWf5DD5KaCKTF+FZ9p8X40kiRjmoNhahHkjJJIkneTvI95VEqiQmQ2rdwDB2pg74fpgfJHPr6JttVJO4sXJ0kdPWczpoNB7zz2W5E01GUsyJ3dsKu2503i++iSL575fvtgEg5UVFV0fbpjsr9Hoqo6mtE6qLpMhBWRY4NA+SfqWSkRprW4HS08fZO4isC4wrr4LwM4MNE9CIcsfkeAP/uVR38qnDVs6j+6ITp2wr7MoA/NuHnJwD8xNs5NhFjNnPhyEbNVgmDIpH+zMl2jdLq467aq3/TTFISrPYLg7ZoevI6ODFSQ2kUJQpix+AjHawD9JvJNBFIfQe7VSXLZRq5HNsy4uDqponrtr6hJyGt4SSCE9/srVyzTs1GYlB81dP9TtqHGXBIo0cxq2eNSlFZsEovyXmdbW8VMdMrRWvf6TURYlKyDyvfh/geOTxQOYlqhfOKxc1UiqojjtttFpkKRI5Jogqjus+07zFGRdJFW20cmDiJPIV+i+BXBonWpCUDOj8TZVTXpCWZgTeyHEcvNqvFxMkMLv9bHSxiv7VYt9OE0qTRn2CXSsIU12RzJD1cB5XKgY4ycqKDAYKg233W0SMmhl7cNCwDocXCzJq8e78U/odE0N2Q6H9gUVxMsyGo3w0iol11XLdLdDLZ4rCrhCilFWm0SZ4NxaiHEdH0FPHU1DkhceF+sWnpBoG3Q0h/yn+EuSXpMdZ0nWDOoMTMFiOuLkXF/phXcizmgYh+CMDH4G6Vn2DmTxPRjwJ4hZk/SkS/D8DfAXATwL9BRH+Gmb/hSjp4SXg3pKiuHEQcp4c3rY5y+LBna9H5AhdGTWtllmKALWxcB0qTIFmdXPw26uHXGkaYkm2Ik9XMm3BzGxM1QJocST0ZiR41yVpUiGurNGSjb2Yut72APTwctG8CJ23j9NuoYWK0MR0jkRAypB7wNhl4kinoWYpKDzT5YC2LdNoJEgK0inSW7Okq6ZLKEd2DjURSp9YCudIrsCdpPUprJYX7hYlg/XetU1AlcqXrLeXkSkd+WjX4Bz9tgaQMVqJammB3RmoodYbRqCnorToO4IiGjoDFKdEgOTY0wQHkHlYreps0gpbbnU4rvCSoCtwqtdaqYjlNso/4QCTmmnDKPgwhCJqsaiKgI2ApmQgvQqILMmq7q4fFsa1e5gFIB22D1Rcqddi3jUkR/hn7JC8dZ/jk5POEEJjPnkV1loYpPHf0cdL0Kqt28jkeW/lIdFVKm8PgqMFxWhsbt7ttA6528currYPDzD8HlynR235YfX4ZLnX1xGItCQ6gojX+yUVGCIabRu4fmkg1MPFHraIomqSI1MDEB5tOYXmja0dCkgCoasPpYB0geWybRFnigEuM8CM1JAtxWhXG1W21fYwPXI6DZUvS75FUxEJFrEBKb2BpxW4pXfHbqME1TlEmhhZRyjpDLNuA+DleRTUApm+Z2crE6vNFcfaMqomR44oRp9pnJCGfwUbIH/L+X5bwfbLaOKcz/ZrMnyZ/7o6T30cielXCcT0tXyJ+jKYJfkLUS50X5AG1Kqj1+1uJooyFc2xYlwFIBbjG//aTgn7xirl7LfdtQUrTIf5GFkFyo1KJyZR7SKRKInGU1LIJX2VLEsnKUz36z1IaKC2IJ+dbumuTCGwBZ2lwxgIJSWZocXrP5LCqf7kIOSnCqIhUbBu/j+nVxgdePWhOgs4CkYGhutjmk4y1ITijJZycuqJOG3MJO+oIThigkxotygezXp+IikJkXfo+pAiM8jda/UAxydjEhcFmUKkjediaSDYGY1SxLIrT2y0zBv8EZy637VVhq8HKQBPqv+T2dJq6XWkrg6KJdqv65AY30dLIeRm1wrronkq1ahgUxY2W5fpo3VJD6TXrVQoAAHTxrjEbABtFxvR5hdNtVJE7qTdD8YfUq5XoE9+UTt8t17mR7723QTyNmE7TnEvXfLFKQxXa6OvnUjpyjqXKuaTu7bx20JgNIAlJMWl5g4SEqMiKrs3DBd+65pBOjwQhdSo2zfriP2sC06gIiiYKWoSsiYUmCnqJCXktkN912MakBl/lmyAz81YGeZJ9cn+hL0D6MhX2g7LFzyXyQat2RjpbUEdFzkpRTaafdF9137J+6uuz0j7bNhkFCgS6cD3OqoNTOo6FFuoLTKIak21XWegPjMucJl6BNSI4jWFsbriy3G1rI7Ex/goQMax/yhlj45RxHht5cCltTmMkSqHfWkI0x1oJTa+ksEImSqUtEiGhSlHpCE/gOq4isBdJZ3oVSeXYxBb6MFrRBs2akl2IwkYzxgc7KeJhiLHh1/WyEKI3xAHNJnYzhsFG0l8brfyQzcjojKS/gk3eiE0c8J0uQ9o2wbeqwLzRDJEkukiW+xwiTTMj59VajkTGECfXJBClvN+xX7FuUvnYDTWZ6NufF0j6rWdJNZIeM/GaUtpvlW6ZrpKM6Fuu2eosKqc3Cb4l/UVjKlZfmdWm/EzNorKczqLS5DcMtHqWlBZGa42aTtuFASjXycggqitUu42dih4lhA5QM7REy6U4CDqSGE2cUk5ZFeWwHfp+VSkvQshI+7QYx8/RbyDgcgmSFBogGpzQ99L2aKdwPdRsLTWoE+T+yof6PHLpeGrhINDlJCaiQ+pilkgIQZ5XllQqD2lESN/z0V7ykZ9L+N5VO8NU7KtLDeXav+GKp4nX1cQvG2tDcN4p9EKarAYyZk5EyTkMWEUUbHxrNeBE6KgjGToipAuZaZKR2w1Se4gmkXqYpumxtI/BPjVLI8C9aQY/vGLTsEzJG69eUFHrF6TGSLbWjtoOhKiTHjzDgCDJKxclcg8HHfXS6ZQhDjQq2pFFpngi8hRJg9XH1P8KidMRnkCeYHSKpVzJWEfRYtRJqVSbZHV3kzwK9TlIxV8ZOI1dPbZV+8gZuOq3WoOhI1W5XVcyziM4UR/Fou/pVQTTkp5x4+06SppFInrtuxCl6PW9Jnwq6b/oexCrF48sn32T6E/3KyCmU1QV5UFVNXZDpURwdLolCnOjLyRVlEvaHF0lWet0mFeXagAkzcVI03qltGs+jXx17a2yvob1PhNRFL2O1XlTubU/fXxdBydvq//VbQCs1MGRNBbH6PLIFgOFl45y5KQSjicba0NwGMAwSj41PtgDaTCMcfBpgbGJ+6ZvpRQjCTrSAQiBCVGO3hrR5qjfSK+mctuMGOm2cX0n9egarKRjpuwySPJk2xARCDU0LGQwz+1WEYhYxZlkVpFuK1EWG8/F2VdJSG/zNFE5tRb6lC+BIOclD/AwNDHbhBxJNAJ+35SkpNWfU3IU/g0DU3mZiDRyYZNBfnW7SxdIW1rxB/EHGXA1aXDnqYjKRFsAyFUEiQanzH2L53MRpNfsws0mMTXNOeAiq76fl2RIIiKZu5LnvBpx6ThRkP02+pJPtc4FyBcBTXzO63aJ5i0jR9n+U1O9p85d04GkGrMiZWKXqE0+XT2J4KDUNvSDikUEXZ/C70O9EKqXL7ePXFmZwRRecvprO4tqXbA2BAeMWAeHVb34sFRDmn6SFJXWJjTEKhJDSboqj2oY0lGY9KYNEQa34N/qDa3bJiLj+FCS2VxawNy6hFHskxY/t1E+qbQqoRKzEuq5xTbFHmaGuAzB6iwqwypMH89XTZEHJ+JpLXDWU3qlKF0qYA7bdFpPp/y0gDkKjulsgXIuQkbcLvtoIqG3l2q66DXKcpw3xk+tFh7tZ9jeaRXi0mA06eMSSMpZKM2QKdmnZvUwUg2ObPf/JhodJHYdaStpXFy0K/gRe9TWqfd7rTdpIcTGEXxpO6h9wt9FnYqR7UN+v6nzGbPrkydghsKXbJL11KY1NsE+LTKWfpQ4hk7blWZIrb4AqH0C8bFpNCym0ll8acGxHCNtN4WzZi0Z6tBiPt340nGldXDWAutDcAAsB3e6/digCxqRIG5tLAYfwTlddDj1++aF/gYr0Yo4i0r9gqI4NCkESIm9V/Vi9NtE6nv1h7ccRRPSKKYfDu+iQz6Kktlj5EnpSXSoe8qufWsdjFFP7UUW7RpJBm4d9RpYrhmpuMLSNjElUyqvvlCakHQ5Bel3b02MPC1HjoPdoCJPuvBeGBB6FR3Kh1C5JlQkIqHPA5eliDpal5MRLTKeaut8S/Qoby/9Zmg6s7QhGub+1u2ZCQuVCpPrLSmvpVXVhg3BhunthWvmomJyneR7TH2HgXahUlROG5Xqd5aWFPHVb++UrOgdZ/1BBrteDbRSukD0P70iMkRyyQZO01/x55q0RbTHNKsR8rJU49JI8psfOV1sM0ZG9G+PV+2D8qdTa4YkDa0nBMjdlS5gOioyEZBXOi5FRmL0VJMOTu06slJOUaXLSuRwBK1MQmK/kRKi2DZGfsopLJ2KCn7Et/trgV6WarB2JR1luceAReHMKp4UrA3B0QNtp1YTN2b116FXE4eRVICzuX/zKEWAiAjVMbTIjWQaNmVpJF3bRopy6enU4VzSiIGuraFnSmh72nb6lUYXKMzxlb7Nn7XoZR5CB8pv7VM+zouEvF3kD+QkjVHoVyKALHTF1UZxn4eMNOfkh5E+kDUB0ukvObayrx76wjhrurC2ryyOWoh+5PazIjC6XR6F4UhUVbQHaRRDz1y0WSRD67t0JKWBDN4jp1EWW9g+qhMLXRyzPgUYTqMbJd+h/0kEZ2Kmk47CJDqezHcJJbuOnKyQk2z/s+xTU7xLuprSvZWuM5USFSFP0xEa6d+q85HT2IzeR8oaMAZIHZyYHoqka5X0PGrUFNXlYn0IDgiLwUca1IgQUlSNsRi8fTk26Meg50hztiUNzqBSIulbv2ujJQxJlIUskGlR3L8y00S/3+sHYXjo6TqjuaBWa07Sh6j/zGIPyO1aK1LC292ucd6gN4XzBuJHjXzpghwpuVwlPkYVnyv7n04j6WUibOnVtdC/ixLLdNmG6X31Ug4r+4R+Z6RN9+ksouzShxJR0yujx3acakVCnICIYAJBUP5kVpbc8wZSAdmtbbUawTFKq6LXf4rHDp1ESkKJ0v7J71BdQ9VOohx6YVXZtzXp96G/p9J4qCM4cbHcrH34W6+CnkdoAJd2LlWC0VolnSYE1Mwt5uQ6rMCqit1Myc9JauyQ0s+opuFcSWvR9ItmI0SGGY0SxYfiZx23aP0QSNSAYlE0f/+RQXPFQ2QlOJeLtSE4rbHY33DhRjuRcghgJXrVgzxQFus2sDEvXyIpsaIYUtGrZQMojY0mR3GaqTr2Rew6daCFvCnx8hEh9dQ7z67FuIYo2ixTUovG2fWAQcVaNZq4pWmi1QEwr1VTSlHpNJKTLlL0HWb/iO4hvS56hkqvoit6NlL8lgrXNJ2NJI9ZXavGkHxXVqVyNKEMt4lFmjKJ1EDpwfRMJmJORtghCrYRjxHmKjPSGVx6tpHM0FIk10rHZLaS1qUhWWZB97uN96iOlsjvyRAjnyKd1ruhaHDpLzlH+T4kyqIjY1Z9iCmspD2pKEFqk7ue1DVR9tC/TCcT2jVqH5u3DcdXUQ59z+milKXIU/73WSmoRKOj7Dr1fFYKKj9WPvSWtDQagxXyWZyJpaIvK8UMve8hi/KY+JyVKEysOQQpksBgDEnERz4PYaIDhhjBqfVnrifWhuAwU9TVACLe7TBGeymikUOLTUtvxukidpy0CZ/1W03pDZqRvqW9HTurz1NtYyn6c+y6Aq32rddHMsRxjaywZsyU3b3Nhn0nFrykVVH2SI3ShHC0EwisZqqZpN9+s46mQI6XHFuJnXVfQo2YQX1O1gaLUTbhF/l5hQeyXjmeoArvqUiCXiJgVPuKMFvXeVEDKslyCVb50fdZqCfDwimSe7gjVgXu0rWm9BIT7ryFxulrZkgGTL2cgvY3kojB9VpUQ7xmEpXM18HSM8UCwdfLeCQpKJJ/SzOCiKCWmEhLB8Qq4cTy4qIG/hDN6UiKAo7S3C33EH4L6noz5DsJ5M9Col1aKG9UQCN/HmkCQ/H3qZ8xsi3+DrL2mtRD7WMo3V8fOc/mB0pwVsSvVMMmttekDKsEym2XKuz6ZU6tgyvbzpX0v31c6dIJuNqlGtYBa0NwGmLsbroIDltC64vJzfxq4qaxcZq4aRiLpVwarcFJU1Tet47CKCFw1OOoJ0NvTRQuN9milKX0V6vsgxLrhkEnt4e395bsZNvQr1kj5E6iEZTYJWKgBbPAXK2CHlZY1+cV7BaE1ojwOpCTWWOL4miCFPLTs6xCWtGQrMBuIZVuB5KImj7vZsxSgkhnpi3GtBiftukaLXrpjBjej2+fuV36GqIKrVFrUakHsSaUUtQumpNoY7K6O0wcIPJCfnkdmXwxThsK5qmUSGdsrGeja59okhHf6vO1qAqLbTKl5xWvMcvil0adc+jsqEiXWwdLrpQQn5SEQ20PMOrc9ferF8TU+2vCEbbnqSa3MbULOVUCZ1PuSzjn0BZwpMGocwxIiO1Eimq1RQ5JYzaZuVSPKomcFux6mwVi2sdpokoxHE3GhJzGPhhW91z6Ihijk4RiIb+EeBXO3YLT/J2uP8ThGCZOEye9JMN5RcEeIWqK6nKxNgSHjMXOzsJ/lsU22w0fDTCA7f3D78hi7lcetzadQhrq49iRog/9djKOoZaOicTHNByXgRgtRR+NsWhV5dwhkCNrovagU1V7ezVbqZmwxzQSgFnrz4EpqesTfM9U2yl7QnA8CXIVf6XtLLS14WGR2pejEKDwwMvtgRwRMWZtGi5eDk0kKQZid+clKSpSvkO/O2OSCszOLiSlM3Zy2n7jd9KEMydm7tgy82zeSLXhpW1iRisnZqUqyZrY6bf0eM3MKA9+cPI5X6BUfzaUVjrWdk2eOk281OyveVapWE+JNoRoH1jqM42cVhOO52hM0jZGzJTGRdVGVBE1SgigVBN2ZwXkURgu2mOERO0zpfNw+pgQDVsdRLVGx12rlV3eFqZqB+XRkZQAn+1zylxKf5WFwOXxPp/dVDqOnvpdmh35TlJUum3YplNUun8yTTx1HlJUSwwYEZ6R/Qq5qGTjycfaEBy2BkPvnqKzjQHN3EdAtp2dWoB9nNx0A8aFDLLJ2jmeBCUEp+H4smD9gGutEIWwHwCMg4n1eEzDyVpYIYJkR3ngFu2W4uyv3G4VUWg7P6ixtB1Hg8aTqpLvcTTRd9sJURgHg3GUt6rOR77YUpxeNlqPEAAAIABJREFUr4/dqWOLXRE35XsYUvLUdekU/n5okmvWqaUc+l6m88eV3tuy70jcOiEhfd9EuyaczNOEMhIYRewCmZ01Y/S3HJuEKOiImSZ9sd/a7gXvSUSt1b5NSmB8v0dLWNgmngOQRqZGJsx8xI1BSVQrEL2ZmfYNAKdjo4S74nuwhNMx+C5HcE5GqSWV9wsAWjKpb++jZ0Knpr9r30HD0pIMqHq18SDIb0n0Vm51d/d54FQzpldB16kz930IuXLRIbHr6JAWiSfEy/+bLKcQBuuM4OhzmdLYyFIMimiFgR3pGmUamnhMkRPArUg/NTMuKXqpiVLcplaOT4i1/BuaNRmRiuvGMSkipXwEcsqkPus+KOKjhf6AiuC0UURcKtZw5bOomKsW6JKxNgTHtBY77/VrUW0DZtsPqPtuAU6aNWD/JGyPevCp3Nisni7sFYM8OFIEAKTivdwPq/aWog8eRrBP3JMBaCZ9ZF9MgwfEJ6FRdrv0+41AiKiamURieSk/cqLct/cxxkkEMKGGlQWsL9ipj93MxbftkfRbtx0XoV/yGtx4Oye+SR1bnpzjgiKBIQM0MyEZ7tgGVh276Tj6HvulPy8TZ8S1M6ksPSxS0hft/thD38ToGhkhnGwpEmJWUa2mFd/9UohEGLDaVkV4+pTgtN63tYTeExi2JP3WKcPeExwVZWlbmxAzTUI0MQv1nnRqJvgercE8kBB1Xp2R5RSWQyOlCSC+A8HRxSV11GtkSROmJMSqGkqip3LaIC/4DCQUWuultHKcDkHxu1SCdg2to+lVoUlNnqSOlYimQax8I1n2IB7b/9uSkAlLFItiav2M01OpfoWIkN82guIx8rRW+JMnIjsgiXxMzZSLPorW8/dJplpPOJmqg5MX8ltpp1Kh+XTvhKycE8EpRXgsswick/Ph4meHsGxDIIgWvT0unNmjQ10a4nKxNgSHCDCd/zwnmG3P3Hc8wekaUCAhrQHPB2msCY5e/lgpfcPAHaJAvBQ7iZDA2UWJKTZDro3fh0LbmXr7W7L4CERhw0iqeeB4fBiAZjIkBN/NiPhEK/oe1bE7Tdwy38pm+nDOYjdz9ba1kH7HmZiKfDVLhu3lwW82/DEjcbOw6sVGk6cmHHuwQp46CUs3M5sQr2APaBcs5IoYppPvul36iMEgpLDRdh/l0+Sq6SSa1/Y2IVeRPDGhG0Lb1WgdMxIypKN1gYy1zQirIlMh6jWOJkYMNXHT5Knx+jJNcFrlu1FiZoOUeAFAM3BC3DTB0ZEJXY2787O4jCrCaFTbNlbJlugQYTXCAzjSF2cwEmeRBDmH8G8T7TKz0ZCIjAcVadBC385I27QWVpkAac2YjrLEhTohERw9FT38kc90itPYJzQ4WsAczx+asDAs6euWtpd+e3/Kj1Hfo8VqO5v3tRDBmRIfP24EYuPWChcNDpF7MFC8/wxauspKxhWXjfUhOIbR3nZvrmZ/BrPvR9H9Lfdv2yBMpaVFD1pOEJxQslQ9wUlNWQpRIIyK4DSKaPRj8qShrkltgCNPfkoSdY1EkEK1MWWH8o3MN5RvaN/hSTVv5VzCeSWij0b8LcfYDzLkbH7/eE3CuRsCbbRle7gmG230zadDJI5kVL+CfZFfMxFsSERNkyeTkCMhlBTt0fcyJ4XqvAIxsynpC9dhtgjRHiFX1FF8bbWng0S9WiF1PAB2EVJ8SIhZ2GYXQ9Eehb4nFM+RWobPOrmolidm0W4AE1KGA2GIdkqIWYiS9YtWhKcNR4IVyNrmQu4ropSMnZ4Ke9SRqaDxWixbISFqSZSQDlyomY6aPPXWxDpWliWt15CNAvqNUbVVAv+p1FpIz/XWYG7knPRsvECeZqrUQ0nAfDqm9kCwRiYsPIEuEZyB02niGuGp01sqvtczA/0ZRYUsC4kLx9c21780vZUX5tPRp0TjwqluRk+LD9BV4EvTzV0JjuA7TUHp6e8cBcKs7MHH21uqwUJmxvVMaNjdMw2tDoXGtKn4+JGDq+7nkrE2BIdHwnjPDSrU9uBtH7mJsWx1KYwBmpADonRw9SmohAgQIa7TNBaIhCIhNFqpw26MEBUAFAjCMCqSobLXgXRp3zPV7+WQkIwVG0KkQxGYAN9HHq0QN0Vw2FCMcAEAaRISn9bqxxnIlSr2xYbk2HpqyKyRcwdArRCY+K8uJavtkRil30cYXGHcG3C8JvpfwL16BnKiI3EW6Svt20BMR1q9DSisvgFYGcj0Wn9JUdWo75LPbFVUYUDUGfBIkajEKItlUBgkRkkHMkt6hIgT/VggM8wMBAITBmqbanTiqViKgxpzer8EHdag2jqxMsXtQFq7yUAiRaNVM/3UNHWmdLmOANGhcNy+VPYBhNaEY+f1e/xn4rhd1xYqERxNQlpS08dZlsZw18t/ULf2skBw9JT7vPJ1gMXqauC5Fia3x/3CIK/sOtqixeJTNWzyGjrhmAFOoCxERXzL8YTgpDojvYSD1vTkfR2ZJ4mMLoSpyVmojzNANDYlYmHtgIFPV7Y/KvBEPyreOdaG4BBxfIOmVg20SUUzDzvxq3878da8EE1iU1NrpIPpAKzeGFfbcdm3ofIgrv6mqX7F61Fu50hPIcZdwsR50Rl94lJbfS4hRZXpLSIhyc9dx8lNui8Z9daqSE26HLTE3ZMqq0ZC2MmKiWbVTi0nuqXYD30arXyO5wLRb0Glx0wjp0Utx1GUjOwDMIxPe0rETZ0760vIybHDGkfGiA6FCOqzPy+lXyGSCI/TivgBDVIewS1Gyitt9UwmqVisSLTSw2i2OVWkU88sy7cHD+f9gpM0jNo+9dOX6EG6LS6noLaz2j+mgHS7zEeJNGiUZjit+ChNoVbEwu2zShzCFv1ecVb/zhMZa1Ij/VcRmeQ4nPleJUl6uYXzcNZiosl+BXLR0saF2la8O7E2BIeZ4mDDA7tIBdRjM5/CcA5RSPbXhGQ4zz5ORnBiBKQxsr+2hynlrZFRqs2iMGFmlCGJQmk/E5Gl0I70Kn8qAkSuqIv4nkkEJxAX9v1LUlhhfwBsJDKVpOZ0ZEen1lQhPVbfA83StgBAaro9zSStR4AQlXC6Sm/ljqnbhuiQmDWBSdJb4RiKdFEr5MowpBChgYjRDUCz8HquyEcg4FaOb1W/qVW818rDnSgjRHHqtRCSqD8CYKIgWTQ4ZBCvCRmORJeMJkFCRkSDkxIgWYIgHVT00gSP6h1VV4XWyyOEQd4RDIk8SRQgW8rE972FrqAtdhmuKfEh/ZDvZmSppO1ahP3l317Zk/NR+0xFUfrCdt3XUgRHk5rcd06qpggOc0pQciIDTFcyLguE0wjNkERwyhEa53daTByJUXYvxu8GIwYK08SltRYZj9zjKlFFxpeLtSE41DCaXZ9G2u5A2148tuE1A/OZjB6dJiGUvnbpiE98tVYEJkR/clWgJjiJOCI8+Y0cU79JNE3aFgBGlcLSJGYcUxKS24KPEnnS6bEAneLqhvScdNu5F+eNqq1O+fmaQlRKYQGgfgTmheOG483HtK3SyaBTmqjgr5HSX9yrtoX0GA1WdFOQ9BgBRe2QbtvMREcjx1YD3WJMvmqdWqOCoFyqzTHIi5kb/WxuIORpxulxw+W2UEJpXrGzFSG1voVdmQR/mEUqIqbW7+/Ju16gVteUsiPFEgSaPJlGhNxNYxOSYcIsqVAbSkVnDHGi0WlUTiT6JsZMrXKv27r9oGZwpam1sH9vDZpxVYPjOD3FttHu/22Iowam1d8FRGTcW0J3RoEct7xFOcIQp84XIjXB3mbb9Z+jZVUoMbPF1GBq1ykjAFDSoiRqAyAhbiU9TmsUmSkSIN1e7jkAaBWpKS1HoUnPZIpKpSlluyI8DLReg2Ng4lpUWmRskrDuo0bV4Fw21ojgAM1Tm+7z7W3g1q4z3L7h/tUEZxiFqOhUkaGUAJRSTTH2a1P7lO8SwRkGoG1XfQe79q0jOMMoRMapP5XNj16jIjiaAPW99F+Tp/DU0P0GgFknfVmqtiV7X7B3IjJG32dRrUzYt+zVeSm7takmSvv2DwrKdUlAIijHcnC6qGBvtG91vQNaLbwuHFvrlhaKFBqKYnO2DCwm2vptfFrQWylytSK8lhUOYUOJA62ZimkrSAkERgwpUEtRbN2ccJreCuQo2BeDSgEiCpxt76bgu26o6FDLsH7KfXNqE/IUyNHov/9WFWkkYjTe3g0jmuWq78ZwLPZIRYLDkTwZpCQmzl6zkkLT0/INAT2tDnDaXqozo1u4qNeqQDlgsAy9vplGsmhq4RFDhWlUyfBo0ltXtw/kLp9lFW4jWRtOX9PUv1Ht9BnEQo0s/k2MuKj2+buj7qTajzIfzu62jUlKs0wECVKAUkcQDSjWv6HC90xkrlhkXHHZWBuCA4Y8XbY3gH1HcHjPE51ZBzTxNbf8ZNAkZIrA6AiOJi8B1qa/6mAjA4yFQU8P9sF3EoXJCE4gMjlR8P2mYQDHtqsEiMYx5hNY2WkYhGQA4M5HbaxNo0MBMzUXOxCg0LeSPYn+KHIEAP0wfV7Bd94+aauicUDWfhACRiaNHoXtSeRJyFMi+o7n1cZj03JIY/w+qkXWAosSKVRpv7mzr4i+/bG4z6J1Kjpk5qv3UUjr8WCBjSA4l3uUOhP7SrMxITCRHHmCQyc2tftR0YwMcxzeplVqqwWsz5XoophkXGQVUHYjaQsiSae1gxSg1FPQm8ZGAXOzTKND4XiD//4b005GcFparTvUECf1ewKiLA2MliR6FHy3KsI1WEqiKAGBjPVESTC0JPlbZgTIKvuQ+U41LmmRwdwm/ZbtHO0hwkMrNmfndGp4CIokER4VwQnPFFa3TjY9P5/BBQCu1g/HfVZ7KjWmWRN2IC7hYBWTt6xXkVfTxNFIsb+6mvi1wfoQnBxhkNvwqar5HOwJDmmCY0z6OYngTIee3zbBAQDbnd8WOJvg5NEGbQPAiX2V4CQ/sEbsPA6pb29jQEVoJo4dyJAiODybCRHoupSgNNlbU9+XSZ+1q2QonFf4exzT7yy0D/ZuBOw8bRv89VmqLPQtXKNukH0T337/WZ9+13qKliZS+XdtbUzhEWfHDtesn/iuhzHqm3SBStIaLE92KNeJDYGEKCIKSMkCb6dW2bW4e7CJFkqOTbFWEqmcmxZehxpK2jepSzYuOKkIrrVDjZ/23hTsADD4yJleE861dX+3g1kRO8N3rbWrbXUkIRCg1jayDASl9tZXli4V4+vJnJui6jIBThjoB1vW78QilwyEbKVWDqnJh2l9IcjtGkjFmHIrZc9rE4W+6f6fJzKmhBiFO4dV/3QfSwLlVOwsO5w1+yqeGzMW1gnfGtMVozgjhpVtjw4MVA3OpWJ9CA5BdB9duzqIWgYFsakmIVYPJOqzFjAAKREJPrRND14lkqHjtcOgokNqENLpr3ic/BWukFq7CML+o13dBvgw+oQtDq7Kn46GhTdvfR0MxdyGevFyf7fpbUnMGblq0n9j/1R/JqbWxnZntQXS9pogtQ2A7N7RhFMTIKBMQqZm5oU+Je0zYhfvP5WeMKRUvNJvKpBCMiqon+mWomDb6hSVig4F36NNtUVBrG4AGuJoI3kLI2/ZWjukCU7UFnXyGUbJ3CyjCW/yWjukCihaNRprQXSAzaKyQf/DlpIFWqNdFTxsClO9E9/ZbKWYkiFZZLUENqmWKvpjoUP5e5QUK6QYRdGPiLj6tqqSDMhvTKeDtGujfoihWWl2VPChyUxMmyHdHm+ZModLMMHzEkzNZst9WKwSmxJKC3WKL1tcwqHiycHaEBweAfuWK7vdtEY0GiH6MJ+nkYGA84jLWfvpbbrEqyYhIXRrjEtdhH1Cv9VAfCH7O207FlJvdCL9XyEZC/mcp6jMhP5nhShAtivtEOkoSvBfIjjMacpQ+9ZkMX+6aaIwjqm9pHnK+x19T4jCo7ZoSL9rrRfSviPpUwyxpC0aRvn+lrnoWyI4STFKwF3TkNrS+h8FblnSX0s5X9Z9CPaB4zY2pCKLVoomKoJDRtJbrA7NVoufsWLXgyUzYn2fBEYts6DPR63YWbI7n2eQ4K8AUytrl0BglWRRPhS5ymfFhynojDRdFm0qahIjU9BRFBm2R2gyRisrd2t9tCZAltOIVKgpZOXWSM6rKfRDL0ExQF4bLJCsVN6o40iwUFKNkvJSWiWVx7RIvxNN7sKVcKmo9BlOdMUiY64pqsvG+hAcS7CH7glpTnrQsV+c6eDI/bvs00E5IFfCBejwPnBxggOkryqxGrLaV+lgKI/+6H9L9twW+qYH9PyYxggJyVMi+nym0khaiBxQSI+dmT4rkSOdkstJREBJ/zPle8o+dV4lkqEJUTwvTTTUd7AcEpKR3A+Jb+9HFzAsCZi1yHg5YpLA9Fm/DMk0e8sya0ynsPT2PEITjjmGY+uHMKcancj52NUP8p9jW01SDGLUjzUnU0UGKRKfjMiovgcyY1WUJUZXVNFCmxGaqMXglOzoyEzYzkkqRyIkIXKjdUF6gdSLIOz5KOjWeT6n+lmKvOglGS4yDOtH59uBgZS90tDkSG7nPGbk96X8MSv3VIjaMIDW3wUGHYwJz3+/jTpQHq19hGCgThO/ZKwNwSEjD+L0jf1tMvSp9ELpxpyK9ui3+hhTnbixk3SUisJowqSJjx5QtV37WakOdoFj522S2PU55663GTWIl/a1nIqR9fYAKnwHmnDm31FOUM+yR1GATlNmKcFcDZlHWQL0NdIRMF2jvpRu1H3Kz6uk5mSV5tC+9TmWzlf5ZrWdlRiDoapCx3bKtwRD4Sowyz5h5gplU2TiLWrV23z0kQ7JyWmq2jyRcFheuTXz9sHOmgCZ6UbB93lDTX6Z9U8vEh8fowHSiAcru2zTvoXQ6fWxpsS4yXIL6t/SWXKyjzo+y/ZR3WZJ8Fn5mFrigaMPXrEzyrdRrsHR+pmxcL5TGpyLpKi0Bqf3DHvAAjasZhyrG5doVsWThLUhOGDIYpCWV9/8c01OCSbToWjk7fOn7pR/WYa6GKFJ9DsBOXnIoz85dASn5KdEvkp9Tojhqru034XZX5YRV83M7zxW++RvTVOz2hLfFipWLXYd/QlV0VZqB01Ef1TqRbYVyIwmFbp44mBXv8u8bcl3Fk2JaBQhHmzaVkV/eFmILOkITq+udawmrdJEp+ksqhj9CWmmXjQ6rq2QJBsq2yckiGOEZlwAeh5xjHr07kNYJyv6Dms6DQZDv/obIuI4i6rv5abSBCbYl2PaPhyptyaxlUTEfWEqtyG9DESDoojYmigE1h6ESFBxLSoGxa83FwJrEfGYRaU0gVgRAod/FQnpbSqDyslELiRm9VkTGL1dk4ycj9uVz4qoKB9CiHRBRnW8CR9yruVVxnXdnJEthkBmCs/1q4+m1Do4l431ITgENDf9bJ6bm8Dettu+6//t2nKKCjifCACrtVtyJG2b1e1n+daak9yudDwrOpmSELhk1wTorMG+U8dPbGFwV5EXfS3D9pl6AuUpu7Nmp1lOfZeuVavaa/F3O65ez5xoNIVztlb6oaupJRod0b0k7Usz8PLjnuM7LvZqC20AMI1psUV1DxTTEkkF7jIBIkWwim21EFd9JCWkMDOJAumvIVYRt4COK+glJgBEIbGcVhz2ipqZNJ20Su5L6aYcFkA3aePkXyDTc6gp5SWCo0XEiaBX9anJRTZwRKONxDFtF9ZSMqq+S5SeZEcSnppqfWLQEkqfriInpaUkknaU2pIgaNgo/Hkl1RXspJ9d58CoKtOPBib5l/x641eLGjW6TKwNwSGCFFLb3gBu7gEA+JYv9LcxB7rZakNd3O8sEpIX/SsJW0vt8vb5PsaAQ4XNGOWYGDSB86MRU4LaUspkZXp7eMW3yRRy0fcUSIiu73OGTiaZQp6RvrwGT0pQlFYlkp0zNDZASq60pkYTN50qm7pmUUczcc2W/QXaTthLGhyVQqMN3W8+X7+j78vZRIQn/N2mBQojon0UMmTUAqUDxyKCeYRHVmxXoygQx5RQZoaMTQZ0vX7Y1MP/jELBCXhiZh0VCMakD86yv37A7abe9q2FpaDpUJvDIY1NSKx4kfq7NmvXaoaQ0VnLuqIzpQLdQvpaBxwt0uXVnAfVPqupowmTFEpU5EhHVBSJkjNUnyeljlKXaGRIbZswU4yRFBMsaX40MXI6opCCpOivVO+GYR9DFKfiMrE2BCe57w25ysUAsOsL/m1uuplUQJoW0gLcKSRF/wqMPxccl3AGwVk5h/O0PSXfU+mvvO1Zdh1BigSGhEBMpmPOIQLDoFJUq9eKrS1XkNa+89pF0V6I4CjQMEy/PZbIU/HYE/alWscm0R9Zdc0mjt0VCgFqEtKrezL33WT3WiakoFPdL/3qXeiLHrGmUnUerrJuuEfSgTf8RWOZ4CRTw1d7gWQKzwTOmy019TWP1mCcqCYcVkdPUlR8jl2hV6uga5yXohpZ1sHqrVRuZibVFrGt5q+6xk2y4jdK+6g+8WrNmWQJBqR1bUrrVOkUVVrLRgiQbEvtJZ2M3q+0VlW+byktla8qHvsKxuBJs6t3Ixbny6LnY1wdaorqsrE+BGcE7D03tdnsHgLb9wComUSbG1L0j94mwUnWpZogMpPbadWeDfIrERx96Kw4ld6HdZ9CgbiS/QK+KdfBFMnRO4wOaYIDpLkNwEWApnyXZmgpUE7MSseeIhmlmWU6GlQ6tlFkJ5/9pQXMyzPuqSkCpF9z85lhVu0/lq6FivYM5WsVdT/arolPPPZE+5ElUpPbgmhZTwM3KnWV/RvtIWioZlHlaSerZlGZTDxsrbTTs6iMqjzMnM7QSslESo7yaFFICGoeGP4Ox1TcbQVOeyIi5IkEYzqLq+A7fr1A7LOVzWmdKV79SvW5KHcqjhT66jDalKeWCNEZd+HKsafEwq6/7o9hgshMkZqLLMLZU+99n8JyWux0tEsMrMphXAkqwblMrA3BWSxafOYXbgIANrsB+7u/CwDY2n8VAGA6dkXG4GpzhPoc1FJa9CwgeWLI33GmVq4obEXMWYSuCJshpgCSjSoOTKsPpilfxeHHqED0BJHgM2yTBCHsd562Qz/dNNQ5Tr7YlHxnfTvzpcjy5DNFzwgq75DtB5+O0TOJCryNbTqQF11PpOJL9WJW265qN6KNqVxPBjKIjoMitrqYnS+kNyi7JhTjaDCMhTQvEBfb7MeyVi0uDTBlt4SFDWtKpfeKFgKbQrqpJBTWBGdkwiKLhEhbSv6dso8ZQdJC4LAoZf7IiPYwO0ztwCxposFmWVVFJkprRo3xvCS6oddjyiM4EkTjFaKS2oVsaB8ajgQ5QxrhCaRRfk75LCe9TzIDK/Z7mrQEfwnJSWat2TO3ExoY/9APFY0bM0NntlZP8pGByz/aineMtSE4Ixt89nAHgFvbpb3rbqRNX1q+IUYXqp9CFt/rjKxv0xiOD1f9ILVMsZR7sOd5/VL1U/2QbYxNHiSaB+mVk8PxNBol/iy95eZ9zQeB/MGq/9azUUrTbJM34Ql7wJhVmtXnc1bb3F7qWxhA8/MJ57TSVvHD/M0++izUQCmJVs9qf25b1Sf9nY/Kd2nQPst3SJtM2tl4O5Rd/h44ZeGxEJwfokc7PfU5DNY6GkBgNeiWiXe4hqWlB8K5lGzat071aCJSsqfXo5wmcrOkhCxI25Lv8jvFyBMBNY9hgijoWVS5Wc8qCkQgfVcQEiDH1gN/Oe2Tz2QKxwhamyRFxRlRUO8CpVlNJcKifZyVRtIRlxUfsEUhuNVqJiqTGwuLE3J10Aa7WEkPMds6VfwJx9oQnKUlfOKeS0HdX8pNPg/iRsjCdIaAzj/jW/UgbEnkDYR0hkBYhTf8m1bOlJkSeujIawhSYpPBXVcjzcFq+9TSWOfNA5gSWeYzPHSoXX+e0lXnfdJh/KmQ/ll1Fc+zX8T3VD8vCk0+z5KSnIfzquie53tKmgOsDoiUbYvEDeWowpRvefNWvkkPbjSpc9G6kVK/SikOfZ/lEYNkQFdrM5Xtwbc40BENTUKIdFuSSIaya5QiHfp8dR2XqWutoyxit/GY+cwhTSZGmxIcQFI5OQnR7fVU6YTAxP4HH6ukInwuRUVyAsHZMhXartd5sgkJsUWCYpXIPDl2wb6yT4GoMERjczrch/XpqMeZouLC91XxzrE2BEe/tQwWWPoHw0lYpJrUdEnI587Ig6sxKZlIZxG4f/V7q37oNGePZ4ndDTza99mNQ/9Wq3emfQPKmZzSgzffrm0pEZPP+kFeIls58dADd4m0XMSuB0BDabuptmfZS4PUWb5L56VR6rfePkVQcyKQgy/iO3wfyaCdDpCle2co3CN5n0vEnJGKVPUyAjptUjqvEglx+1DcXiI47ljOMBVFKZEnfafnKRFSv7dAIKaOLbVquBzBsWWSEe2ckgjdZx3pSGyFCEja1vcZkrLRM4l0KmeFPMEm28+Kikzago+MtOSfU4I0FklLsK3srwiLjrxwYaZdqW+u3Yglu+VoRrsAr+R9H0e6qKaoLhNPNMEhou8A8BfhKsP9NWb+c2ftP8YHIaMPuhr19qKfT3rx5fDA0wslOxIkP/D84aZJUp72KbU5i8JMDZ7SVr/5rb4NnrXCRH7s/K3+PJwVKcmxQnDUoFskMIWISx7BmZLe5Mf9Su1nDZxTbc+yXzSK9E6Onac8pojqWb5L95H4n77v0yiJPqYfdLUmSZN6Ra5Snxz7FM4rj0jq6FBRyBvstkxCEt+EhFFImkgN5ir6NqpoSST4SVSLiy8dFyj7kiBdE8qTSOL4Od0ZodNpxDhOsZbKyIY5WcYgpCFlXShFBBOCketdChGXEnGbIBsrERwu7yf7nB3NmdpXg8miZRfVH9sF+uEQADD4Y8+7m9ht3gcAeL3ooeLdjieW4BBRA+AvA/jXALwG4GUi+igzf6a4P6R+hKHyAncBDI5aAhjEp5F+lpB0q5WSAAAgAElEQVRa1C7slvYv/bv04NUPwvwtuxTJCJjS6ORnEdt/BQTnXALDZ9tXyBefYQPi+kU5poibRBW4SOqmiMRF7Bdte9ax326/A5JQdeGaaT3ERcjTVCSmdOukEZpydGFqVlGeYoptSn0rHHucIDJO2+H3WW3m3HHp/T093FS6SGvVz3uhOC+NcBZ5uSixcURLiExxH1DRFkiPIYqDtSGKhKOBio4mgjshPuJLkxjZl8AwhUSqBQPcyOfY1msdVZXyRBuTXZhilKdIXrLIUPF+no6K9ORmliybE5w0TlA8WhfVmbe7mPNViozx9plvxZl4YgkOgG8B8Coz/zYAENFPA/hOAEWCMzLh2MfeFyMwhAhOEjEoP8wD0hfL9G3Q5k/63FXhbTUhEpwODsl0y9JbZ+xz4VjBlu0bjq3fNIOPqUExr5OB7HDlNINOu6S1M1LypN+Kcy9TqTW57qt9Y3U+q0RA+y3Z0+Ols0502zxCkh+7tHZO3u/0mmSDCp11rTn+f2qf8PeULkensEqRxXSmy6o9SevlNuW7dN/m1y6/R5Njr7Rd7QwRoVTuv8RRzoqaadIiJEjpdM6JPE2lofT5nIeLRPXOG/9y+1R6OxDlfJXtGOUJxFy11zPw9UKjen89B84k5GO1H1aJ2Sm7StLvRu1feD5PXN2LFugLlYpbmkNmUXXRdrWVjBlVg3O5eJIJzjMAPq/+fg3Av6B3IKIfBPCD/s/Fn//dH/nUFfXt3YT3AHjrcXfiirGO5wys53mv4zkD63neV3rObz58C2/il8Kfz1/BIT8GDO+5JF/rdm8U8SQTnHPBzD8G4McAgIheYeZvfsxdunKs43mv4zkD63ne63jOwHqe93U/Z2b+jsfdh+uGq4y/XTa+AOBZ9fcH/LaKioqKioqKNceTTHBeBvBhInqRiGYAvgfARx9znyoqKioqKireBXhiU1TMPBDRDwH4GJwS7SeY+dNnNPmxq+nZuw7reN7reM7Aep73Op4zsJ7nvY7nXPEVgEpFpioqKioqKioqnmQ8ySmqioqKioqKiooiKsGpqKioqKiouHZYC4JDRN9BRL9BRK8S0Z983P15FDjvHIno+4noTSL6J/6/f/9x9PNRgoh+gojeIKJrW+/ovHMkom8logfqe/7hq+7jVYCIniWinyeizxDRp4noTzzuPl02LnKO6/B9E9EGEb1ERL/ir8Ofedx9qngycO01OH5Jh9+EWtIBwB+dWtLhScRFzpGIvh/ANzPzDz2WTl4BiOgPAjgE8NeZ+Rsfd38eBc47RyL6VgD/GTP/61fdt6sEET0N4Glm/gQR7QL4ZQDfdc1+1+ee4zp83+TKKW8z8yG5MsP/D4A/wcy/dE7TijXHOkRw4pIOzLwEEJZ0uE5Yh3M8F8z8CwDuPu5+PEqswzleBMz8JWb+hP98AODX4KqbXxuswzleBOxw6P/s/H/X+8284lKwDgSntKTDdXtIXPQc/wgR/SoR/SwRPVuwV1wP/Is+nP/3iOgbHndnHjWI6AUA/zyAjz/enjw6nHOO1/77JqKGiP4JgDcA/ANmvrbfdcXlYR0IToXD/wHgBWb+ZwH8AwA/+Zj7U/Fo8AkAzzPzNwH4SwD+t8fcn0cKItoB8LcA/MfM/PBx9+dR4JxzXIvvm5lHZv7n4CrWfwsRXcsUdMXlYh0Izjos6XDuOTLzHWZe+D//GoDfe0V9q7hCMPPDEM5n5p8D0BHRZS3g966C12P8LQD/CzP/7cfdn0eB885xnb5vAGDm+wB+HkBdt6niXKwDwVmHJR3OPUcvWAz4w3D5/IprBiJ6nxdlgoi+Be43fufx9ury4c/xxwH8GjP/+cfdn0eBi5zjOnzfRPQUEd3wnzfhJlP8+uPtVcWTgCd2qYaL4h0s6fDEYeociehHAbzCzB8F8MeJ6A8DGOBEqt//2Dr8iEBEPwXgWwG8h4heA/AjzPzjj7dXl4vSOcKJLsHMfwXAdwP4j4hoAHAC4Hv4ek6V/AMAvhfAP/XaDAD4z30U47qgeI4AngPW6vt+GsBP+tmiBsDPMPP/+Zj7VPEE4NpPE6+oqKioqKhYP6xDiqqioqKioqJizVAJTkVFRUVFRcW1QyU4FRUVFRUVFdcOleBUVFRUVFRUXDtUglNRUVFRUVFx7VAJTkXFEwgi4gv891m/7/8UPldUVFSsC+o08YqKJxBE9PuzTX8HwK8A+C/UtgUzf5KIvhrAHjN/8qr6V1FRUfG4ce0L/VVUXEcw8y/pv4loAeCtfLvf97eurGMVFRUV7xLUFFVFxTVHnqIiohd8Cus/JKL/moheJ6IDIvobRLRFRB8ioo8R0SERvUpE31fw+U1E9FEiukdEJ0T0/xLRv3SlJ1ZRUVFxBirBqahYX/wpAO8H8H0AfhjAvwPgr8Clu/4ugH8TwK8C+B+J6BtCIyL6PQD+MYBbAP4DAH8Ebv2jf0hEdRHXioqKdwVqiqqiYn3xW8wcojMf8xGY7wXwvcz8NwCAiF6BW5z1uwGENdz+WwCfA/CHmHnp9/sYgE8B+NMAvuvqTqGioqKijBrBqahYX/y97O+wQvPHwgZmvgfgDQDPAnE1538ZwN8EYImoJaIWAAH4hwD+4KPudEVFRcVFUCM4FRXri3vZ38sztm/4z7fgVqz/0/6/FRCRYWZ7WZ2sqKioeCeoBKeiouLt4D4AC+AvA/jrpR0quamoqHg3oBKcioqKC4OZj4joFwF8E4BPVDJTUVHxbkUlOBUVFW8X/ymAX4ATJv84gC8BeA+A3wOgYeY/+Tg7V1FRUQFUkXFFRcXbBDN/AsDvg5sa/t8D+PsA/iKAfwaO+FRUVFQ8dtSlGioqKioqKiquHWoEp6KioqKiouLaoRKcioqKioqKimuHSnAqKioqKioqrh0qwamoqKioqKi4dqgEp6KioqKiouLaoRKcioqKioqKimuHSnAqKioqKioqrh0qwamoqKioqKi4dqgEp6KioqKiouLaoRKcioqKioqKimuHSnAqKioqKioqrh0qwamoqKioqKi4dqgEp6KioqKiouLa4coJDhH9J0T0aSL6FBH9FBFtENGLRPRxInqViP5XIpr5fef+71e9/QXl50/57b9BRN9+1edRUVFRUVFR8e7FlRIcInoGwB8H8M3M/I0AGgDfA+C/AfAXmPlDAO4B+AHf5AcA3PPb/4LfD0T0Ed/uGwB8B4D/gYiaqzyXioqKioqKincvHkeKqgWwSUQtgC0AXwLwhwD8rLf/JIDv8p+/0/8Nb/82IiK//aeZecHMvwPgVQDfckX9r6ioqKioqHiXo73KgzHzF4jovwPwOQAnAP4+gF8GcJ+ZB7/bawCe8Z+fAfB533YgogcAbvvtv6Rc6zYRRPSDAH4QAGbU/d7nt24DAGZmhGUCAHTtCADohwYMv83YaG8ai+Olu0yNYbRk3bmA0Bj3+aRv0RoGABhif65ufwA4Hlq0JHZ2H9EYxtHgAk8dMQz56wSgodDWoPU0NGyzjHi8o6FBp3zH8zKMo8E1bA2j8b5HBma+7WGwk9gtgJn3dzgatCTHTn2Tb6v6Fa4fMY5GbUfsdxf7Teq8nE18w7clsUPsx0NoR0XfxwPQ+otplO+ZP97RwNG3MYjfR2eA44Gjb/196LZNvCYUj5349p8NEax3PjOEo8HG84ptwZj5AwV7o+3MmDVij/3W59UQjlXb2O943oSj0d3nLUxyXp3/43gc0fj3HUPOlrdtEL4PSo59NA7ebpJ+zxvn72gcou8GBItwTQyObB/bhn+DfZ7ZjT8++34BwJHt0cD9hgwo9nuu7Eb55uTYS+W78b4Zc/L95kXcHvrHYMx8sPiIT9Wxm+h7Tg2O+DRu123n1Pq2J9GeHjvYj9WxxfcMHY5xDAAgGDT+ER6PjQ5HOPK+DYyyz9EBAI5xBIrXpFW+ZzjBYfTtfLTK9xzHOIj21PccAHDCBwBJW0TfYieEe1gfewOnfIgAQ+J7hg0AwKk9AOL97wP2DLTk7Et7ENvrgH5LG1jawwnbDADQ2+N40xPJe78xzj6Mh28x81N4hPj2b/8WvnPnwaX4+uVf/s2PMfN3XIqzJxhXSnCI6CZc9OVFAPcB/E24FNMjATP/GIAfA4DnNp/hv/SN3wcAeG7vAIvenfrTtx8CAL5wZx+jdT+ep3aOcbx0D4MbOyf4xBffCwC4NVvi9qZ7cC3HBntb7vM/feM2ntpYAAC2u17sc7ftk2/dxu3Z0tsHLEf3A7oxX+KVOzfcMec9djzZWowGt3zbV+7u4am5G0CC/WQ0eO+G8/fS3R08NXPbt9sRp973V20s8fG7W963xW7rBsDj0eD9vu0v3d0EALxH2U9Gg/dvuHP4+N05bs/dr363tTj2vt+/0eOlu+763J4Be50nLZ7UPLMx4KW77vrengO7/i47HoFnNl1fX7rT4Pbc7b/bCWl5ZtPi5Ttu+625UXa37dkti5fvuH1vzgk73vfJCHxgy/Xj5bcYt33bnY5wMrrtH3CXAy+/aXHT2/dmhBNPaj6wDbz85uh9N9hxp4jTEXh2O7QdcHPeRN8AcDIAz3n7S2/1uDVv5dje97PbhJffctf95qzDbmg7Mp7ddp9/2dv3Zy22O9e/04Hx3I77/MpbJ7gxc53abg1O/Xk9t9PglTtu0LvRzbDtGdbS25/dafDyHfeAv9HOo+/lyHh2x53LK3cPsd/Mve8GS2t92xav3HMP3X2zGe0Lb39up8PL9+85O21ip3XnvrAWz++4weHlB3ewR+7i7zad8j3DywdvuO+Bt719hoV138ELOxt46fB1b9/Bjh9sFjzihW03qL10/AXs2V3XL5qj91T4+S3X15dPPo8db9+hDfTsfW9t46XT33HbeRe7cMfvecTzm+7zy4vfwg7v+31c/3sMeGFjzx27/w3sWGff5V30cDfx8/M9vDz8GgBgi/ewZ93+PfV4sbvlfI+fBgBs8l7sX089Pti+x9t/BZvY8+d+Az3cb/L55il8wn4SADCnXezam76tu3c+SE/jFX7Z23ewy7d8v5f4ID4AAPgEfxyd/z52cBuj9/0CP4tP4h8DQGLvyT2LPmi/Gp/kXwQAtDTHtnEvjCP3eMF+GADwq/yP0JK7j7bMbVjv+1n7NQCAT9v/G4bcPbzV3IZlZ/8Avg6/3v8jAI5gbLbOt+Uez9BHAAC/sfj5SE42/XVkHvFVzdcCAH77xPUNADa6/fj5dvchfO7w/4t/z72N2eLm/AUAwOuHnwSzu3e6difuuzd3782vP/jF38Ujxp07D/Dxl/7qpfhqm3/lPZfi6AnHlRIcAP8qgN9h5jcBgIj+NoA/AOAGEbU+ivMBAF/w+38BwLMAXvMprX0Ad9T2AN2moqKioqLiyQIDsPbc3SoujqvW4HwOwO8noi2vpfk2AJ8B8PMAvtvv830A/nf/+aP+b3j7/8XM7Ld/j59l9SKADwN46YrOoaKioqKiouJdjqvW4HyciH4WwCcADAA+CZdC+rsAfpqI/iu/7cd9kx8H8D8T0asA7sLNnAIzf5qIfgaOHA0A/hizjz1XVFRUVFQ8ceAawblkXHWKCsz8IwB+JNv82yjMgmLmUwD/1oSfPwvgz170uBuNxdHoxXxM2PdamuNjl9d/avco7ru1vcSOFwkCwNfccBqE42WHtnE8at4NUWT89bfu4e6xy/mHbdvGgrz49htu3seb3j43I+bG+SBifOO+E8a9ebqBjWbwfRWx8kf2jnFn6fq46Y+90ciP4CO7p7jj9UI77YhNbdtzefm7yxbbbaHtXu/tDXa9fbPh2O+v2x1wt3fXbLe12GqCmBn42l3n535von5nw4thWwN8zS57O2Gvs943RdHy1+wB95dun72WseFjiS0BH95zOz103cONjrHhdYENMT6063Z+0BNuzJyPLQt4WQs+tGdwENrOGBujtAWAD+41OOz9sZXvjhgf3HM/iYOeccNddpyOFIXcL+y2UQQd7BsNRdH3i7udspP4NsCLu67BUc/Yn7nOzkZnA5wmBQBOBsZNbz9pRDz93M4GTryY+OaccDJQ9P3c1kZse8O3PR21fcvbLfa9InoxchQZP7u5FTU9+3ODhWr77HzX+7Pe3uDUC9Q7Azw324v2/VnjP4tA/dluP7bdmzVJvz7QOA1J0OU4uxfAEvCMueXtI/a6NvoOYuZn8BR6L/zf77p4nCAEfz8/FXU5+22HU/8MaAh4mt8HwOludtvOH6eJvt9nn8YId/MEfdKpbaJI+33j+zF433tmjhMWsfP7Rqd3GTBi14tgT7kNGlk8NTptx0hj1CcteAD5HZ7iZ2G97x3ewsJrWQwIt9n5trDY8dqlBXvBWAPc8lobyxZb1muLaAav7cUNegbWn9c2b0d9D4Nxg1y/rL+mm3YbnRcIWzD2GnfNAGCDnVZlRB+v004jOtw5tjBQH68DAGy370V4F20xB3s9zsCj0tXYqONh6rCEe45tdrfACN+vH7qojRqhjW4/6mgMdVEoPfACs3bX+x6j6JxMi4Fd27bZgvXzXILImGCi/cpQCc6lolYyrqioqKioqLh2uPIITkVFRUVFRUUGhtR2qLgUVIJTUVFRUVHx2FE1OJeNmqKqqKioqKiouHZYmwjOQglFD5YzfO7ACeQ+5AXER8czbPoifa9/8RbuLJzI7QM7RzjppZLx7z5wgsqDocXXhbZ9F4/zmver7fdON2KV5M8fbePAVy/+yP5D3F0EAR/wmhciHwwNPrLvCrPd77tYNfYLJxvebvCRvSNvb6P9tZN5rDD89XuneOAFwpaBL57MfFvC1+864dyDXvjtF0/dORz2hK/bc28RDwaxv37a4sCLZ792l2MVZAB4feEru/pjf3hHKhkbAG+cmnjsr94JlYwRxZpvLCgKc1/cdkX7AG03OPIF8za2CcfBNwFvnvpKvANjtiPi2iDSfvOUpK1Xni4twxfZxZ0F4rE3GsLSX8yWgHtO24iDnrHlxcKDFQHrPa8/PBosNv3GXtnvLjhWRt5sCL1/OesM4Z4XWJ8MHAvzjT483RngwZKj7+02iONtFAU/WDKOvFB6uzOxgm9rCA/7UNHZC967Jt4jraEosHa+pRpz5wWuh72NYuadTh4R4dhHyr6b2UM15pPBYreTe2RmTDzmqa+MfDo2sTpx54WdJ4PFcbRL9eKZadT2UYmFCeE97XS0OLXuy1yM/jdLJlbOPR0tTryQ9HRs0cXKzRRFzqd2wHLsfJ+kCnH0y2MsoDijDp3/zhY8YumL1vU8R+cfrQ0aLL2otscQ287hfo/MFj3E3vt+zHkWKzr3GNBT8G0xY/fMACOKe0fy/zJjk91zxIKjUHnEgMELcDewFb8XC46CYsvAhi94CJUpCT6YOQqLNRgSdZjTLgxPvzfPaSepFBxEvAYGc3K+iRqwPy/rbQAwNzux0F8QKltYNOyudWu2oviY2WL030dDHWbNtvdtohCZMUYxc9tsxuPI+YrY+cpQIziXirUhOBUVFRUVFe9a1EJ/l46aoqqoqKioqKi4dqgRnIqKioqKiseOKjK+bFSCU1FRUVFR8bhRU1SXjrUhOAtLeO3EiQcPhgYLv3L4l153lTdvdEMUtX5g6xhvLdy+95b78BpQDBZ4bttVOP7yqcGv33er0vaW0Ht/T286ZerhIPbDwWBkX6F03keB7mce7EWhrwXw3vno+2fwqftOcPdQiXlv+1XDH/SEX33gRHMPe4p5xttzi/u9O86vPtjEQ/+5IcZtX/H3/pLwqYfz+BlwotZbwd4Dn3ow88cBWgorezPue9HtZx52sQpxZ4CbvqLv3YXb9hnbFu33l4xff+irEC8ZM3/Bb84J9xY2XssgsPUFd72do/3eIlRlplgR+O6C43f6YDFiw4tn92eIvgdrfD/GKHq9NSc88PZXLeH+0irfJvp7NbRdjNjwCuV9vyL5vcWIhRe9PlgOyt7gvu9rbw3uLZxQdbNtsNeFtgOWvu393okiN0yDG37F8vtLEabe75fYMK0/rzbu3x+0uNs7seaWaWPF3/vLsLI94/7gq72aFjc6d28/7JfoD92+d4dTbPmqsvtdh3uD+7IXBxb3xxPXltwXud920d/y0OKOdYL3LZpjv/H3zrhAf+Su5R17iE1fDXe/mUd/y8MR9+DE9BvsBPT7mOOBdfb+2OIOnFB/kzfiauYP+ATLY3dd79EDbHhR7T5t4j67VdUXXql+z9yP9j1s4YE/Xn864o65431vYd+LZ+/TARaL3re9iw2/ivietz+gh1gsg/0tbHpR7i7v4qFxVckX/RIPzF0AwAybuOFXHH9oHmIxuuv6oHHHnvEm9rz9gbmHxeiu6/3mjSjo3bX7eEj3nW9e4IF5E4CrFLzLrhL0AbkV3Rc4xUNy9hltxdXOH5q7WPjq7A/xBma+evI238CR932KIxzC9av139c23cQRnO/T5hBH1ttpjm24Yx/hHj5v3HU/Hu9EYe6muYkT69p+wbjrfjLcQ2ucfYP2ccru+30Nh1gMDwEAhlpsNK7fp+MDLMm1XYwP40rkQTS8HI/wRrAPB1Fk3DXb6Ed3X741/iZ6f08RDGatbzsc4e7wWwCAwZ7Gysdt4+6XYTzBg/HzuDowiCvBuUxUDU5FRUVFRUXFtcPaRHAqKioqKire1agpqktFJTgVFRUVFRWPGwzEglUVl4KaoqqoqKioqKi4dlibCI4h4Isnjs+9uSDs++LDXkOLhhqcjs7+2sk+5sYx6RudxWePO78P8PrCCf9uz0Yc+YrEr5008HpTvLFooz2IiX/nqMVm4yvrLua4PXNhyMPB4LNHrgNbLeGeF/3enDGOfF8+e4hYbfb+0vm+MeNYNfhzR8C2/xbv9wY3/HkdD8BrXuS52VAUFO910vaLXqi52ZooIN7rpKrwF44GbLVBFEzY82Lho4HxxaNB2i68by/4PRoYXzr2gtnG4OHS+dhRvl8/6bHRuOv3sCfsdKHSLfD6ietMEAI/XDbY7kIVXcYbpwtvb/Bw6XxsdwYnvmrwm8sF5r6K88OlwU4XKi1b/x2dYuYroh72LbbDsXvGm0snRuyowUN/vbfbBke+DPFbwwk6Lwo+GMR+Mnr7eITOV9E9GDpst633LWLcbtniwFe/3mnbWKH3jnViydY2OBq9ULMR+z0covG+D0/n2DHOx8kwRvHs4djgaHSC3S1vPx4H3CcngDVscLzYivaT0X0hB3SAQ/++c7TcxJYXFB/bIYpnD32F2uN+C1teSHpsexwGOw5wPOw63zTHsXX3wKE5wCHcPifjbhQcH/NS2vr+ndpdbGDD2xc49vZjOsCCnfB0E3OcwN0jJ3SEY992wfvY9G1P4O6RUxzhsHEi2qW9FasAH9MJlnTifTxEz7cAAHOe44ScGHdBxzj2Iueebnv7Bk59u54WOIETxi5pibkXSi9ogZ7c8U/4AUYzxLYL77v3gt8TPMBo3HXqMI92yyMe4HUAwGj6KPpd4CRWDj7gN2CN+9z581riJFYBfmi/JL55HvsEBg7HN9xxzIjOX7OeFrGCcbCjcZWAAWDkPlb7PRrejKNHgw4W7jiGOhyPTogc/naHdP1szRwnvRNgo3NtAV+R2IuPT/q7sWJxa+ax8nBrNnHcvwUNQzKEzZptHC1dv4kMjBfkE5pYPflo8WbiO/oxHY4XX45t3bYWdKUxgDpN/LKxNgSnoqKioqLiXYs6TfzSUVNUFRUVFRUVFdcONYJTUVFRUVHxbkCtg3OpqASnoqKioqLisaNqcC4ba0NwWgKe2nAKulcfIoqMg7j2q+YM44Vwv3HQ4iN7TjR3Z9li2wuEDQG/fejEru/fYNz3Qtb9Tqb2BdHw7Rnw0Fcp3us45gI/ewTc8mLdhwNhrwv9Y3zOaVBxowMeusNjr6NYSTmIhvc6wkEvouGGRDS8t++Fub3bDwAaA3zhyAkPd/dbHPauv0HY2xDw+vHg7V2073Ym+v7ScY8dXwH3oAf2Zu7cCcCXT3q/vzuxw56x64W9DRFeP3Hixg91GzgKvts2CrxfP13gQ52rHnq4tNj1wtxoX5zgq7st79tit+28nfBlLwr+YLcdRcTbTQsD1/jL/RF2uj0AiELh3WYWfX95OMQHg30YsWNm8dhvjE64+2K7H4W+wQ4Ab4wH3n4DR4O/frQhdn6AF+HEqcfjgB1tgxO+7uA9OPJC3x3aVHZXAfZFvBcHXqy7xWJ/i+5iB1/lfNseWxDbm75C7wv0vmjf9nYLxpvGCTWfx9M4ZvcD2FDt75g72Ob3AwBOeRErAYv9TezwBwAAh1hik8X3XeNEnjv8HA690HeTt2D9b+tu8waeHZ9zbWkRKwUHEeod82U8O77g7afYZFd11pLFPe97a3wep+QF25hH3/fNG9gen3f9Nu6+aDFHw74qOX0Zz/CL7prQURTmNmhxH05g+n7+II6M981ztF4EGwS/T/NX49hX5W25g7/N8IBfx/vwQecbJ1E8CwIesuv3e/EClnD9CsJdMHAAV3n4vfwCDo0TNRs0aH3/DvgNPEWu36d0CPJi75bmOLDOt7YHoXBLGziy7ru+TS9g4asGh7YAcGzv4JZx12yJYzC7+zwIcI/sHdxsno32cK0bM49i4hvts1iw+64t91FYfDLex17r7qMFu2s22EUU/54O97HTuXuUucdgXTVkIoPTwf8+uq/CCPf76MejKPoNVY+3Zk/Bch+3if0Am92t2KfFcBDPfek/z7v9uG3RP4hth9H1o2224vdb8WRibQhORUVFRUXFuxa1Ds6loxKcioqKioqKx46aorps1FlUFRUVFRUVFdcOxLweIbH3zp7h73zqBwE4zUkonudlGXh6S/Q4h73bBwBmjVtZGgAeLjlqNwYLbPr412ajVsB20hOcDPK5M8B9vxr2RkM49atDN4bicR4uLbZ8n05HBvnkb2uAh0uXF99qnXryTWsAACAASURBVMOltVFjQgQc9s6+3TZY+jcAIkkeH/Q9dr1+ZjlaUJZXPhh77DadPy85R2bg0LqLstvM0Ku3C/aJ/kNeRN3JCLmXbLSfYM+vXDyqGQIDLI59wbQ93sbgc/vm/2fvzWMtyfI6v885sdx9e1u+l5mVlZWVWdm19EJ3u8EjPELGQDOWAMkSYrA0DR4LI4GFZNkSSBgkmJHGfxiJPxCo5cEC2eMe5Bl7WnJ7EGAjeSzR3dVNN7U01VTXmpXLy/fyvXfXuLGc4z/OL869WV29YF5lZlWer5SquPGL8zsnTsS9FS/iE98fikKeuc+Vexbesz3PaADkdVzPfKXmktWcFKpgJoxG3ww8N1CrUIU3hxuYDaxaxQsxLJurCQMxfzNr+1Wo3LftmRFv11JlLNRYcm99UwxgzgkDtr+5rfAZC8b03yGes2AhxnNdtu4yIcvqisp2Sle4H030beN3tWdKLpxER2+h7d2xuq2Lb96Ve2knPt7RW9+Ue2mn5GJi2NabaBXdFQNYmlXu9bb1mHK7oK2Hsl+JPx+Wdkoh7EYrGq3Yl3rs9sRXknbx1U3ruu+8mtGKJLdatc/N1LdtRI7TilVj1beZem6kEfWJ1xirrHLHqTSLu9r6uHHnSFktSONvji+rMZVxXEsSde4ypVtW0tbkvqp2IpXWrTXfMl5/D/JyTCm507hDrIWDshVL4cp837rlq2sDnmWpzNKvr/sGx9UY476fkU5Jorv5rWU5wVgX1yr243Nt3ZwZU3pOJ1mLL4sT8N9ld44kcdvHi3Lqcyu0Y2jqmPB0du03KI7a/nNlZnfF3PhXYy/K/S9Zaz/Ou6iPf/Ci/cK//m9PJVf0xH/+ro/3vaDwiCooKCgoKOh+y4IKj6hOVeERVVBQUFBQUND7TuEOTlBQUFBQ0H2XdVxA0KkpXOAEBQUFBQU9CAqPqE5VD80FjlZwpe8g1JfHlokYzm023brcrIDfjQaMJZ5q5b2eOgkIH0wzWlXx1soyaritFrJBP4VYaF0LbEk/48LSS1YAsXjTsdPSHlTuJtqPpTRwRmjmo6UY2cWaSCuJW9pxHa88iBxrWMpYdpoNTvJS2kZE8mCyhp3PRE3u5AITJ4nvO6sMW5EDJ0/KFYisFd74bkt3OKkckNiLnAlepJSvUr2te5wIqNnTTW8cOKsKNnGVp8dk9AXQjJRmKl4QGzjwc6Jm9HCwYYyiFBhw02wwFni2b7tEUgW4tBUb1gHAUzWjZ3vSVkwQqRgJADzVEw8qKzSFcpDx0Gz5Std9M/BtC5UzMGLeJ333zIBYoNulyhiaHbeP6sSDypGNPWQ8sme8oVvPjHzb2ryuzzZzAZX7ZsODsZme0bMu90KN6a3lrsHmPju+AnZPYOLYxn5dl00PDXfZJJbcC8YeEF7aCV3cckTsweaO3pT4ClSOSJiLKWFHb3lwt61G3khvYY9oS9vcTmkpd2wS22Buj74pd1uv4gvJ3dZDn7ulRqQCri/MEa3IbZ+bKS1pWwO7lSl9fGmmHlSOVZOZGNW1oqGHnFvRyFfunttDDwjXIHMUJau4WY8viOW7EhFTifFdI+p7UDmOGh5irjzk2/egchw1VpW7zdIDtqVZeMg4IqEU8D+NOpTV4q791erueN2PVrHPUZolaexyF1XmxxSrxmpcUR1f+CrfkW74/pJ4lTtSsd+mMjmxdvNgbEkl0G8sBpmVyf08VSa/K25k3JFueljY2MLnNjYnkty2jpuSaC13vWxseRfMbOp50A2sGAMak6Nle2ty8JXJjc+xXq086L2ncPSCgoKCgoLut0I18VNXgIyDgoKCgoLuu6xzMj6Nf9+FlFKfVEq9pJR6WSn1y99mu/9EKWWVUh9fW/cr0u4lpdSPnMLOvysKd3CCgoKCgoIeIimlIuB3gB8CrgFfVEp91lr74tu26wG/BHx+bd1TwE8BTwNngT9VSj1h60JmD5DCHZygoKCgoKD7rfoR1Wn8+876BPCytfYVa20OfAb48XfY7jeB/w7I1tb9OPAZa+3SWvsq8LLke+D00NzBiRS8MnG37p4cKlLtltuROxnGheamXH9uNKAtM9OLDYe5uw6c587xGGBZwVbD5bi9VMxKt7wr5pdZBZupy319sQKI99owLx1oe6a5qiB+tLTstV0/i9KyI6aob8zgcFlJ20jiq3G8PoXDrI7HHnLebWlen7r1d5YFe+1ExrXq59WJix/mS/ZaTcltfD+vTgx3Cgfn7TVbLISI3m3HvDZxy0dVxl7altxGxpHwysQBfodmxl7sIN/cGHZbbhzfmBYcCey6Fw3JxP10t5Xy8szBhkc4cPas2mApfxycaTaZSnXyI33MnnUwbE7F2abbh68vFhwLxLtrt1mK8/Fuo65YPudEO3h115zxzsl7aZtp4Q7Iib7DrtkDoKBkN+0CMC4nTJRru2N2pe+SM7HEzZgTqda9W5330PKZuMuJOZLcB2xX5wCoVMUZ7SDnsXUVlCccsmNcte6Sil0lsLU9YooDYzfNOe+ou8OQE1yfY/bZtq5at1F1fMSJcvGpPWQDlxtgxzq490Td9pWnR+oRH982m4y1q3Y9M67vjbviW0ykyvfMHKzaWtgyzo15rPeZS9tBdM67JG+abSZvyz2IznqX5A2zw4lyVbxn1SGD2M2ZQntIfKL2fVXrfnTWuySPBPSeqn3mpcTjs94leWh2mCo37nl16KteKyJG9oy0vU1WuWPWjd2x1mjvMj1V+2tVr3d97h47TJXbL1cx2+VTKqJPDaCv4p1ky+eu4e2Z3vfOvp1kCyVz0tFbq7bFMe10W3K7vtt6xHwtd1tyRyrxcPdMH5AVLnc73fKQcVP3mcl5Usdb6cjnbuguc4Fy83JCM3bnrVYJqe7Kckwh1bgbyYBIIN06vlBHFKX73qdx3+eOdAMl25bVnES+TwrtAWWtUirj/j+77lKsdf3yQ0wlQHekO2vxGCX7aMwSveYKXfePiqF2QZb+7orfK50eg7OllHp27fOnrbWfXvt8Dnhz7fM14HvXEyilPgo8Yq39P5RS/83b2v7F29qeO51hn64emgucoKCgoKCgh0QHf5dSDcpd2f0W8DOnNqL7oHCBExQUFBQUdN91T43+3gIeWft8XtbV6gHPAH8udQ13gc8qpX7su2j7wChc4AQFBQUFBd1v3dvXxL8IXFFKPYa7OPkp4Kf9UKw9AXy1YKXUnwP/tbX2WaXUAvgXSqnfwkHGV4Av3KuB/20ULnCCgoKCgoIeIllrS6XULwJ/DETA71trX1BK/QbwrLX2s9+m7QtKqT8CXgRK4BcexDeo4B5f4CilrgL/cm3VJeDXgD+U9ReB14CftNYeKXdv7LeBfwDMgZ+x1n5Zcn0K+FXJ80+stX/w7fqOleUHd90xeHkaY6wDfT8ydFDp8ycdLgi39o2p4mJH3HRTQ2bctp0Y3nB8HM8MLVq5bVqRoidt/8aZ3/LBoUW4YxqR5YIwby9PLM84ZpTSQurYQS50NS+fuPE9NdK+bRrBha7b6JWxg+A+MEwo5EI/1nC+6w7j65OCq8NEclsScTs+30l5Y+bA3KuDBrmcimkdbzd5Y+7gvav9lo8nWnOu5cDctxYLnui5ncgNxNL2bNLm+tJBhVc6DgzMK0uq3ZjPR32u525SHm8NWNZ9q4izkZuIG+WYy01xm60sDYENB9o59d4wx1xOxQnXGBq4fezZLfZxkOfj6bZ3Zm6Q0rfugOyrQx6PHCBaQ9CJTdjDrdvXBzyu93y8Ie67fdvltsDCl9RZMnFubtgGfXFGPtQOXr3EeTJTx5v0TV/it7loH5HcFQ0cBN0zA44l90V7YdVWtaTvIYf6loubSywEfkxVi451YOex3udi9bibEyoasr99u8GRcm0vmMsALChJrcvdY4NjVvGMXPpu0xEIdcoh543LvaTwrsEd6vgB58wVH4/FhbrNyEPQ58wVlpI7pkFHHIan9pA968a1VLl3BW6KI/DCHLGL5FZLUpmTdjxiLpD2HlcocPB2rBqrtvaIXZ4AnOO067vpYdjMnrCjLvu47zvukxkHtG/ry+RqNe5m7HLX8R19mYrafbdBM5Lc1Qlb0SUAKgrvLNxMVrk340tU4qJbu/M2oj65uCh34x3Ker9027sk59WMUbKzyq1b79D2UQCMrXzuNO5TVC7eSTY9lB7rlEbkzuGimtGX75bBeKC3Ub8YUM3oJy5e77PL3SEv3W9nK9nw8Ug37mrbTIesS+uYJHb5inJGM3FxhfYuxEnUphSYuBH3PGCtdezPtbJy8WY6QgvcrVRMUrskVxmJHDuF9o7ESjdXoHLc9mC4UgmqdkwW1+M4anHPXzT+Lj1sTkPW2s8Bn3vbul/7Ftv+wNs+/1Pgn75rgzsl3dOjZ619yVr7EWvtR4CP4S5a/jfgl4E/s9ZeAf5MPgP8KO721xXg54DfBVBKbQC/jqO+PwH8ulLy6xwUFBQUFPSek72Xr4k/FLqfPjg/CHzDWvs67r36+g7MHwA/Ics/DvyhdfoLYKiU2gN+BPgTa+0da+0R8CfAJ+/t8IOCgoKCgoIeVN1PBuengP9Fls9Ya2/I8k3gjCy/07v6577N+qCgoKCgoPeeQi2qU9d9ucBRSqXAjwG/8vaYtdYqpU7lQaRS6udwj7bYSAankTIoKCgoKOjd0T1kcB4G3a87OD8KfNlae0s+31JK7Vlrb8gjqH1Z/63et38L+IG3rf/zt3cizo2fBrjYPmvfmLvd/UAv57W5A9qWlXtK14oMhcDE37tZcSNz2w6TkjviZBwp+J4NdwLmRrHbdEBgZVfOl98zcnELbDcq2Tbx8Q+PIJLrt83YkFWRbG/58Oaqn07ktllUq6eIH9xwY0qUpRO7+ExckQGeHqUktUNzDLNiFXtm5AC6WCna79R24MDFWEM7VhJf9f1kv0MiH1uxYlZEPvaBnoMKU4k3I5iuxzvu4jLRiqasnhYxwilztbVBQ9Y3IsW0ECCwjje2aERqLZ74+BPxtvStfY5JkaCl8RPxnoep6xyTquGfzV7RZ0llfTPSTOS8iJTminY3BRta+20mixYat/y4Or+Ka5dxsmwQCRR5iQs0I7ecRorJ0sG6GsVj9lFpG5FGru04l2NAxCWBfJs6IhE31UnVQokL8GPmMi3t5inWiuOq7dteFAC4KWBlojUT4wDxiJhHrQNxWyomEeffMR3vMHzBXqapBPhUmrHtyLhd/Jy5Qov1eN/Ha/i4RcPnPqFLJGD4OXuFpm1K24gJDkyPrIsP2KIjQHRExES7c0tbzZ7Ax23b9nM81l3vfDzgCZrGtU3lp20SdT1IusNlWnVuGzPx7rsR29pBvC3bJrIu31Sv2m7px9yc2jax9DdVXQ/AbkWXaAt8HhEz125OwMHFbtw9IuvGNVuLdwS6bdousYw70+NVPNmiabs+dyYu3QCt2KGHzXoeScgi19ZS0U7kHFWrvhey3wDN9CwN5T7Hdq2tvBTTT/ZIJR6phEV0JHFDr7EnubtoOb7LaIzFtW0nWx4Sr92S06iDte4uRTvdItH1sU5YRu5lBGMKWonbr1i3iKRtrJsYAe4b8gdrrFOfO45W8TTpe9g6WnNXtrb0LsnRWtuymq8g7Mid70rFHk6+N7Jgwx2c09T9YnD+IavHUwCfBT4ly58C/s3a+n+knL4POJFHWX8M/LBSaiRw8Q/LuqCgoKCgoKCge38HRynVwVUw/S/WVv8z4I+UUv8YeB34SVn/Odwr4i/j3rj6WQBr7R2l1G/izIoAfsNae+ceDD8oKCgoKOj0ZQmPqE5Z9/wCx1o7Azbftu4Q91bV27e1wC98izy/D/z+uzHGoKCgoKCge64AGZ+qHhon40jBYx3HzDzanXOh457J7g7FmW9/07MxpdXsNjNpZ9kupZJvXHlOZyMtqGy9XNGK3HPnTJiZUVp6vmcjMaTanbi50Wyk7jlxZjTDVMzptPX5hknFXNoOU0tTuJo63k8MWVUvryqfG2sZJFbGoeinbptWZKn/LugnFik+7uMNrTwP00usN8zrJsrnVijP/WQVdATIaUcgCAkdYXeyyvp4K1J3xevcnUTTil0gUdCSfrIKv74t/03X2J2lcawMuO1qvqYVK5aSuxlFfptmpGnJuHxcR56NaUWaZj3u0tIUrqWpIz+OZrQad0NFfptVXHsTwVQltFQdj2gKu5NXlkS+bk0V043rKsuaXH7UUh9P6USxHBvNUuKRjT370tax34esqkiEYWmQ0hXDtJoLyo0hktwNm9IW7qChI5ZiMqjRpGJy2FapN2rMTYWuq0n7eIOG8DXLNQPTxKZ0xMwwVRGZ8BBaRZ4taduWZ3OWtlxVk5Z4x7ZIZXy5mOK5eEJbzAwbJCzERLCeF4C26fg5Xq7Fa0anZVs0hJdbqKVnLhQJLcmd2ISlckZvlsozODVfk9iETLuK1QbjWaC27ZEIh7JQC28GGBHTFIYpsjFL5X5XjOybUpHna1KbslDOPK+0meeWmnRJ5LhnzCjtUtpqemvsDUCmppRiVKfRNHQ97gaZcqZ/1dq8dlWXWM6djCmVWeUGSFTbMzBLe3c8EQNIRURuJbfEAdrJpmdcakPC0uSe72nGQ88wLc0qt7XG8zNKRb5tZXJ/zOr9UkTk1WwVF4YliTqeGcurGVbORWNLYrWqRF5IW4vB1vMi/JlS2psCBr039dBc4AQFBQUFBT2wCo+oTl3hAicoKCgoKOi+y4ZHVKes++lkHBQUFBQUFBT0rijcwQkKCgoKCnoQFB5RnaoemgucVBue2XAmVcsy9ufReO6gyAv9CQ2Bf79+sEFToOFRK/NwbzOqeG0mpmfKcmnTVbLWhyOakWv7+swBbJGyPL3jKis/t79JQyDjN+YNDzN/aOOILx+IUVdkeGuR+LYf3XC5nz0c0hLTv+uZA/ISZXlmw8HRnz/s+/jNTPvcHx3N+MKdruS23Fy4m3U6MXxs5MC5vzisKzVb9oWlU8BHhw72+/ydJm3JvZ9ZeuJX+NHRki/ccSBeK4IDaduRs+kjw5Iv3hHQNlIcLK3f9iNDN69fOIw8WHxnaT3o+5GR4QuHAm5Gq3httPehoeVZMUdsxYo7mZF9VHxQyq0+exB7s8KjZUUqMO4zQ7fuS4d3xxMBap8ZKb58KMBqrLmzdMc00THPjNz8ffkwpSUA80lexxVPDV2OrxymHj4+yUsSAY4/MIzIDhsybs1x7oDGQZLwAakAn8nxaMURx4VUtFYJTw5TH28LfHxS5URiZvjkMCW74867to45qdzx6wkseXWYsjhy50JLx4xrCNUqPjBw53923Ket3ThOzIKeceuv9FvMTxzQ2ZZ8Y5uhBSZ+otcmGw8l3uBEQNaubfNEz/W5mCw9fDxWM7oC9F7pdMnm0lYM+MZqSk3EP97uM1s4oLdjW4y1vBBgulxuSRXvbOHh47Ee0xZDw7o6/Tyf+XXTuj1wOd1kUbgXDTqmw1i571ubHo8nzjwyK+c0JfdMnaziWqrTm5mHj6f6xMPEl9QeGTPZrx4T5RwsWvR5jLOurXbz1LRdZoh5nhpwiQsAvKimtHH7OOPIG/ldtBdWbVm1bSm37UVziZck3lID5tbFG6rLhcoZDv5NNPXmfnNz5JfPm8f5RjT124Or7p6KMeBZ+zivSTzVXRaV5NZdziDV56MpiXZztqiOvZHftpYq7tHCr1tWY18ZfSu6xA0BfuOo5cHhWKcMpVJ6UWW+2nkdj3SDQerMDA+rhYeTi2qGkW176R5H1atu3FHbVyLXOqYtldQni4xIKqx7sNgYUqlInhc3eddlCUZ/p6zwiCooKCgoKCjofaeH5g5OUFBQUFDQgysbHlGdssIFTlBQUFBQ0IOgcIFzqgqPqIKCgoKCgoLed1KuGsL7X8/0d+z/9LH/FIDdjQlx4mDXSipmF0XEwdhBgq2kpNlwEOjxrOldfg+zJv00l20K5rmDMttpwb7Axd3EtWvEFeOlg9yaccX+wkGWzch4IHlWJsTKQWWHeerdjluRYS7uyUpZjnNxoY1qWLdiUa2qdZ8UteOvpR25HPNKYwWOnlaKRPahHRnvkizmvGRGkag6t2UhLsmFVeRiVBtr6IqT8bRU5MLCFQZfZbyGjGelq7Zex1NxYu7ELgbOabmScy/Rip7knpQr1+D61Iw1HnCeFHgnZmtXfXcTxayUCuwl1KheqqEnOz8pXHxZWf+HUqIV3WQ17oXkMBZfndzlRnIb37auTt5NFFPJPS9XkGCq9V19L6r1mFvfSzSTwvjcPh59p7imJzs/KQyLcuUoXDsYdxOpel1UzKvSxxsCVXeTiGnh2s3NWlxFvu2srJhVK+dbcC7Fg8RN2qQsmZp8ra07CQZxwqR07eY2X2ub0IukbVUwtyvnW3Auxb3IfW9mVcFUzVcxcSEe6JYHpedq4eOJTRhI9eqZ5J2KMzBAahv0xcV2ajPm2sUMhoZUOB/QZSKA8GytbR3v264f01xNMVI5u0GLvun5PudqBTTHOPB1aIZMBQCu44aKhoDMPTPwIHSmpt61N7ENenbk+5zjgGeLIVV125GM+YQMcf6lWMXtBlMBqZd26p2UE9Wmg+TmZOVIzDfHF5ywrOO2JFbibK1Hfv3SrHLHqkFLj3yf4MDiOh7pBq1o5NsV1crtOInEEVt3KYw7xnk1u6stuOrkZbUeFwdpnXqYuTRLSgGHjcnRAh/Hukkl525lMr8cSVzrFCPfi7y4/iVr7cd5F/Xxy3v2i//9z5xKLv0T/+xdH+97QeERVVBQUFBQ0IOg8IjqVBUeUQUFBQUFBQW97xTu4AQFBQUFBd1v2fAW1WkrXOAEBQUFBQU9CAq1qE5VD88FjoLzZxxkN/qoIn/LwWPLI/eUrhUV7DztQDRbWKbX3NQkcYURYPbSlUOMsJyTgyabAwcbFoXm0Sdc7nImYO9xg52Rg+aOxy0uXzwAIJsmzOcCucUVt06cS+jTj+wznTiwblnERAIcX5v0+MjubWDlulxUmkjA3dcmXT667XIfL5qU1u1Pog2vTBw0/bGtMUdZw09FIrm/LvFPDCYcZC63VtbDzi9N2nxiw4GWB8vUuyQ3tOFrEwfwPdOfc1tg6rpdoi1/PXH9PdVbclBD0tqSyLi/Nk54qu+gvsM8pqmtb/vi2EGoT/UdUHiQRz5+sW15YewA2Kf7Fbdzt9yJjM/9wonm6YEby+2lphO75QuOt+SFE8XTAytx6Mq3INWW54/d8XtqaDlcuuVOvIKZXzxWPDlQMic1CGxJOm75+SPNk+KYfGep6Ag8faGreP7Irb860BwJd9uN4XxHS1u37ZPDiCNhb7uJ4rzPDVcHbrBHS0s/devPdzR/dcdI7pST3OXpu8NCrBKeO3qnuCJWbv6eOzI80XfHbFxY+gJHxzriuSN30l/pu2N+khsGqRvznop47kTi3TZjoc8HDc2uAMfPn1Rc6bpzbZwbBkJv76mE58fuGF/p9CVeMUhdPNIpz03cRF1uDZgIED1MY84od448N8+4XLvRliXD1PW5KwDsXy0WXBFn4klZMhQ4ek83+erSndtXo7MeiB4mKbvafRe+ks+4rM4BMBW4dZSk7Aq8+lfFlMs4l92pydmIXbtd3eWvSgcLP2Yf9cDzRtTmjDgEf9W634tL5nEPWo90m13l5uE5vsbFyrkDz8gYKTd/MUOeE/fiC+YyM4GsN8X1eMcOeV59BYBHzFUPUm+aEVtqA4Cv8SXOchWABXM2BFDeYYevqS/I/D0BQMaModkCYIszvISL7+jLZOJaPTQ7aJy78zfM59lIHgOgsHP6uLnX6gwAr9kvMEwe9fGexHt6mzeLLwEwSM+RW7df3WgHBPa/UX6VTuryVAKZt6NNH9+fv+CdiUuT00rc/lpruDP/GwAayci3bcR9rEDiJ/PXvWtxDRsnUQerXTy/m7MPeo/o4bnACQoKCgoKepD1kLzVfK8ULnCCgoKCgoLutyyBwTllhbeogoKCgoKCgt53CndwgoKCgoKC7rvCW1SnrYfmAifSltbQgcUmW7kAD376IgCzf/0KtWWxyaBz1m3bH1gmL7ltTaGoCrfN4ExG5Lg/Frc0+VjcgcVVeHAm85XvjVHMx474rCrFxo4D/8pcM8wd2DwZN6mMa7u1OaUQeHazSDieOaixdibeHswoxOl4u0g4Fpfk0mrOdF3uvIzYbjig8mTZwEjb3c6cQvo5U7s15ysAeae1oBJQea9ZcCRuzQBnmm6slVWcbbpT57hIvNPzVsPBeWYtflJE/jbhVqPw39+zrYhx4bZRwEYqxwY413L7NhGXab0WBzjfdutPSo0Y/jJKV06+j7Q1YzkOkYKBQMb1OB/pRIxLgWgV9BPj+6mB3mmh/PaDZPVmw/mOZiJDiWXHerH1257vaCYCJGq1cmDWWM53andgPLDdid0YXFvZ7wIi7w69njvybs2Rdq7T9T5cEDvmWWn9nMg0opXlfCf1fSvlNmho5ffhfKfBXKZQsXJpjhScb7vzq3Z5jpTyLs+Rgkda7vycl9aPu6FX+/BIq818ra3wycQKHmn0pK3x8USv+r6QOvAzqyyxjDvRbjuAC/GIrHrntgAXos274rGu4Wm4oHYktyFSWtYrn/tR9ljKWwUx6pvij9g9lgKpRkoTrfV93j4CQIEhEgo2Uspv80h+UeIVGuXjkppz5aMUuBNNo9ESUArOVpcAKDHEkrv+jmmlOGsdnFypEi3fZaWU7+cMj1Ot5VbU3zPFjroMOHdnAOV69/Et/ZjEq7V2msi6cdSAsWsbrdrKOGrA2I1p9TusiRik5/z6enuACHdu99I9v86ob4530p21fKu4VgntdHut7YoYjgRGb6Ybq7hd/dbEevXbeE8U3qI6VYVHVEFBQUFBQUHvOz00d3CCgoKCgoIeWAXI+NQVLnCCgoKCgoIeBIULnFPVQ3OBgteh7AAAIABJREFUU1WK6YHjEDomp36Ee/ufXwNA6QSkgq6tFHdec65wh9M2lRj99Rs5aeyez2Zl7KuJl1bTkSriLfnv4nbCrBAuoojpJK5dOy65fuS4glmZMBEOpR1XvhL5rVmHk7yu1hz5CuE9ybG/aDEu3PPrcRHTlPggKTkUQ79JGXEs27QiQy92rMBxMeBE1tfxprYMpLr6eNz3/MpRob3BXi+2zMqu5Nbe5K4Z4SuBz8u2xBW3l1ri1scz0/Bcze1M0YxWHEpuUt/2QEzuGlIVux1bCrtiSPYdCkQzWnEmlY19xe+bCxdz+66ohA+oq6TfXFgfb0Zg5EntvFTcXBjfrum/HZq5MDs35oZmXO+7XYtbiVc0ozquUMI9LCq4MS9lvfbbKBRLqZ7+lkAwzUj5auMK5aunX5+VtOLayHHFgmQVXJ/J+RfrFYci8+fiucQjkpplUZpcflDfnC1pR7HPXefIjeXNuZvwtl7FU9k2Ky1vZQsfr8eUarXKvZjT1u58jpQile9FXlneXDpDvLZKJa59JfXCWK7ldbxBRJ1bUwjg9mZxQoemb9uQc7eQvq9Xx7RtS46Solm5A18UhrfMHQA6tuV5kmYZ+dw37CFtqfRd8yvNMqYSr5Lr6jZt05G4plW6OSmt4abal9wdpCnNKqaSY72vXbxp254XmZsUQx2/Sds6Pgkgk++HwXIQ3ZS2HR9vGjcH1hoOo1sAvkq5a5/73Ef6Fk3cd9liyKQCO8AJLnei1tquVWyf4ExHE1pIOhZq7vdxZg5JJZ/BkEll9jq+MEe+CrnL7cwCtYpYSjXxSK24v9yuqsnnZopei4EzCyyFQyrMgkit/peWVzPJHVOKuZ9SkT/WhVn4ua+rhrtthKc0y7t4naD3nh6aC5ygoKCgoKAHVqEW1akrQMZBQUFBQUEPgKyxp/Lvu5FS6pNKqZeUUi8rpX75HeI/r5R6Tin1FaXUv1NKPSXrLyqlFrL+K0qp3zvlaTg1hTs4QUFBQUFBD5GUe0f/d4AfAq4BX1RKfdZa++LaZv/CWvt7sv2PAb8FfFJi37DWfuRejvn/j8IdnKCgoKCgoAdB1p7Ov++sTwAvW2tfsdbmwGeAH797KHa89rGDp67eO3po7uBUVlMIVHuy3yQSQHR02cFn5Qksjt10vHFrxE7fAW9Xr97m1ZedCdQ0TziZOrDvfG/K4xcOAXj92oipQMF11e6d9oLLZ138r69tMxWwcpwn7LQctPfI1glffcuZU83LiLmY9+22Fjy9486tr9zaYimQcyZVu3ebGU9vOPjyLw82KExd3Tphr+Vg0ke6M758OASgMIo7UtF7r1nw9MC1ffbOQOYG7oix4G6z4Mm+G9+zRz0qMQg8LhRnWw7Eu9pbMBGg2II3zdttODjzSjfnpHDQo7EOHAZnWnel6+Z7XDSxQh7OSktPzsTL3YLjPPW53dwob8Z3qVNxJPtirIN3AQYJXGy7D4fLlYHY0liGtelbHc9W1/VZBUPhFh/tVBwIHG2ArFzlfqTt+j/IfFNyb4xneaRtJa5WcWOp6cpz7XeKudZ7wnPeXLGcFGt+X2eFAb21UP63q1jLvdeCW3O3bO0KsK2121Jrccs6Nrnd1NL3ak6qtR/I7aa+KwZQWouVbXZailvZqu9KjpoFtiT39Uxj1nLWw9tqaW4u7/4JMtb6+GYj4rocS7P222qwbIrT4M08XsVsbU8Hm0KR35jGd7WtJPlGI+bGLPH5tLSsrGWUuvU3slXb+r+VtQykYnmyTLHK+H0qBU4epgk35OWBksqDrBWWQexy36ximafVmCtr6Mfu3I9Ng1KtzPjq3IOoQWTl/Gd1klRiODjQLWJb79fK/LKkYijg8L5KvNEfQGmlSrvteYjXruWuxzE0Aw7Vatx1Je6Kgr51vzXHb88tkG7fbEhcU62dgUaW23bAWNXH2mBlTMYWtLSrdj4jwso8+L5tQlt3/TzVcYNBSQX4NFrB2MYWfhsMJFJBHCZ+n1c5ShK9avuu63RfE99SSj279vnT1tpPr30+B7y59vka8L1vT6KU+gXgvwJS4D9cCz2mlPpLYAz8qrX2/zmtgZ+mHpoLnKCgoKCgoAdap3eBc2Ct/fjfNYm19neA31FK/TTwq8CngBvABWvtoVLqY8D/rpR6+m13fB4IhUdUQUFBQUFBD5feAh5Z+3xe1n0rfQb4CQBr7dJaeyjLXwK+ATzxLo3z76RwgRMUFBQUFHS/Vb8mfhr/vrO+CFxRSj2mlEqBnwI+u76BUurK2sf/GPgbWb8tkDJKqUvAFeCVU5iBU1d4RBUUFBQUFPQg6B754FhrS6XULwJ/DETA71trX1BK/QbwrLX2s8AvKqX+I5wD7hHu8RTA3wd+QylV4HDFn7fW3rknA/9b6qG5wCmM5mDsgLGLj9whEiA23nJQ3/XnUoYbzjXz8UcPyRcOeCszzaFU697tzBk0HSSbJCuAb1qkbLdXjpsAkTYocQFeVpqt5oogratDK2UpBOLdbCzRqgYaFZE2Mm7FRlrc1c7Yt8cFRlSWUoDjOKoQc11GaeWrV1dWEUvbOr6RVL6qdGUVjagG+GBD4F6lLFLwmVRXSIFmRqm9KzdAM6o81jlMVtWtK+tclQFKAxsNt5WWGEA7qrDU7sn1XK5ytyPjfwOG6apqdGmhHdfAZ0Q/qSs0W5+7W8fR9OPaKdhBsy736selE68qVlfW0olr6FLTkXFpv19qLa5oxatK5XXGXrwadzdRa3Ni6UR3/6i14lUt5Mo6OHsVU77v1X6t2jYivTqWpo5bX6W6Eem1cbtYrdpBWKM8aNxZy51Gq+rudd93xfUqd2mgE6+g6oZ23yelWMu9uoGcqHeIr5nWJmsVtSsLLenXYGmqVUXtGiJurfUds6qoXeduRcoDwoldOetW1tJ+h7a1Smt83C4N0XpbOdrNSNem6L7at8ttvBO1qSucr/0ElxjakdveGkMs7t0ud+1yHWHli7heMbus4zqiFLi2YdseNC5UQSrHwGLQNYisDJVAxCmRh37rCt0W46HhhNgv37VfqqQhTssVhXcitrbyQHEi+Spberdha1d9R8RU4jasVeyB34piBU3bwrsMexDYFui13LWsrdDi5B2RUBn38oVSKxDZKoOWsdRxp/q7HPv+3o+y1n4O+Nzb1v3a2vIvfYt2/wr4V+/u6E5HD80FTlBQUFBQ0IOs79akL+i7U7jACQoKCgoKut8K1cRPXe/f+29BQUFBQUFBD63CHZygoKCgoKAHQeEOzqnqnl/gKKWGwP8APIO7KfefAS8B/xK4CLwG/KS19kgppYDfBv4BMAd+xlr7ZcnzKZzxEMA/sdb+wbfr1wKvigvxI8Uxad+BZNmrDi7rdGA+daDc9lNLxs87cO3kpEU3caDcrEh46qO3Abj2Qp8bN50LZjfJmYr77tOfcPE3v9rn1u2ey52UjCX+sY/c4JW/dq6eN+/0aAvQOykSvu8Dzobg5dc2eevY5W5oy6R0h+nvPXYdgL+5vsn1iXPvTLRlIg7I3//IDV7a3wTg+rRLzUpOioi/f/YWAC/dGfHWzM2Dj5cR/8HuAQBfPx5wbe4cTyO1ciH+/u0TXpY+31q0PLQ6KRXfv+2ckb8x6Ui86ed9Uir+3uYMgNdmLa7NHZSpFUwExPz3Nxe8OnNtri3Su9oCfN9mxuvzVOIr8nRSwPdtuuP35iK9KzYt3A/FJzZLri1iaVvDjTCR+L+3UfGWAOXXs8g79E4Lxcc33bG5vtDckG0qa33uj29aH78ubr+VNcyFdfzoBtwUl9/rixXcOC0MH9102+9nym/j47nhIz4ON7MarKyYisXxRzYj9sVV+Wa2ctqdlxUf2nD7eeCYTW5lK3B3VlZ8aMPN5WFmfY7KWmal298PjhrcWVrffyXjmpVux54ZNTha1s7NUErfs6rgmZGzXT5aWg6yGj43TI072E8P2hz7toZSgM6pQJ5P97sc58aPr4ZrZ9bwZNc5b4/zyvdfUjG3bkc/0Bkwlvk5WgqkqkpmMv4nWxuMxX76aGk8mDtVc642tvz8HOe1Q2/JTEDkJ9LttbiA8qpkrty5/US85+dnnFcU5H6bK/ocAIuqZFKs3H8B5mrK4+q8WzYlE8lRqKXf5nEuMhdweFaW3h24pOCSeRyATPqbVQWVxDM15UJ1yfXNkrkpZUyZz32husxCufnLbOmhX2Odk/tZ+zhLiS8pqGQcFQV7XJH1GUuVS7sCI9ts6UsslXv5opB11lZ+eRQ/SinHrqL07sSlKRgkbk5Ku8SolcNwDRJ3kzM+vnIgrvxyO9miktzrjs/GljTj2sF9BSU7+Fhg6tj9zlUmvwvkftcVqomfuu7HI6rfBv6ttfYDwIeBrwG/DPyZtfYK8GfyGeBHce/YXwF+DvhdAKXUBvDrOGvpTwC/rpQa3cudCAoKCgoKCnpwdU8vcJRSA9w79P8cwFqbW2uPcUW+6jswf4A4Jsr6P7ROfwEMlVJ7wI8Af2KtvWOtPQL+hFWV06CgoKCgoPee7l2xzYdC9/oR1WPAbeB/VEp9GPgS8EvAGWvtDdnmJnBGlt+pINi5b7P+Limlfg5354etdHB6exEUFBQUFHSKsoA133GzoL+F7vUjqhj4KPC71trvAWasHkcBYB0EcSqXoNbaT1trP26t/Xg/bp9GyqCgoKCgoKD3gO71HZxrwDVr7efl8/+Ku8C5pZTas9bekEdQ+xL/VgXB3gJ+4G3r//zbdaywXBk4GHY+S73L8OATDrh86WtdnrjiAOHxKzFK3HkvfHzC//Wn7u7PY/0JbzzvlpdlzJUPHQLw/37+PHsdAWn/cgjAooi5ctWBu//3X15gr+WcjL/2/DbLygGrTz22z9dffBSA3WbGX73sblwVRvPMOTeWl14+z17TAXxffn0XcM65H9p18a+9eo69poP2nr1+xjv+fnjrkBfGbvuzzYJn9x0kWRr48OYxAC9OtiRe8aXbDnw2wIeGrijs8ycpZ1tuHr50Z+CvOj84nPL8iZuHsy3Dl+/07prrZwYznj9x63Zblq+edHzs6b6bhxfGLc4Ii/zVkxa1d+yTvZwXThoyJ67H504a/kr8A/2cF05SyQ3PybJWcLXnIMEXjyOGLdfixXHi3XWvdCVuNKNGHY+9q/CVXskLlVu/04K/HosTqlI83nUA5AsG3/ZrJ+JYrOFS10pu6+N/PXYQOMBjXcuLcut4lER8XeruJtpyUaanEMBw1Ip4eSJxBTuSuzCWQdOdOy+PLYns2HYHSmk7bMa8MrGS2+XY6igKYySe8uqkkrhis+k2KqxhmLh5f21SEUvu8x1NIX9WDhM316+vxTc62kPIo6TJ6xNxutWKjY6A2VQMI5f7jWlBQxxmNxoRhTjjbkVuEt6Y5T4+asQeBN7UXa7Pcp971JDcqmKI++PlrfmSxLd1Yy2p2FQ1HJ+RiDPtsBFRFa7voRlxI1vIfGv6iTsxS1UyMg7tu7ms4xH9RNxvKekbeWEgn5LIz2k/iTHGjXtgBtwyDthNiOlrcfytYVkz4JY9cXGb0FO1a29F17rv2D4nROIc3FOpB317bHLAEYB3B+6ppgdtm3bAoXYO+rGN0TJPBkMHl/tQH6Lk29W1bax1425oN2dH6gBtJU7Xg8AN1eVEud8317bnc6fKgeZTDvyfqkYNZb9KEu3iC3PkAeCW6nvIPtINMjP2+ZoCRFe2JJb5W1YubqmodN/nrp2Ji2rm5zjVhZ8ThaYw7lgaU2LkvLNrwHHtamxMfheI/K4r+OCcuu7pHRxr7U3gTaXUVVn1g8CLuCJfdZ2LTwH/RpY/C/wj5fR9wIk8yvpj4IeVUiOBi39Y1gUFBQUFBb03de+KbT4Uuh8+OP8l8D9LBdNXgJ/FXWj9kVLqHwOvAz8p234O94r4y7jXxH8WwFp7Ryn1m7iKqAC/8aAW+woKCgoKCgq697rnFzjW2q8AH3+H0A++w7YW+IVvkef3gd8/3dEFBQUFBQXdHwXI+HT10DgZawVHmeMA8iqi23cOZ6/9WzcF3TTn1pvuOfLxoslWzxlUHb+UeD7k2rRLLKZTe90ZN7/unlMrLG+JiWBTjPv2ujNuvOaeDWvw5nntqGK37Z4Bv35tZd1zbd6kKZW2z7YzXt13MWsVb4g5XruOt5Z840DiwBticNfUlvMt9/z4leOBf1vwzUVCU1iQs62CV8ZuP+tq02/OI1IpDny+VfLKVIyuLLw5d08xGxrOtdy+vTJp+2rSb841qeQ+13IJX521fIXua3NoCK9xtmV4beb2ZVm5GECq4Zww4K/PU8RnjTcl3tCwd1dccs8gldx7bXhjHktuy/W5kdyKMy2ZYzHrW1aGa7PKx/fa2s/DshJzv5ny1bXPtBRviZHfsiq5PnP9r+Iro79sPa41O8ICvTXXZFUhy8ZzJtutiOtSaD4TbuPueMwNHy+5sTA+93bT7e/NTLEUduLGoqKp3fpNid9aQC7xm9mShlTf3mgk3FxIxXtbclPM8VIVsSkMy62FYSkMxI285iViRuk3x28VFakwJBtJg1sy1qXKuSUVsBskbMSOcdlfGG8id0tM6Jq2yQgXv72oyCW+bysaUl17RJvbi1JyZ+zXrIVtMDIdyV2s4sL5NGyDgXXn9u2s8GZ8t/RtGtb1ObQ9DpZufc6CA123dfGe7XkDxUIvOdS3Zb9adI3kzhW5dgftTrRPat0J2DcDbucLaet+f470Pg3rTu4uPQ5Ld9KXesmRuiW5256ZOahmlNoNYMxtYu2+T13rGJcDO6ZUdXyfVLncLfocWMfrlHbJVDl+MKZBC/c7dajvUEpF77lx28aqQUMYpkN9m7ISYz5VetYmUW0OtRtrVSzJxGgwVg0S7fo/xsWNLcjlPK9U4cc/4bbnXWxlMFqqmqsG08ohmdZWFJWbP61r1itlXh1K3FBZd+wsBi3nYlYeryqIY7DCo2kVsyzHvm0t4yuLa4pqxj1TYHBOXaEWVVBQUFBQUND7Tg/NHZygoKCgoKAHWuER1akqXOAEBQUFBQXdb1mLDY+oTlXhEVVQUFBQUFDQ+04PzR2cSFnasQPTNBYrhnidtgPKbh936bcd+DdsZcwyBzQez5q+WvfZVubzLcuYO1I1+06esNeSyrVyAb4oEl9B/E4ec0bM+iqryCTfcZ5ylLvl7UbhTfqyMmJcOEDuuNDsNErfFiCrIsZSYfw4V+w0pXKyhcy4a9ZJEXFcuO13m4ZSxpVVmmmpJTcSX90ZnZeaeeXaneR4QNdamIsJXmYUx7lLuNda2U7PJJ4X+IrRNcALMK+UH9M4t3fFZmVtZqcYC8y611mPy5gMjKUi8147uis+FrB5XJTstd38aWAmXl1T+a+Lp2txqSBu8dWcd1upNwCclZapzNWkLDjTdMc91nV8Vb18UhXsNlw8UsrnnpWWSeXOgd1Gi0jKsc9L66uPT4w7v3bT7qrvwjKTvsc2Yy9ygHikFfPS+hwnODO5PT30uWdSWXtewliqXu+q4VrfFQs51hM14QzOtC7R2lcWX1aKqXa5d+2m7NcqnlWGsT6R+A6xIPmLsiITWHysjtm1ey63iphXboczo5gp13bHOFPKGO2rXmcGppJ7q9r1ZndzU7CQ78JMH7NtXJWWlNhX3c5lfDN9xJZ18cjGzJHK2FXEVDujuk17nsS682VGxtJEvu0mrqp1JD+VmcpYivHd3B4x5KzPvVDu+BUUZMaNu692iaXtXM9YWre8EOB3yDmfe6ZmHrpemCN60a7kTsikKvdSZd4Er6u3iWXcGTOJL1hULnc32iZC4mpKLnD5shjTjutjmZBJ5fBcLbyBXquOk7CUeMGcZeUcKNvxBkryFXZOWc9rOaaZOOBZq4TCCDQtc5NXMxqxO4eVirzpXsmSonT7kMQdf6wru/RVwYtqThy571Zd5bs0OdSV26s5kcQV2lc1r8ySsnLjiHSKVk1Zn1NJ28osUAIlRxK3tqSq7qHRH4RHVKesh+YCJygoKCgo6IFWeEJ1qgqPqIKCgoKCgoLedwp3cIKCgoKCgu63LAEyPmWFC5ygoKCgoKAHQYHBOVU9NBc4pVEMBRI+yZocHDh3ziv/UCpG/59jv+143GS8dBDq1Qu3mRZ1xWpLS0Dl24smj0tVboBKwMNeUvj4owOXc1lpCoF/h2nOzYUjdx8fjMmksnhpYavh2t7MGlztS+XzSntweVvi17OUpwYO/JuW3bV4yXVxNX5mMGNSOldXY2GnIQ69i5hnBg7sG5duHAbYTiWeRTzTFyfUouHdkHeaxrv5Pt3POc7rqshwRqp+126+zwwKjvPEx3cFgn5rofjgwPVzlEdUkny3BW+Ja/EHB4ajXCpcy5d9rwVvzd22HxwaD2YXxsUArs8tzwzdNkfL2FfX3mtrboir8VNDB6YeZol3Q16PPzNSHC4TyW3ZEgj6xtzw1FBL7obPvS0uxTdmhqdGq3i+1vetudvfp0YRR0sHL+aV9YD0rUXJUyPX551lW+LGQ9I3FwVPDgVWX3bIxYV1r5lwU9x6nxymHC4duLk0FWfbDWmbS7zBUS5xW7EnEPStLOPJgZvAOydD73a8maTcXLrvypP9NgcnDhpdiCPw2bTNvsSf6HU4nDhX7Yycs6nr51Y+52rXfccOplssBELdiAbcKt25e7U94GDuwOalcmPd0G1uCuh6tbXBYbYp8SWbSlyK7QlXGpsyJ1tk4ho8slvs476TT6TbANwuNlkK4Dqix744+D4R73FY7kjujJFU7r6tD7miHTh8aDY9vDuQ+IG+zRX9CADHdpNcub6HZuhdjS/zKIfKzUnOgkHl9vFOtM8le9G11VtyPOb0rNv2jr7JY+ayxEcUdi59b3FH3QDgornCRDtn35IlA9x+HnEdgEfNVSaRG0dpl3Rx/Zxwk/PG1TieRPuU1s1Jl01O7E13XO1VptG+bwvQ0ZseWt7TH2AWHfp4CzfuqdlnO3LjnseHHu6NVEImbTcTF8+iYwGDoRH1ycVJeJheIIscmG1MgRaYflGM6Tcc6L2MJhgB0FUkkHE5o5O645hHE+9IrFREIa7Q7XSTsnL7u1413JichgDRlcmwMm4ft0uS2B334h6zxkGno4fmAicoKCgoKOhBVqhFdboKFzhBQUFBQUH3W5bwiOqUFd6iCgoKCgoKCnrfKdzBCQoKCgoKus+yhEdUp62H5gIn1pbXThww9vjomEXhdn385w5sy5cpee7WdTtLuh0H2SkN87J21YwRE1h22gvmAqTOyoSFuPjG2p2hm82MSdaQeOwdhhuRYbPhch9lTe8qnBtNQzs4datRcChA6rzS5EZJW4FbGwW3Jfe8Ut7huFVGbIvr8e1lwzsSVxaaAuVtphX7mbibitNsZaHt44bbsl/zSnmAuVVqNlMruRMW1Wpup+IyvCHx/WXEoly97jiR+CiF20s3l9katDcpXAzg1lL7tkome1IoNhoSz1ZxrVZ9jxqK225amZcGveZCPEjdh9tZ7QRdocVxd1ZahmvxRemOX6SUdxAepJqDOndVEXunYDdng4bmIFvFa6fgRakZNCLJ7WJ17oVAzv004nbmlhfimhop7V2K+0nMobhCL2zpnYLnZUw/cefrYWbJ7Hpb49vW8bl1YGdExKKq4ymHS3E7tksS+TlYlIZBJGBzZjwgHIu7bFYZehI/zisW4r4b2YhM9rGvGxyLI3WmFiS1o66p6IlT7PGyYiGQbmJTiZf0lYOtT/KShTj4xsQsBYLu0eEkd/u7UDMS3MmR24o+DmweCxWas/Buvktb0rc9iedk4tCc2AaFANRd0+NE5irXq7Z1vGcGTMT9dqnnPl5S0RUQeWyXFFrGrZpUqpLcA6YC7+YCEEckVJK7Y4fMJV6qpXc4rlRJR4DeuVqQWzdnkUoopW1b4jO18ABxRILB9d1WIw9jG1OglDt3jTK0BYhe2ozKuJO+dim2GJq67+IsMHKe1e0BmtGAQtVO7sVdsUbk2tbQcmVL70IMkEQOHK8osXJ8lYp8/2ncwco+WGt8bi2uw3HUYl11XCntXY/fHtc6lvlp+n5cTNzPdf2/xRbqXj7kCI+oTl3hEVVQUFBQUFDQ+04PzR2coKCgoKCgB1nWfudtgr57hQucoKCgoKCgB0CBwTldPTQXOItKUwjLcjhrcfmiM6xKuu6MOrrW5tbcPfu/aE/IxYCvm+fejG9eaZqR2740moGwNNMy8rnHYnBXxppukktcUwgnc1LEdGO33E0KX4G7sspXLTdAN5ZqyKXybSeFi/cSaEeV7JfyhngNrenH7k+AZmQ8J1MY5RmcQWxIdF2F2uUtraUp5av7MSTCEWWVRXAOJgUM3K6RaksmfE9hIBXgZSgMjmbF9xTG0oi0j9cMU1ZZP+40Up7BiRQspW0ppnap1mw0XMNY4U36CmtJtZuTUQNfgTs3lkLaNiPFqG4rD2TzylLI8/40T3w8UrCUdoUxpFHN92jP3eTGMJNfoVQMCUcNvcptKgqJN3LNSBicROMZksJUNHzbiETa+rhdkgrfs9GISer9sgVTYS7SImKUJpJbeUZkTkFDzpNVHHKJF2qxFk9J5NgVqmAuFceTKmIjacicKXLhK6ZixpeUMVvJqmJ6IevnKiet3E/KZtxeHQ+VM8cZV0YmZku4i0grqrpyuK77TtjUXZ+7ZjcWauw5nU16nnOqKH017FjFbAmLUjNWhVqysCfSX8y2WVVEr8TYbcmUSLu52jSbnnMqbUa21hZg2+x4Nqxk6St7xzphw+z4vmuuZmkOUFr4NnPGj6s2w8vs2Mc3pOK679sIBxhFDDnjY3Xb3Ey94d1IqpqD41xc32MEm6LP7lruJVUlUFkMfe36tRhfubuUyvcAfalqXlH6voty4ePdaNvPZWVLSolZa+jE29LWxY0pyI1jhAyGdrwh7QrP95Tl1PfTSjb8/hjuC7mPAAAgAElEQVRbUnnDPvl+JwM/ZmNKjPBTxpQ0koEfk/U5lhjhs5KoSyVzbK3B1lXLa6NC3aEyq3l41xUYnFNXYHCCgoKCgoKC3ncKFzhBQUFBQUEPgKw5nX/fjZRSn1RKvaSUelkp9cvvEP95pdRzSqmvKKX+nVLqqbXYr0i7l5RSP3J6M3C6emgeUQUFBQUFBT3IuleQsXLvx/8O8EPANeCLSqnPWmtfXNvsX1hrf0+2/zHgt4BPyoXOTwFPA2eBP1VKPWHr9/wfIIU7OEFBQUFBQQ+XPgG8bK19xVqbA58Bfnx9A2vteO1jB0cJIdt9xlq7tNa+Crws+R44PTR3cCqrBO+Dg6wJrznYcCKVwh/pj3li6w4AJ/Mmb00dCNldlJ772m0uaQr8+9q0zXINEN5IHZg2SB2U9tK4x3YjWos7sG2QFHx94mDmM03tTfo20oqeVCp/ddbwhn2VVWxKpe9u7EZybZGwIWSqsSuDvU5keCtzh3SUGG/St9mwtAWOvp5phkKt1mfrKIWmgMc3M8UgiXx8JAZ7jciZ7AH0Eutzj1JFKm33xeyuE9czDZtN5SHagyW0orpv68HhROON9FqRwsqMjxraxw/FDK8Zg5GRjxqRh3sPl5amAJXWWjYaYuallG+bStxgPYAbKTgSI73ZyvOLjTSlPmOOloaZruFQy0bizpkamD5aGmYCbBvwgK5SzggPHCxu5c+zjXhlQHacG2ZF3VbiUXsVX1arvrEewAW82d28VKs54Zvjs1Jhlcwp/bW+C2ZiNGkwjIyrrIxyRniurcZI2w0z8m2PShePS+Xjg7X4cbkkku+HVYahcVWtNer/Y+/dgy3L7ru+z2/t13nfZ9/u6cdYMoiKDSRAVHYIqbIBxzaQ2PwRiEkoXMSUCWVXUUWlgl0hhhhMHKgKIYlJWQWqOKkixpACVETgCMtyZINAku3yQ1jSaEaamX53377P89iP9csf67fXOT16jUZXPa3p9ek6dffZv71+a+2197m9797f8/1x1Jm5X5fTOfvcmPgX4NiH+JnP8Fmfe3+dW+fkJvzvsoYp67aPTMxc+HB8veuY0ot/HY8kiIYLLeKcTDbaH7tjzjSPczKVAzY5dI8oTeyseMbO2io8cg9CbqpoWjeU9ZwcyyG5hHOjF+WO3R7OzOaO5QGFhrh6zzDbaEuoEF64Ad6MGh+P37H4CN+G3INsJxrZnXKfJcEUT9VHAz4h49SHCuKlDKN4t7Jq3g7HWXcv5u4Fv2U+jiZ4Z919Chdye99QmohcxHHe2rizcF56baO5n8Mxbw8t9zCKjPNsEHMvmsON3C2Zmff1hn6L5hG5G9h+tTjJY3zVhErmmRtsGBQWcZumO8OJHUttWP+9H+as7U5xruKJoYCXL7rZ62RfRD6y8f5dqvqujffXgFc23r8KfONrk4jI9wF/DiiB37fR9kOvaXvtIgZ90TwzFziJRCKRSDytXHCphgeq+s4vN4mq/hjwYyLynwF/AfjuL3tkT5D0iCqRSCQSiWeLm8CNjffXbd3n4yeBP/wG275ppAucRCKRSCTedATVi3m9Dj4MvENE3i4iJUE0/J7HRiPyjo23fwj4pC2/B/guEalE5O3AO4B//WXv/leA9IgqkUgkEok3G31yTsaq2orI9wM/TRAdvVtVf11Efhj4iKq+B/h+EfkWoAEeYY+nbLufAj4GtMD3PY3foIJn6ALHiUan4PurnO0qiCSvToIL6p2zCbcXQVBWOGW7CEK9/eGCW4sgYvvV4xG7ZTgDx3nHrjkZHzUFv3YShKGXyiBam+Yd2yY4vr8q+dhJyH2pKtgqwrmwVTTcscreHz/N2TMV7DT3TPO+8nTOJ0/DYdqtrMJ07mOOO6uMT5+bk3CRMSv6KtSe2yYKfvkcZkXvJhzyA1HI9+p5qJgNsFVqFDMLjpuh6DGzYu1UvFUot01he3fhmZpoecvciLcL5bYJdO/Mlak5IG+VEsd3G7i3MJFn6dju25bKLevzgdkhjwsX3Ya3ivW90MNlyzBfuwn3VcFvncNDK1c+zrMoVu6rit+ew6M6HN9RlkW34VkZYgBHTcMo612SM2Z924VwZALcYdYfl5yZzcHNxVqAO3J5FDPPSuGmmb+etDUDc8bdKQtmNvevmtD6uFsxNCHkXlkxsfitWjg1F9hSCvZNzDwpHDet8vmJLqk09Nm7DU+KjFvW95kuqAiTvZsPmJqg/OYSzqxyd6VldBse51nMfR4rfxdckmmM37LK8HN3TmUi2X2Zxfm73YVYaFtyieAwO84Kbvmwb3Oxyt5Ssq/B3XbiCm6H1I9VDb+ke4zMefgOjpowrk4K9n1wzh1ZZejbwFLWVcP3tI9X3LXctSzIzHl41l1haPPzQBwrrOq35Zv5bQYa5vWeQGNVwTsK9vVanL+H9kd0yyoKd2e6y0CDYPahiX9D3H4fcIWhxQ/5THRxVvFsm1Nx5Qc8Mm1oq0vEBLHbYnEdcmRxr02sxD1zz1Fa7mNejSJnj49OxYVWHPOqtQ3zoXgm2SU7NiNON2769w7C4/yA3I7NmdyLce9bhkU4lrlVkD/fqDTe+tU67irmrCuB9/0Pii0y6UX7j9a5o9h5Su7C8arbE/qHEqotuYn1M1fRdOEcENa5Mzcgs7adP6cXF2t0Mh7iLN7y1kNV3wu89zXrfmhj+c9+gbY/AvzIV250F8Mzc4GTSCQSicTTTKpFdbGkC5xEIpFIJN5kFF6vfibxOkki40QikUgkEm850h2cRCKRSCTebBT04oz+EoDokyp+8SbzWybP6Z/5mj8DwNtGNTMT6Y7zICi7vnPCJ+4HwdthXUTn32nRsDTX1FcXVXSsHefKdhGkZ6PMc3cVRIhHTdi2csrMhMKj3HPXxMQnrWBmvmwXPvZzZ5kz39Ch9+7EA6fcXZlrZ7c++Xc24neWYf2yE9QcbferMIaQ27Hs1sd5z8w5e4fhe0tYbfS9Ge/dieuO6Oh8MBDMXJd7C6UxW+O+h0uD9Y3BB0tPs/Fc+dJwvQ/3F6FF69djOxi62M8DEyE3qvFW4/4gW8eXHZ21dQL7g3C93qny0ATKnW7m7uNrEXKnGh2JLw2KuC+PVi2tPRB3IuxXZRzrYR1ExJ3tsQMOBpXNk3JoImSP4kxsfamsqH3Id9isovOwQzioggBzaQ61R+2KzsShguNyObJ4F12AH8udj1n6sP0jP8fbDDmbtcv5hEUX9vdI59HBV9RxYI61c99yzJnl9rHtFdnmzIf9OTGxruKjQP2Abc5NbHriTmPfueYcEJx2z3TFiTv5rNwHus+Zhv05dccW78gIn5XL/hInEsTJZ3IcHa4Fx4EPwthTOeXM2gI4tdwWP3GnnMlRHHefe7+7wom1O2ctXnWScakLYuFjd8iCTbd661uvh7gcsuB4IxY++3t6jWNzNV5uuN0Ljkv6vOW2uN9oLxm7hNwn3GelZ+tx2ZztyI3oWlz7s4226/ipuR6v/OPtt7KwX6f+3uNtLfdWfi26Fj8eNxF+fpXTLvTddovYJ8C0CCLns/YOTbd8bEwAk+IyAPPmPo05VW/2PSovMa/DuDs73/ocvRB50Rw+FusZFjsWf4TqZ8uBy3xmAuSQe3NcvcNy3Z5EcfEmuYnt6+bORy/COO8L8Tt29/Wff+t/fCG5Lv29//0rPt6vBtIjqkQikUgkEm850iOqRCKRSCSeApLI+GJJFziJRCKRSDwFJA3OxfLEH1GJyKdF5FdF5Jf7aqcisisi7xORT9rPHVsvIvI/i8gLIvIrIvK7NvJ8t23/SRH5qioAlkgkEolE4ivLm3UH5/eq6oON9z8A/Iyq/qiI/IC9//PAHyDUuXgHoZT7/wZ8o4jsAn8ReCdB2/pREXmPqj7i83DeOr52HARqp03G77j0EIBHi+Du+ZnDbfYGQRw37zJ+60GI/8rdfY6b3mG4Y5KHK+wbozmvzkPb+6sNUXLeuxS33F+VFs8ZWHySw8zEyQ9XBfdXIfcwUyb52oX4sDbX5doxCIuMzWF4K/c8tPi9lcT4tNDoUnxYO+6ak/EgU8Z2pLcL5bAO+9ALiCsnse+tghh/uNCNviU6GR+u4Lg2kXMGE3PxnZlj8XGjPFqFeJVJdDKelcJR3Yt4PQNTW08LF12GH9XKI1M8D7Iw/km2djp+tFrHq8xRFWuX4n5MDzccjgvnopPxo5W3n23MPXbZY/FeQDzIMsbmlrtTZbHPw6Zm4MKkTJyL8aM65H5YL6NLcekcu1VYPlp1PGiDuHIoOaXl2CkLjutwPjzogqB2IGV04t2M3/enDM0xdiQZO+aafdK03NMgVh1SUZrz6645HZ80NfdMSDtiRGVOvNt5xXEX9veBHDLwQ9tmyE4Wtjntau6bIHaoQexc6YAdF5ZP/IqHLnxWBjpiYC7KOzKO4uMH7i4DxpZjyBZB2HmmSx5kt61tWDfSEdsahM9nMufQ3YnxgjC+Lb/F3FyVD+V2bFsyZOZnwNp1+RG3qAj5Ch0x9cFFee7Oo1i3lFF0+Z34rei6fKJ3KCXkLsyJd+p3OJNTAI71DqUMLT5iotsht5xy5u/F9b3L75gd5ta2F/MWbh0fMmMuQQx71t6jsDnOpWIoYdwLTpi3D63tMIqmB87iuo5nriK3c6GUISsNfS/ah2Suirn7flZ6xrI9im0BnOTktrzSM1ZtyJG7EmfnaOaqKEpetaexbSZ53KbxwfG57s5x5tItkpHZcudXtObSLTicfYYER+fDedR2yygQjj9xdCYs9o8JiNd/u3ttozh5U2DcxyC4F782puqjC/WTQDW8EhfH0yIy/k7gJ2z5J1hXLf1O4P/QwIeAbRF5Dvg24H2qemgXNe8Dvv1JDzqRSCQSiYvhiRbbfCZ4My5wFPh/ReSjIvK9tu6yqvZlZ+4Al235GlhhlcCrtu7zrX8MEfleEfmIiHzk3P46TiQSiUQi8dbnzXhE9R+o6k0ROQDeJyK/sRlUVRWRC7lRp6rvAt4FcG1wLd38SyQSicRTi08i4wvliV/gqOpN+3lPRP4h8A3AXRF5TlVv2yOoviTtTeDGRvPrtu4m8M2vWf+BL9Rv4ZRzqya+9MLHD4M51Myqhrde+PRZeN5+3GS8/xWrsCtKY7f8jpY5KzsB762mbJnepVPhlhn5mb8co6xgarqWToU7y7VZ3yQ3DUe+kXsFp02vZXFRt9J4ODZNzJl5WM2KnKlV5W68cNqE5bOGWJl6kkNtpnXzFk5sm61SGJuOqIlx5cQ0JNulY2J9tx6OzSDwpO7Ysqrb00Jj7mUXYgDbFp8UEnOvOuWkaS13zsQ0M41Xast93DRsW9XtaeGi8d+ZmdcdLxq2izLG+9yN77i9DM/WZ6syVsZu1NPZ/h77BUd10ElM89ziHW0b9vdYFxw1oxhvzEyu65TbbdANHDUjpnkR23rr/7bpDo7bKWOrLN7QruN6wsn5unJ2Q/+833PH9BDHiy1mplloxIzGFO6YOd3pcoex6Sg66ViYruWeHHOyCufwRAZ0lnshcE+CtuS0sarcOqJ1FmfJPRdulp50e0xMV9NKy9IF3cp9ucmp3w9tGdMRxrWSoJF4IDc5w6pyb8SXMueBBL3OGQdMTEvTSsPKDP0eyquccWBtJ9G8rzbNzBG3OJe9MGe6Fater2TOoQ83befZASPLrXSx4veR3mSeWW4NWhyPp7aK38f+JnO3Z31v4S13y5ITH+Zs4fYYsm7bWKXy09bi2XHUw6h2seL3aXuXZR5yD2SGmqljy4ozM8ers7OolekNERs/j/Flvs3AKq0rPuaeN/ep83CuDdws6kJav+K8C/Nd52GclZvECuKdXzFvg3neoNhm4MJ+9TGARXdIlYe5rLJZHBefI96b4oW+a5ou6LrKfEpphnibuZftI8rc9FH52ObM06kZZfplrPhdssZrS9OE/c3cALHK66F9OI9bM7zM3PAx7YyPepwVzj5XXtf/zXm/AttGXIluxNR0Or1ZqkgWz88nQtLgXDhP9BGViIxFZNovA98K/BrwHqD/JtR3A//Ylt8D/An7NtW/Bxzbo6yfBr5VRHbsG1ffausSiUQikUgknvgdnMvAP5TgjZ8Df1dV/5mIfBj4KRH5HuAzwB+17d8L/EHgBWAO/EkAVT0Ukb8MfNi2+2FVPXxyu5FIJBKJxMWRqolfPE/0AkdVXwT+nc+x/iHw+z/HegW+7/Pkejfw7oseYyKRSCQSbwbpAudieVq+Jp5IJBKJRCJxYTwzpRoygb0yiArfUa04qsvP2ma3DCKzUZYxMsO+47qIlcJ3Sx9FxtO8ixW1j5uMXatOvjLzumGmiInVzrqMLRMFjzJlkGkc02nb5yOa6g3cusJ144VRvjbVCz/XSrTGw8hEw6Ujbus1VM0GKDPYj+Nar7fi1VRuXQF8mEuswN2pkttO7g6yaBbYaRAgA1QZ7NnA1uLlde4yE/aqIsZN+0vrldKM8vaqkqmJj2u/rk7em/HtlSXjfB3vx1c6F83sJkUWRcudejIz0tvLR4xN1N0Lo1uUyoSJ+268jndKZwLOXDL23MTGnVPbDnV0ZPZ3wZ4ZyE3zIlYCb/FkVn15l+0oTl52HZ0EcWOhA3Z8MIWbZiW1iak96+O654NgdeYqFiaK7Ghj7h2/y9TM55baRhFxpjnbJhCeiRm40a7Fo8COxaeMWdJXRm/I7dfBtj9gZuZ5C1afJbTc4hJbZpi3lCWtiaMzLdgiiPNnfsbCRMmb7WccsOV3rO0iiogzM4SbcomZGeatZBUFswBTFwTEW36Phcxtznz8K23iDpj5XWv72X1PsgOmGuJLzh+bk7GJjyfsRcGzaof0Jn1ZH9+PomZVjxV0Z5xfYkLYZqlnGxXdYWRtx24/Cp5VrVq8yxnmfXyPxuKbDPJtJiaeXunZxpzkDPLtx8bf6DyKkJ0rYiXucbYXq5Or+mikN8i3GVn/jV+3FYtX+TSOL8S7mLs08fEo340VwlV9NPIr8wmDIoyvFx7D2mwvz0YMinAetb5e9y0uio8H+dZG9XFP/zd55saxjy6Kg9dV7jM3jDmC8NjmWwqI/U/xsTq5h96A0I5d5sZRtPyk8OkOzoXyzFzgJBKJRCLx1KKSalFdMOkRVSKRSCQSibcc6Q5OIpFIJBJvMuFbVG/2KN5apAucRCKRSCSeApIG52IRfUYuGd8+uqo/8Jv/NACzvKOzE+lSFUSOVeZ5YGLiyimHdbj2K5zyqAlP8padRHfiRSfkbj13yy7kG5kAeLnxLNUrLEwXOMzWbsdOQqzPN+zbdhIFzCFmlblt5corphnG6zrfYCN3LkQJ5bJbC5TrjnXbPn+rDE0gvOrWwuLOK0vre5RLXC6cRJHxqvNUWS8A9jHei4yXnY+VvVedj8LiTpV519mcZaxiW0fXuySb+Hbgspi7dC6KjOe+ZWRiyJXvqNzayXjpgzhw5ApWJoyszBG1Vc/cxK0jKai17yenMaHjXFeMzEG40S62bdSzMGFuH6+1oZS10/HSBK4jHbIyl98hZXQyPpcFY6teXdPGCuGr6Ai8YGQOwyupGWoVt+0rXY/8ODofD3XASsKYFjJnrGNru4rb9stzOY0uwI3UDG0cK1mxxHLrlNryDXUUBbt9peuJbrMyh9+RTmN8IScMzUG4ZRX7Wcg5C0LbMTs0NpaBjqktz4JQDX30WHwSBb8LPWbMjs3TnJE5/q5kzsIHR92h24nuv70b8ZIzlhr6HrkdWl1afIslQXS71GOGshPH3TsVr/SUpT+Jufv4QGYWP2Nhbr7jbC/2XcokOiAvukdRZNzqisqqk/eC31V3EkW+rS4fi686G3e2R21O0AM3i5W7l+1RFBG3JuIdZFssu2PLfcoo3419lyaar/26Kviw2I0C4DIbxz4/V7zIJtTtOj4qg1i98YvoZFx359Sx7Q6tiXgLq05ft+fUrbkylzvr3G5IbfUCm/aMKoqTa/LMPivtKW0XRNiPxwexXWs5ymInCoidK2M7352T5zvWdknmSlteBJdjIM9mcV3vhty2Dz6qqu/kK8hv3zrQf/i7/8iF5HrHT/+tr/h4vxpIGpxEIpFIJBJvOdIjqkQikUgk3mSU9IjqokkXOIlEIpFIvNlocjK+aNIjqkQikUgkEm85npk7OJ2uhcC/bWvJpDBRZhum4MGq4u4qLO+XHdtlEITeXRZRkPxwJVQmLJ4VPgqEzzvHAzPqvB60oYwzjdveXTkeWvz5MUyDHpWBU+4sQ+5HK2UcdHpslRoFxzfnjkersHx1JNY30VX45hwerYIw9trYMSvCNpNcuWmmqMerjtEoiGRnZRA6A9yah7wndcc4zy23RGfkW3PlpAnzMC7KmHuYw+156PO4abhqbsIDcwQeZXB7bk7QXc24GFjf2Tr3ectpF47BOB8yLXo3ZMfNeVh/bA6m43zKJAvxaeF45TxM5onOGZvgc1oU0e345mLJiQSx4Vi2mTpzUi76+IJTCULIiewxtvg0z3l1FdqduTOmGsZduTK6Hb9an3Ligohzopetj4ppEXK8XB9x1ufWERNzG55mBa+a0PFcjqNT8JicaRaEjq+YePTMHTPpwskw0iFbWZjfl/Ue53IU5pIZpYZjNnUDXjER7zmPmJi4d2Ri45kMeEWCGHbBCRMT6A51yBZhHK9wFIW+Y7YYmsh5pmNecQ+BtTB2prsMsdw64RX3AIClP2YsQfw5YMzE+n8kd2PbiexRmrB55me86u4/lnskOxQmqp74KbfdPSAIY8cm9K0YxX085k4U4A7ZITfh98iH+Al3aLx9ENwOuR2PkZ9yzB0giGSHWcidUzGwcZ/o7eiiO3DhPMvIGdixO/V36ExY7PE4E5oPmHDahdydX6FZ72rsGLBu28d7N2chozD36dP2bhTodllDZi67ORVnfVtt6cxpV0wEn1PRmNDW+2Yjt4tzc9bdxdv6TYfhjIKmMwdoE9s/Fpd8w1WYx5Z7B+GmPY9tm24zbgJ/v4zr2o14eL+ONfZZ6V2Pw/7U8X0vGga3MdbH4/2YVH0UECOOzp/HnH1b9TVC/+WKz44/KZ5sb299npkLnEQikUgknl4kPaK6YNIjqkQikUgkEm850h2cRCKRSCTeZNK3qC6edIGTSCQSicRTQHpEdbE8Uxc4v2kShGa3FxXTJux6LyDuVLg6CMK72rsoIAZYBB0fV4cesfMvE+W8dTF+ffS4I3TllCNzQF50wjWLew3iYoBHtXBuuZ8brdtmEgTNoa1yZRjy9O7GxUb8vFWeG4W4IBSW+7AOMYDLo2xj3MJxbU7AMZ7HeO6I8fPWc2UYhJMOMI0uJw2ct0FEfGVY0X8kTYPMSbN2Kb5SDaJ4L3fCcW1OwV3L5XIYx1Tazp3Unrm5ED9XTGLfvQPySe1ZmrDySjYjt4GXTjipQ59Lrbnitte5sz53iC+oucxujA9MwHzStNGF+Iru4WJux3ETzo2V1FzRg9DW9muQZZw0QRBay4oDb3FxDMxd+biro5vwZX8VZ21HruC4C+tXLvR90D1HZqLMgeQx3riay90NmxNhIEGcfOwX1C4INg/0OnlsG+InuqRxIcclf4NMQ3xIxbEEcW8jK/b89XCcyBiYwPpEzmnM/XePEBccQ4sfy0l08N2RG+QmfB7okBMXxNaehl25YblzBj4c9yN3RGfuzTsWzyiiwPnUHcfcW9k1MjURr444MbF1pw1b2VUACq2oGFrbIKrufMNWfi3mjgJid4jvQt/T7AqZCYQrHXHKQ8vdMs2DkLwXJ5c65CzGGyb5Fduvioow7jmPUJOLToorZPSu6DPONLTtxauj4lIU/5Yyiq7MSse42I995+Z2vdST2HZc7Edhcylhv/v2EFyIc3PizWUQXZn7GICTIva/9Cdo7+pdbH1WvHc5BqjyKc5cxDNZC5sBynxq6/O4Tb0RL/JRzN2LpzcFy3k2imJhJ3kUI4s4xOayz+skpzMx9mZcxCGWW7XdECsXcVlwePtdgnz2f4UiDjUxduKrk6TBSSQSiUTiKcDrxbxeDyLy7SLycRF5QUR+4HPE/5yIfExEfkVEfkZEvmYj1onIL9vrPRc3AxfLM3UHJ5FIJBKJpxF9gkZ/EnwFfgz4D4FXgQ+LyHtU9WMbm/0S8E5VnYvInwH+GvCfWmyhqr/jiQz2yyDdwUkkEolE4tniG4AXVPVFVa2BnwS+c3MDVf1ZVe0Nhz4E9oz6q4hn5g5OJuur492y4agJz64vD6ySrus4XIVnzVtFy8dOhratp9NwHTjIlELC/b8XzzP2qrA8zGFixnzZRny3tHhGrEKeifLp86CB2C41mv5Nc2J18s+cC1u2fpILE2tbmkHfy+fB7A8eN/2rnPKKnY7TArbL3phPGETjQI3bb5e2XzkMs97cz0czvu3SxSrjw0yiud8oF7bLPOYeWb47Fh9kwqzI47Z9jnuLjoFVHt8ui7g8zIUHVga9dMJOXtp6F38+MCFUmUk0vhvmjpFt83DZUlq+LTdkaMZ8w8xxuGost8VlyCjLY46Hq9rmL2PLTNwGLo/9P6prCjNSm/kxQ3v+35v/PWhWsdr4lp8xMuPAUZZx2Fi1ZHHMzHxuKDlD6/+oXW3kDrqHgZRMLMdhN6ewj+nUbzEkzM3IFTwyA7uCnKkGo7qBDhiZLuPYDPByHFMf4kOtGJk25xFnFKZrmeg2AzPgG8lam5NpxlRCteteOzNmwJGZGRYUTNiz3CNGluPYHZOZHmckOwxMVzPWIUdmlFhqyVh68z7r24+jkWJBGat4D3TMyAf9zKk7JsPm2O1E472hjjg1Q8PeLHAoO9FYcKTTqM0ptFrnZrI2BnSHFAS9zcDNqGQa+wc4l6OohxlkW7H690AnnBNy5zKIxoAFw2juN9dHsW1lFasrmcT4uT6Kepcqm8XchYxiRfRcKorM1rtR3GbpjzfiYayVm0TjwKUer7U+2YDCMEAAACAASURBVJjCDWPuvjp5LhVlHtrmLrQrZcjK4plUFC58DvNsGHPU3TmZaX2K3JNbhe5MKlrT1vTrVLuoC8pcFbU3mauiIWLmqqjNaf0qVvxWfFzuTfw6X+N6rY2UUZuzqa8RyRH7TDg79wMeZ58tTxe36VH10UDxSeG5sDs4+yLykY3371LVd228vwa8svH+VeAbv0C+7wH+6cb7geVvgR9V1X/05Q74K8Ezc4GTSCQSicTTjL5O/czr4IGqvvMiEonIHwfeCXzTxuqvUdWbIvK1wPtF5FdV9VMX0d9Fkh5RJRKJRCLxbHETuLHx/rqtewwR+RbgvwG+Q1Vj3Q5VvWk/XwQ+APzOr+Rg3yjpAieRSCQSiTcZRfB6Ma/XwYeBd4jI20WkBL4LeOzbUCLyO4EfJ1zc3NtYvyMSnneKyD7we4BNcfJTQ3pElUgkEonEU8AFanC+IKraisj3Az8NZMC7VfXXReSHgY+o6nuAvw5MgL8vwRPsZVX9DuDrgB8XEU+4SfKjr/n21VPDM3OB025c1S67jH//+dsAPDgOorpfuLfLQRXEqEPg62dWRTjr+Ke3gyBwt1L2yiCGfdu442tGwQDtn9+doJWJZwur7D30PD8Kd/Ted3cIduJuFSEGcHXY8P67JnobwLZp3K4N4eowCOTefzePhnO9CPnaCK5UIf5z9xyZGVdVTrlmhoEHlefn7oblKyPHwLRyzw3h8iDk+bk7YRzPjTLMG44rQ8flQVj/wbsdZW+olcMVq2Z+MIAP3mltfor4kTwwQ8KDAfzC3SbGTb/MwTDjIOg3+eDdmueG4U0msG8DvDKE/+9emNcq24gPc8st/Pz9IHAd5kNyMwjcG+Rctv5//sEZQ3ohJuxWhc1D2PaDD0+ZmHi0cMJeVcZ5+uCjYCA3lm0Ky71TllyxEuw/f3wUK2b3fe8WFZct/gsnD5mwH+O7Vmn98jDn58+CydtY96lM8LydV9FM8YPn4YDN9HLse5thjP/C/C4TE8zmTtgxY7mDYcEvLG5a2zGV6wXPQ5vTil9Y3QJg0o2jqHlLJ1wZhvH9i/pVZoQ5qWQttr5cDfhQa7kx4ay4WA39SjXkXzYvh9w6pTLB55bf4nIZxvev2peZEeasIGfmQ57nigkf6l62OdnaiIfly/mED/uXbb92Ke3X1USnXHZhmw/7zzCVYFpXaMHYKqVftXUf1k9HIXOhBZM+N7v8ov586NvtRDO+iW5zRYNo+qP6QSZuz9qa8J1ZNHr8Zf9zjPK+CnnOyPo+6A74Ff25sH2+Ew0Kh2xx2QdTwl/1HwBgVGzEZYuD7jkAfq17fzTby7WIYuJL3TX+TfuzoW25HcW2vZj4sj7Px7oQH2RbMV7JhH19HoCPtx+gLHsTTUdhguJdrvNCHcZdVeEYiWTruNzgxfqDoT8TMkMQBe9k4WnHZ87/BUV58FgMYDsP8ZdP/yVFNVzH+/OluM6ts4+G/c3WcecKZkWYkztnvxxFxut4zrgMZowPz34NZ+dFGHvY93F5wKPzfxO2zx5vP6wuAXA2fxHJHhcZA1RFOG/n3eFnxb7aUdX3Au99zbof2lj+ls/T7l8Av/0rO7qL4Zm5wEkkEolE4mnmAkXGCdIFTiKRSCQSbzqp2ObFk0TGiUQikUgk3nKkOziJRCKRSDwF6BMSGT8rPDMXOIUoLy+CiOz6sOHXbwdx2dfMgkPoOyYL5l0QXwqhojgE5+EboyC6Pe8kVh/3Cifmhnxj5DltHz8xW5WY7/qIWDU8E2XZhdyNlygKXnTrSuDzZl0w7doIzOSXyuLHjcTK4leGjto2HmRw1JggWeDauO8nuCkDHNVCLhviYqBVGOd9hXMwg2MuD3OriQzDTDm2wroDp1wehX33rJ2Uj4MhMKNMORiuBXtjczI+qhXrksuDQYxPC+GoXrs+Xy5DrN/HaQFHdZ9LYxVyh0Qn6KPVeh8u5eN4a3JaCCeNWtuw7iCbYN8KYFIIJzG3RPGqQ5hZ+fSTxjOxUukHskVmbad9vPZM+zg7j8VPGx/7OTDxai6OSV+avYGJ7cNlH87JzDkmRRbjM3Ok3j+7RGHCyVmRc9Z0tiwcnIeq1oWs24qdc7NS2J/38Sy6TJ+2xH3cXzy3dkzOc5ydz1uVY7e2thafFSXnbWu5M/bqUK27omQrL2Lu3il7r7lOZSLdWV5ybuf/rMzYWQTRbWXOwzvZgDMfTrTtMmd7GeKlVmyZc+6Zz6KT9vbq6rqtG3HmTbRaWby+FquTb8uIubkrb1cFW20Y98CP2DGB9ZlfMittrN0VKhN1b2uIn2vBThHi0+5KdDje8ducSXCW3s4rpj7M2UAn7JqL9Lksogv32F2K8R0fBNFn7owdE/RO3JXocLzt95m7UI17R8ZMiiCqrWTKlg/n1Nycp7eYxCrkA5kxs9xzOY37MCx2GUgQEU/ZYy7hd+B2t8XI2vai5gn7zCW4JG/5nViFfJBtMTLx9kpP107ZxU50aR7IjFrDuMYaxLpVsRWdmAduFl2UR+xQ5GF9mY0pXViu/RkD+0wW2YQy652Ww3Fp/SK6RufZNIqfi2xA0y1jvsxZu2wQhc9tt4huzOKGZK7/vRPOkc7Xjwmev+J8CYUyE6+P9IgqkUgkEonEW45n5g5OIpFIJBJPK0lkfPGkC5xEIpFIJN50JGlwLpj0iCqRSCQSicRbjmfmDo4ITPMg+JzmbRSwPve2ILD7jV/a5qjuXTW7KK5ddI57q/VVde8aPM09D2z7zfhhY+6ZmfJgFeL3l2tR8P2Vi2LXh3XOIxO4CnB3GTYa5XB/FYSiR3UQJvdtAQaZctfiZ63Gq9S7S2GQhW3vrhynTT9mMHNgSgf3LM+8W8fvBuNmqky4s+z3XaNb770lVKZ7vbN0LNswQ4WDezZuM3Pm1sKx6jqLC/eWGvu+Zf3U3ke33nuL9fLtBTS925Xv40qvyb29EBpT4kkW2vb93A4aTzpVMta5+33YjHeW48Gyi6Lg23NPZ31notwzdXchwq25t7YeVWdtW9tWuG1xb/kB7i9bCnMsvjXv8Khto5+nrcVVebAMBy93ws1zO1CA2jYPVvXGuNfxFuXBamXjDgfsVq9wB1SV+3WIZwi35+tY3//9ehnFzLfOG5zNZUdn8UX8HNye17F9R8e9JhzgHMfNjVhrn6j77TmZ2Wbfmq9wlqczRfS97ozczuibC9mId9zTIHYtKLi1DCepk4zWxnVPj2Pum3ZOinM0EsZxX4/J+zlZzXF2bBqpucdDm5OcW3Vwys6ygpYwrvsuxHPNudms443VH7zn7lEQxMe3uqPootuy4r67Z7kLbvvglJ1JEGOvZM69zI6XVtzUBxbPaSSsf5DdJje345tyD0dYrnXOA1k+lu8Wd6MzcqNzHprwOZcBt9wt24eKhnCcDnmV3ETad7JbZF2fu4+/Qh7KDnHbfRpnIu3Gzzlmbseg4IG8HJd74XDNWWz7kM+Evl1J60O70+4sCn4P/Wfict2dU3fncR6O2lfCsitpukXcpu/vtLkV463Fm+48ioXP6ns4c0BuuyVtF/oXyVk0h5Ynp/NhLlv1cd2yfsSTJImML5Yv6Q6OiLxfRP5XK8712tjXicj7L25oiUQikUg8O6g9pvpyX4nAl/qI6puB/xL4GRHZe01sBnzTRQwqkUgkEolE4svhjWhwvhe4BnxIRH7LG+lURDIR+SUR+Sf2/u0i8q9E5AUR+Xv9HSIRqez9CxZ/20aOH7T1HxeRb3sj40gkEolE4mkgfIvqYl6JwBu5wPk14BuAu4SLnN/7BnL8WeDfbLz/H4C/oaq/GXgEfI+t/x7gka3/G7YdIvL1wHcBvxX4duBvidjD9UQikUgkvgrxKhfySgTe0LeoVPUB8HuBfwL8MxH5ni/SJCIi14E/BPxtey/A7wP+gW3yE8AftuXvtPdY/Pfb9t8J/KSqrlT1JeAFwkXX56Xx8Nu2T/lt26c8NzlnkLUMspYXPrHHC5/Yo1Ph6nDF1eGK3aqm9o7aOy4PVgyz4LB7qVIGLrwOa8fVQc3VQU3pYKdUdsp1/KgRrg9rrg9rcgezQpkVyjiHkya8rg3XIsypxcY5nDbCtWHDtWEQmvbrR5kyypTTRrg+bLk+bPEKo1zspZy3wTX5+rBDNVSnHeXrbeatcm3YcW3Y0fkgth3lMMyFYS6ct8q1oefa0OM1uCMPspBj3obXtaFH7d8gk7jNvAuvG6Mg1u308fiiVW6MwqtTLBZey05ZdsqNEXFcg1zCayN+fUTMXTq3bt8q18dwfYzFhNKF9rX31N7HuEcpMwkvF5yga6/cGAudejr1FM7FHLX33BgLN8ZCi1I4oXChbekcK+95fuJ4fuLoNIiacydUzlF3nrrz3BhnNNrRaEchLuaovef5Scbzk4zO/uXiYu7NeENLJo5MHIU4Gu9pvOfGJKOmpaYlRyhdRukyVtqx0o4bk5xOWjppY9tCHA2e5yc5z09yGmli7lIyGvU06rkxKWjsX2b/Clnvy/PjkkZqGqljrJAw1ufHFc+PK2qpcQgOoSCP+3ljXNFQ01CTaU6mOQU5LZ4Wz/OjATULahahrRYUWtBIw43hkBvDIY2scPav0IJOOjrpeH445vnhmEZWMXdOECS3dNwYjFkxZ8Xc2pYUWqJ4blRTblRTap1v5A5xL57nyxnPlzManePIcGQUlLT27/l8h4YFDQsER0FFQYXiuZ7tcD3bodE5jc7JtaDQikIrPB3X3T7X3T61LmzGXIiJx4vnBpep/Rm1PwsxGVDI2hX8ul6m1oW1z8hlQC4DvHZc02tc02uxreDIqWLb57rrMXe/371IGOA5/zaa7pymO0ckxHKpcDgO9G0c6Nuou/P1uN0QEYeI45K8nUvydotnYWxuGLfddV9D057TtOdhvt2Qwg1xUrCd32A7v0HTzRHJEMliPJOcaXGVaXGVtpvH/nI3wEmOk5xxsU/nl3R+iYgjcwMyiw+LXYbFLp1fz3cfF8mpii2qYuv1/veWeMp4w9+iUtUG+BMi8hvAu4Cffp1N/yfgvwbzRoc94EhV+69zvEp4BIb9fMX6a0Xk2La/BnxoI+dmm4iIfC/hkRo76SRNJBKJxFNMerp0sXzZPjiq+leBP8rrEBiLyH8E3FPVj365/b4eVPVdqvpOVX3nJBs9iS4TiUQikfiSUU2PqC6aL/UOztuBW69dqar/t4j8IvD8F2n/e4DvEJE/CAwI37z6m8C2iOR2F+c6cNO2vwncAF4VkRzYAh5urO/ZbJNIJBKJxFcd/otvkvgS+KIXOCLyQ59j3efbXIGf+7xB1R8EftByfDPwX6nqfy4ifx/4T4CfBL4b+MfW5D32/l9a/P2qqiLyHuDvisj/CFwF3gH86y+4H8CvPgpVZ3/X3hHDPDwRe24vmHb94uHa6G+Ue87acHPrtCl4aEZ+D1fC5UG4idh6OG2DrvlRvTa7u2LFZzuFkzbkO6mV+2ae99xGcdqTJufczPgerZTnRqFPJyEGQU9zbJW2Lw/7CudwYoaCi1Y5sfiVkUTzt7PWsezC+tNz5YrlLjM4t33rq5DfPlcOLHeVwdIM9upOuWsmdJeGGQOTcS+9UHdh/d225dIwjHUz3lrue4uWfYsPc2Fpn+DOK/cW4RjsD3KGVnF85TeN8sLk7FUF47wf8zr+YFWzVwVjsnEh1Jbbozxc1da23GhrhnXqeVSH+E75eLz/BXPU1Oxa1ehRnsW2qsphEwzYdougT5gWGatu3fdRa/F8ECt71xtfbXjULdk13cSkyB6LARz7BdsSTpRpnlN3j8cgVM6eFmHflxvxE12y5a1tZqZtj8XnbDOK8b6tw3FKME/bYsI0K+N89/TVsmc6jlWxl53i7EbwmZwz01AFeuoGcb8cjrm1neiYqe37qgPp27rwOZz5GROLLzuN8XM5Z2LVsKeMqe3cdupiJe0JU2ZW3Xtl56cjYy4h90inTDbivTneUs/jPkx0nVtwLOWcTSZ+ytJyCxkr2y9Rx8SH8S3xZPartZZFfO4w0S2WZoDpeqM/5lR2PMa6Ra1dnLNGzZlSYGLVuFfaxbYtq5h7zM46ztpkUC3fiB2WWse+WzMoVPHrquDUMXdH+Ox59YycxWWFc1ZpW4OaCWDktlnRGw7mqH2Kmo1K3yszFnRSoGbM2PomVh6vZRFzw9rIr8qntNqbOuZxfxoN4yuzcdwXkXX71i/JrTp4p000/QOioV/mBnS+b1tEc8Z1vIzxxFcnr+cOzl/6HOsUPqebkAJ/+Q2M488DPykifwX4JeDv2Pq/A/yfIvICcEj45hSq+usi8lPAx4AW+D7tz/xEIpFIJL4K0fR46UJ5PRc4xedoswC+EfjFN9qxqn4A+IAtv8jn+BaUqi6BP/J52v8I8CNvtP9EIpFIJJ4WlPSI6qL5ohc4r70zsvF4qkt3TRKJRCKRSDyNPDPFNhOJRCKReJpJLsQXyzNzgSMC43x9w2lhAuCjkyDIdEDhwtl1dbhkkAUB3eGqilW0BWViFcnfNm45NFHyMIPSKlbPLL5bthw1oeEoF0oTxm6XypZtc9w4xvYAsPTCThm2meae0zbkmxaw6sLyOq5RBD0ugolhiK8rpp+2wsRy117YsfKo01xj7kkRfrZe2an6OJw1Fi/XYuHdSpgVJlpuYGLlvTuFnTJsv1Wu47My7HvjdR0vlPPYdxbFwjuVsG3jO20kCnM/V/y8FWZFHuM7VsJ8pwyC7LAPebzVu1M5tq3/eRvyzYoyVhPfqbI4vkWnUZjrUXbswG+VwqJvm5f0xc77+E4lLEyYupVVsSr3TpWxU4Xcyw5mbm2atl3mse2yH7dbG7btlEWc914IvCVrhfpOlcd9X3Ywk7UNwm5Zxn2HIHCeEsS1SBBW9+PrBbW9OLdv3+/bslO2dMYme+WA7TLkXnUwM3Gt4NjNB+vcNsczP4sVyffyEbtV2Pdlq8z84/5U+9mYLZub2ntmJq4VdVxy07jvvYB+qjsx977M2LZ5q304A6Z+J4pu95iyU5W2Xz4KdzPN2SOMY7sso4B+yh7OKsfv627ouyijyHiyEd/zu2znVex7ZKLfTAv2fCjbt5VV1D4czF4ULDj2/KWQ241YmB3Y2O3H3LvdQTz2S20ZZZttL4fcBHH3kpqhiYIzKdj1V8Ix0DELgsh45LYRq7q+q88x7cXRsoxte3H3FleYdVsWXzCwvh2OmfS5tzk3MXaZz+J8T7MrzHyYtzlB6F3l05h7kh/EeVhyRpX31mgwza+GscoOi76KfD6OuYdFyDuQLVYaROZ5Noi5x+UBg8zG3R3HauKCY1CG41FkE+r2JMzVxmdvWO7bvoxZtac8OVKhzIvmy/bBSSQSiUQikXjaeD1fE//a16zqaz5dE5Gj125vguFEIpFIJBKvk77YZuLieD2PqF7gcztI/6PPs30qeplIJBKJxJdIekR1sbyeC5w/+RUfRSKRSCQSicQF8nq+Jv4TX2ybrwYKUUZZEAd+8mTKXhkEd6UJj792Mqf24eZT64XWBXlS4x3bRS9O9cxN8Ft7F28nZgJXhyHPkTkMT/N1TRAFrg3Dxo9qYZKF9Z4g0oXgcNw7Jo8y8HYl33i4atrSdVyjiLbza/fkh6tQobvvs7WNrgyFh6vQ0SCTKJLt+740cBtxaPu4Vy4Nwv4crhRbRFnf0tsfCI/qddsQX4uTD4YuOjGP8vWYlHXu41oZmZuwQhzfviU8qZVh1ouaNYp49wcZZ01YHucuipIB9qp121H++P6qanRXPmt8dDJuNkwoLg1yTm3FMHdxTgD2BuYyHfuWx9r27srnrWdc9OdUELpDEBAvbCLGeUbzmvujO2XBwoSsK5/RbNy37gXEi3Y97tZrFNPtlGsRbO++vOqIQtztDZFs3bkoBBYRdvK1ALf2/Zxs9J33DsMdje8FzD4KO3fzQRT31t6t3YYRtrNh3H5l62vv47h23Mj2t6O1z2HdKZmGud6SIU3vYuuzKAR2CDsmsA0V0NXy9HHHjtX1bdF4Xtbex9zbOqWL7ruelQmBc/IosF7HlZWNI5c8Cqw9Gs+/pW/JXDgHtv02nTn3drpu27soT/1WPJ9b9dTm0JtpHgXWHk9n26xoyOjb7sRj06mdL1LHCuAT3cbbuFs8K1nZuAcMbb+8eDob00pWsbr4kLWwvM+xkmWMVzKJvwRauuDYDJQypJSJzX1GK62NO7gyF25IYYJ4weFtbmqdk9s5kEsVzylPF52KCzckM6F+L5LWzxeXjM7mstMVRTa29S46Fqt2dCbqzrO1yFjEcqvH+5YnSXpEdbE8M9+iSiQSiUTiaSUU23yzR/HWIn2LKpFIJBKJxFuOdAcnkUgkEomngCQyvljSBU4ikUgkEk8B6RHVxfLMXOA0Kjw/DY6XbefoTAC8dzWs+39evsLXTYNQbtll3F8FweW/e/CAn39w1XI4BuZ2fHeZ8XWzJQAvnA1xK3PQtBm9t8r5TZMgfvvEacXDunfvVO7b8ttGDR8/DoLBR/XaKfjhyvH8KIjbPt7lHAWtXBQ7HzXCNRM1f9w7TpreKRhObNtrQ8/HTWR62hCdgE822n7iJMTPWqLb72kDV4e9GFs5b3sHZuHM9HZXhp6P2/rzTGLb8xhXPmEiz/MmYyvGlYOBflburVKiy/ClAXzS2i7M9Xh7wyn4UgWfMIHponMx96JV9k0n+ELnmZvT8/aGE/CeGQm/4H0U+W6VjoWNe28gvGh9z1sX3XqXHeyZI/ELJx3LNogQZxvx3rH4xdOWZecsnsW+d0rhU2cm5uyy2Lb2GvehF6DWPmdW9E7B6/hL510U8U6KLLr5bpfCi33bTqMT9Mr6npXCp20nG58ztXjtNfbz6UVD48O5OM4zlr1zc+lYLcNJ1Wi5jtsxmJUZL62CYL/1FeN8LRDu3a5XTU2n4eCMsoxVt96HVWttYzxfOwUXGasufIY6Boxc+HAtWr/ex3pFay7MI5ezaLvYNvS9pPMhPnA5886chPOcVRs+v14nDMRydy3TPMzDy90Sr0FEXFl87lvGWVhe+QWYgDnHcd6FeRpnBTXhdwlsU9iv2TNfMzFH3ZUE0e2ULXJTCpzqkokJhGtZgImMHY4TDdtPZEhty449ek7MSXiiI+70cXNfBjiVU0YaRLx39Ywp69iRC3ZmEz9lJWfWT8iteI7cg7BfusUDcw0eux36rzocuXtRtHzozxjmQfzc0XDMHQCG5hR93L3KIA/LLStOLF8pa1fhqrwahcNLf0Llgmi57s6ZmFg4xrtHlBvxcR/3c5Y+7FfuSpouzM+w2KHplpb7OIqS225Omc9sORy7VXOMc2/d/yJF5NuBv0mwdvnbqvqjr4n/OeBPAS1wH/gvVPUzFvtu4C/Ypn/laf0yUtLgJBKJRCLxJtNXE7+I1xdDwlfFfgz4A8DXA39MRL7+NZv9EvBOVf23gX8A/DVruwv8ReAbgW8A/qKI7PAUki5wEolEIpF4ClCVC3m9Dr4BeEFVX1TVGvhJ4DsfH4v+rKrdDoQPAddt+duA96nqoao+At4HfPuFTMAFky5wEolEIpF4trgGvLLx/lVb9/n4HuCfvsG2bxpv3QeMiUQikUh8ldA/orog9kXkIxvv36Wq73ojiUTkjwPvBL7pQkb2BBHVZ0O2/Vsmz+lf/bf+FAC/ffeIg4MgaDs7CeLG+6djfuM4CAZ3y4YzE5I6gQercB14fyXRFbcQxTSUtLp2Ge7dfAtHFCTPO+FRHeLDbN1ulCnnJqQ9amBobSu3znPWroXDvUvxINMYP2/hqF7Hh1nos8qIuU9qpbK2o1wp7A5m78p80iimeWWcB2dmgEUnnDbrfOM8BARludG26vfH4k6IAtizBsqsz72+dVp75bTp5xImxTrWO932fZeZRPF2aGtz0yi5C+2mxfobCI0nOhwXbp27P9VXPjgYA5ROGFvc69pp+bTxFJZ7Ukh0Qe4UzmwA677X8cbrOncm0W24U43bnDaewmyNJ6Wjs4H38bOm28jtokuy1xAL+yWMi97JmOiie9Z0lFkveF+7Eff7ftq2FObkOi4cXZ8bjblzJ1Es3Pq1a/ZpEw5Y5TKGcb+CM3TI3VCYC+w4f9yB+bgLJ2klGaPMcuvGuCxeSsbA4pvO1MfdKgp9Ry6n0fV/Bad+aW0LhrZN73oMcKIhXlFEMXG3UV7vmDMGJnKuJI+uwLAW71YmsK4oaDf+GzqVUwAGOoxi4o4uOjQfuWOGGlycCy2ia3HM746prO9CC1Q2+w4i2aGOySy33+zbPWJgAuvcXJm9bI7tkIEGAa7g0I225zwK42YSXYM342c8tPn43PG5fxTcjA2l24iFcVdugm4ch378qy787i2zMbox1/2+1e1JdB722kbnYa8NdRuOR5lb3K/jnbY0Fs+zId6cjAWHN8fitltG1+LO17j+fPA1XsM56CQca93ou27ufFRV38lXkLeNrup/+47vvZBcf+pX/rsvOF4R+d3AX1LVb7P3Pwigqv/9a7b7FuB/Ab5JVe/Zuj8GfLOq/ml7/+PAB1T1/7qQwV8g6RFVIpFIJBLPFh8G3iEibxeREvgu4D2bG4jI7wR+HPiO/uLG+GngW0Vkx8TF32rrnjrSI6pEIpFIJJ4CntTzFFVtReT7CRcmGfBuVf11Eflh4COq+h7grwMT4O9LuOP8sqp+h6oeishfJlwkAfywqh4+oaF/SaQLnEQikUgk3mQUYoHmJ9Kf6nuB975m3Q9tLH/LF2j7buDdX7nRXQzPzAXOygvnpqt5+XQSjf5qW/fK+Yizdq1dKEw/c95m3F72z4DhklUkz0RjjpfPJeo1LlUh7llrWW7NIXNro7q+MnUmcMv8wHJZG9F1PuQHuLsQTFLBXhXWNX6d+/Z8vbxXadRrZAJ3FhqXd6u+irIwNMPAu2f9vgg7ZgTYeGFUhvhnzjy2W+xWlP6RHgAAIABJREFULhrHbZfwynloK8BetTatA9jO4dXz9d8iOxvxvp+bxxvx0bqq9U4Jt+Y+zjcEA761YR7cPglxVbg6DgNcdrDbm/Edd1G/sTPOqPu2Fr9z0ka9y17lYu7dSvjUSW+Ip+xN8ph7p1wb+TVmtnd9EAzhVp2ujf5Ouqg92R8UUYu0UwkvWu7ae/bG5XpOrO2nTGxVe8/1QTgZlq2yN+hzN7HS9Y1BtZHb8ZIJmpa+Y3/QV/1exz99GvQFC225MbTK3p3GY/PS2YqlVU6+Xo2ioeDuIOPF00VsC3CpLGOl8J0q46UzM8jUmhvldL2PJhR78XzB3IzZLpWz2HavynnpPHwL9Zygk9krtuP87lUFL86DEdxSlhyYgdzKe/arMH8vLU44t0rWe9koVgvfr8L8fXp5wtLi+24cz4vdouRTq6BDWbgFBxLM5xrt2C3D/L3UHLIwQ759+qriym5uudtDFqbR2WdnXeU+G/JSd8/Gfc4lH0zzPMpWZm31rsXPuOT3Y3xmRn8vcYslYd8v6UHMPZUBn5bwBZaVnrLrD9hkxoiX5eVwDHTOrl5Zx0yv85nsJRof9muX52J8qlNedi+EebD4truKMyXDxE+56T4Z41tZyC04Jhrm7xYfp7W2E3cpVlWfmGnhHf0Enbfq3/mlWFV9zA53u48D0PoVwyIYEeayxUDMRLB5ic6H8ziTEC/zCQMX4kf1y1Frk7uSzIVzsXQTTlavAkFX0+tuymIctT5nqzt0pt9xWTBEzNyIwtlnpblD4quPZ+YCJ5FIJBKJp5ln4ys/T450gZNIJBKJxJuNplpUF036FlUikUgkEom3HOkOTiKRSCQSbzIXbPSX4Bm6wMkFvnZiFXyLhmERRJk3ng+mVC/9ypj9KgjUpnnL1OKTquaFs0sAOJEo/h1lnuujIIx8eT6N/fSi3GnmuTwIgrhPnQ3js9VMlEke3l0eNHzqrIpte7O9Qa5cHoT+XzorMU+4aBA4zZXLgzDWT50W9P55pSNWJD+oOl46DYc3cxttC+Wy7edLZxYXolnfVqFcqjrLnUVTwFyUmVXrvlR2vHjqrE+Jguxp0AtyUHW8YPEqk9j3rIDLJsJ+4UQoTR1duFAJHWC/8nwy+IBF48BMhP2qnzPPCxYf5kJmk3NpoFHg/YljjSZ4mRBFugcW/+Tx2gQvc7BvO3kw8HzCxM+TIou3N/cr4VJfBf1YownepgD78v/P3pvF2pKd932/b9W4p7PPeOfbczclmpFEhRooAYbhwLaSBzkPcUAESeTAgPJgAwkQA4mDwHYcG1Hy4AlxDAu2ESVIoghKAAuGAEOw5YcgHkjFliiy2SZFtsjuO5/57KGmtfKwvlq1T7NpUfHhvZd91w84uHXqq/Wtofbet07Vf/8/jb9zMsRh6Hu/gHdOhyrZEtoKB7qub5/4+CxNL7U/0JfI27ZjuhnTk7ZbwNun/pzNkiy81noB8UEJb6vAeZZk4Tb4TmHC+L5w1jBL1OAMx7a6M+7kEsTFW1p5ubMwL4b4F1RAPDejIOKd50MV+YuLFdvihZud8xXIwVc5v1j69+ScqeZ2bGXpEF954ee2mwXx9laWMtNzdladM7dandoOldRnev5P6hN2rRcnN9Yyy/wLbZQK582p79vuUMmwfr2J4Wl7xLYKgGv6eB7ix/YROyryrVwb1idPhGPrRcQ79joV/r08kzKYMB6393zf7gZLFUHPmQaDx1P7gC187oWs2Naq5qkYztwDzXeNtfFtt6yPG+DEvQ/A1FxjqULluR1qIZ6032CmAuEl58ycjzksp60X405S/5m3kjNmWpW8k5bTZoj3ZoFT9mjEf9adVu8zyfyard0ZY63BWGl19bPq/SAgXnXHTBIvwF7LBeeVX5NRthPMACVJWOO3z9f3KDJ/rqvOGywWyYy1VdPW6j5Z4l9HVXtOoW+VtWtY1f58JGZC3fo1camlVcFz1TzGqKC47fxr0jkbRM1PixfEd/epER9RRSKRSCQS+cjxwtzBiUQikUjk+UWwPD0fnBeBeIETiUQikchzQHxEdbXEC5xIJBKJRJ4xUWR89bwwFziCYyv3grFFk9EsvOjxxtgLzqZpxzj1QsKvXYyYtX5pvresgkh2N7ecNP4Xs3EnMRHYzfuKyoMwthckGyE4+C5aCc7DqbiQZ54RqmubbHAyFvHiXN9W46kgDNWy+yrdi9YBQ8XvULU8ldB200qqj48S4eJD4rkhVE9fdYLRMVm8uBigTGHZyqW2nZNQvbxMYKnWzcLg4lwmEqqMrzqHUdVt54SRzqcXXa87h+i8GjtUdE+NsOr6NZYgQvVO1IPDcb/ejTpPTzIT9q3bYa1rK4xVIJwZgsNxagaHaN92yA2+faXxaZaEeG0dmVZdb+0gHk7MUDE9MxIcontxrUGC229uBC2MzjzLgji56iAN1eyF7UxfYAy5+3PUWGEnHeK922/jJMxrNy2DW27dOXIznMsdrb7c0zgXcnQOdtX51TnCOWjsUB39wMw2clvKpK/uLuzixbGOfkyW1vbO4cIBKiAWFyqIt9aE/wj23S6d/ta4LrTtuW4PQvXvBhsqtxuBayoQbmhD9fHOpeE9ec3eoKYNx/h4Fs7vje4OjTQh3jr/Rs1MynX7kt8vTTimowhV5K+5VzRe09L3bSmMH/+17hUq8V9i6KSl1bmXieGgexXwwt1Wx9Wv7yhJ2bev+bVmRacC505axuJdew94g1qFzS0NVnNPpGA387lbFY53rglVvmdM2NF4w+pSdfFe6L1TvBLablYYn1svLJ4XL4V4X+3bx/c5K+/6Pm11OYYKosvDsL9V8a9IEgTT6+KELlQNX4VK4FvpLarci5Kds7SdX1cjGdP8muZbh8rmnVanT0weBNHr6utEvvt4YS5wIpFIJBJ5nolGf1dLvMCJRCKRSOQ5IF7fXC3xa+KRSCQSiUQ+csQ7OJFIJBKJPGMc8RHVVfPCXOC0TlipcDgzljzxArh/9s+9QO2iTbg28sK7yYYg87fPZoMQM++40ByNFZ5U/rjOwV7u872/8iLVZWc4qrONuE9yf21YqPD0uE5D7v3C8WDtb6gtWjip+37gQF18+/hF6zhvfT/rDl6Z+CQP10aFxrBoE5aq8Xt56ni07oXIwrLzeVZ67EsTeKzx81ZY6viWreOlid9+UjnOGxXX5kM/dybCYaUCa9UF1oWwUGXs3bFwqGagFy2srfbTWD429uM4quCs9sfv5XBR+/m8OVfX19rPGbwQ+KzuNJ5you3OaseOOuee1i1vqTXyce0407HsqiPwSdXxpsZPa8eJjm87g7PGixTf2Mo40/mc1o5tzX1St7w1z0OfPk6In9Ytb2xpvHFhfFu54aTxCV+bFVzomE4qx1bWz9MP5I3ZiHONH1eWmbrzHjU1r09HYf1Oq95B2nBYe2Hk69NxWPtjVS9Ps4QnjY+/Npmw0BfdcdUF1+Un7YpXRt4FdtXZ0HaSCU867yb8SrkFQNVZjiq/TqMkC/FXiznLrtO5NIz1ffTInfJyL9bsOg4rvw6jtOCJutS+lPh4bS1Hug6jtOCRuuW+ZA6obBfWYZR64fMTOeKu9G7CHUdNpW39mj40j7nr/Hu8wXLU+nUomzGPzCMAbrubQWR81C0pG78Oj8wDbtrbAHQqmD20C8rGC6MfJfe50d0CvMj3iHPNvc3jxLsJX+/uBpHuoZxStrs6bh/fdz4/wLGckjd6PuTr7Lk7Q8z4dSjalCfiBa/b3MLoTfhjc6TxjGP5BgBbKs718ScUXa79fIOprpkh4UTXoegKTjvvJjwx3mFYMJzinZMLyuB0PEq2MeLfQ+c8JlMX5/PmHkXiXydGMhb2CQC5ugRf1A/JdDsxBYvuEIA0LVmsvNtwZkYkmm/VHnKW+e1l/QRj0nAMwKo5IpFUt4+DsDgxOWt1qjaSUTfqjCwGY/w61O05K23bqLuxP37Y1+d7Krj4NfGrJj6iikQikUgk8pHjhbmDE4lEIpHI80z0wblanuodHBEpReSfisivi8gXROS/1v2visg/EZGviMj/ISK57i/0969o/JWNXH9K978jIn/oac4jEolEIpGrpNfgXMVPxPO0H1FVwO93zn0/8APAT4jIjwL/HfCXnHNvAMfAH9Pj/xhwrPv/kh6HiHwc+Azwe4CfAP5HEUmIRCKRSCQS4Sk/onLOOaBXc2X644DfD/x7uv/ngD8L/HXgD+s2wC8C/4OIiO7/eedcBXxNRL4C/DDwj75V350TvnLunTx/8ge+xurcC+RMouLV965xf+kdWX/s5fu8f+idOa/Pz3n73DtsVp3ww7t++KdNxn7hBY1bF3m4tfj9217EuOwStjMvptzKsjCO37NVs1aR707ehpjg+PhWE/rZzlttm9K7I3zPzMdra5hnXvS4naeIOvF+bNYGt95Z1rGdD9evb0798Y2DaepHO89751x4c6ZxK0wSH98pBlfX16eWTnOPE8tO4a8njcBrU99/cCk2jt3C9y0Cr04G19uxrvdeaULuV6cuFJkrE8eOtu3dhl+ZDLduy8SxWyYad7zi9aBY52MA++Uw7lemw180pen7TkLulyZhiSgT2CvUbViEO+PBJblfyoMyC+Xw7kzkUlvfd0Zi+rgJjtOFcewV/lyn4mM9vWvwfuHFlImB2xoXINP4QV6Ecd+emODuXCRwkJdh3DcnvZs22p9wkI/CvpvjJPSTqrPufjoKzsg3i2F9EoGD1C9S7w69nadhjonAfjIJ+W7kWdjfH3NN5sHBd3s0OAEnAvtsXc5dZBt9C/vshO1rZaHHDk7ie3aHRBscZAWpBvq5HNh9UnUHnqdZiCci7Nm9sD3PSm0nGF3XXXuNTP9u2k76vk34q3DH7pPpR+gkychkcDnf7ryIN8UwEb/2hRn+Bptz4PO5jKn4vouNv9FmXCPDr+XYjSjYjPm2ucsZO/+ZVfqb3jgcE7OvuQvG1p+bgjw4D49kh8wVmntGodsWy9hs+3GL31e6KSPto6NllAzxQmZ6zIROHZWLZCu0zWVKgW/biP+szJNJECcXZkqGX5vWrcn1dWQkCyLizOwF5+M0GW2IiHV8ZpvGrnRfHuJGMjIVorfdKgiLRQyiZzBLJ9QqkO+Fxf0xPl9J0y55msSbL1fLUxcZi0giIv8ceAT8CvBbwIlzri8W8B7Qf7XgNvANAI2fAnub+z+kzWZfPy0inxORz120i+/EdCKRSCQSuRLiI6qr5alf4DjnOufcDwB38Hddvuc72NfPOuc+5Zz71DSd/M4NIpFIJBKJfCR4Zl8Td86dAL8KfBrYFgn3CO8A7+v2+8BdAI3PgcPN/R/SJhKJRCKR7yoc4JAr+Yl4nqoGR0QOgMY5dyIiI+AP4IXDvwr8O8DPAz8F/B1t8kv6+z/S+D9wzjkR+SXgfxORvwjcAt4E/um/rO9MHG9u+cdU73z1gO/9mDe30kfr7D1Zs1bzvF/7xg1KNQKcVxlz1awYga8t/LNh54RZ6p+qzTNHowZ299f+WW9jhdJoFd7UG9QBPK6yUB26SBxbWV9FGR5Vvn9fjbs3cXOhKvNjNf9zDnLVFcxSF7Qxj+vhOX1hHFM9u87B43q4lu21KDOVBlngcbURV03DNB1udz6uBu1BXkqoYA6OJ5WE9enzj9O+YrTj8Ua818mMEqF/4nxYD1qVshQmWZ/Z86SSoKnwucNQOaz66ulwY6S5L8UJmo9eJ7MZP6qHcd9ICJXMwRsMgteK3PCnnSKRcPxxpXEz5O7XDuCkdmHNro8G8zkROFaTvsTAjfLD24L/C+S69p1fig9V0G+kUCRD7t6AUPqq16OhsriIBOPDROD6qF8bEz4Wz+qhyv31kQkVrnvOGhvW9IPxMzVpTIyPAUH3At6gsO/p+thc0qUMce17nARdihG4aDrNLVwf+f25JKHC+qLthnHpiyT7lvEs6GeMCBetfy+nYrg+0qrgVRrGsuh8POmEGyPV49RZWONF15CoduNGWZA1vbbOsFANSd2l3ChUW1L7zwmDcOG8bm/tDLdyLyrLmxxxPt9SVlTOj/V2NiPripB7KV4j0mjV8FvpNpktwnoujf/Mq13FbfHanEeMMarpWcp5qFp+x13nseqB+vhaLmjx479t73Bo+r4TKueNDTtpuN29DMCJvE//fY/aXdCq9uaWfR2AC/MoVO2u7AWdVlq/Lq+zMN70z7o26Go613CQvOHHkhxjrVZ317h1DXv5G7q+CzqrVdBthVPzxt3y9SGfrbEbFcfnWsH82H4NqxXK+zh2zbS8CcBRc4+nQXy8dLU8bR+cm8DP6TeeDPALzrm/KyJfBH5eRP488M+Av6XH/y3gf1ER8RH+m1M4574gIr8AfBFogT/u+ldzJBKJRCKRF56n/S2q3wA++SH7v4rX43xw/xr4I98i118A/sJVjzESiUQikWdBvINztUQn40gkEolEnjGO+DXxqybWoopEIpFIJPKR44W5gyMC715406mPbZ2zPPYiv/GOF5Y9WI6orIoiZRBZApy2fr+v7O2lPrmxGBV5nreCVaHvrdLHjRlEoMsOLlofvzvuMCo4zsSxUuXQqhNuj7z4rraQig3713pMH19bCeZvy05Y2z7esdZK4JlxrHS7tnBr1Av7NtrqmKpuiNdWSIMocxBH3yhtMBH041ZxtBWul4NQ2q+fr0QO3vxvXzWPnRvM51bdIJ4+KB2dziERx0KrlveV1g8KF0wEE4GFVvnuLOxqpXWn/fbj7rQs704+/FXUn49FQ+hvr5RwWzgRy7IdxtpXJ3eAoW/rcLoO83x4kYTc7WCIuFMMuY0MVdI7K2wXQ9teBHuhE3YYtrIhbsK8LFaFp1v5IHYWBgGub3v57xbBDXHnK5t/kPO2xaqwdLbRXjQGYPXjYpaZS9/TOG/1hJAxTgdRcIh3TdiepMnl91ZXae58iG9kP+3FpJRM0sGYsq+6fOpWuM4LYydJFnKHOBdgvXB3bNKw1s45zkS9seyEsVFRsAyvl3M5B+fN7MYymHX25/TMnIHd0nhxKX6q1b3ndpcJZYj1r8tTFdTO7R4jN4iGh/gT5taLgks3Cu0b6zjjMQBT2QsmfD21tZzhv0AxZY+RG+wxKpUpnvIgVAsv3fRS/KLzbUfGGyyWDPEVNRed73uU7ASTPoCF+PO0aB9Tpt4MMJPxRtyv9UX1iDL1Jqqp2RBDyznLxlceL9JZMAMEWGpF+WV9SKZmgKka9wEsrY+v60PSxPe5ady37A6pmhPAm/dtVghftv48Ne0pxgznoaevSP5UiB42V84Lc4ETiUQikcjzjIsPqa6U+IgqEolEIpHIR454BycSiUQikWdMX008cnXEC5xIJBKJRJ4D4vXN1fLCXOA0VtjOvFhye7ymqvzUt/e8AHLdJUzUmXjdJeFK2jlhpcLTrczxWN2Gb5UtmToVrzvYVkfi91c+fq20Ib5she3cx7+xTDgoeidZF4S+27nj/ZV/YriXDyLndefYVr3d/XVfhfxyfEvj91aGXe1HcKxVxbudw4ONtj2VxrdyCfHd3AVX4doODr0P1yYIeo14YTJAnhGcivvciTgqFfEWiXCojr+7hQti3LojVOg+rLwYuM/di5V7GeFR7efQ5+7Fx2UiwW14Jx+Evq0Fqwt0WsOOjrvX7TYb8zqpHdt5L8z2Ik7wzr+94+92LqSmzz1UPu/jO7mQSS+6dsGR+KwehMi5cUFA6hDOVXe7nft+YRCgWgfnfd/FUMm8sw6X9ALxIXeRfOu2AIUBq+fU4li0fTV5E5ylO+eCMHfROOZa0b1IHLYft+v7tmzliZ4DFyq9t86xUvX2dm4uOTP3uatus+03x9edZSvz783RRtw6x7rzL7qtLL3kRt33v7bd0Fbj4gwdvcC+Y5ZlGh9yt9ggwJ2Z7FK/HX5/reLuWZIHl24qaDVeuZYtFamOUyGpfT+ddFTOn+ypFMHNOmlTzd9Sq7h7KqMhXme0oq69NExVTDxJE5JWc7tmqOLdx7N0iEtLjX+DTNyESeL7TG1Bp2PqaBirkHpqcozLwn6AVpogRJ5KSUoR+u6rhmduzNT1FeULOte7QtsgRJ5a30eWlINTMEXIMbXzUCG8tTV54seRmoJxX1He5FjXC9bz0N/Y9PEht5E0iJhHyQ5nfbV112J6t2aTUiR+XEtTBIflzcrjfYXzp1tT/OkgIj8B/BUgAf6mc+5nPhD/vcBfBr4P+Ixz7hc3Yh3wef316865n3w6o/7d8cJc4EQikUgk8jzztB5RaTWBv4Yvl/Qe8FkR+SXn3Bc3Dvs68EeBP/khKVZaNPu5Jl7gRCKRSCTyHOCe0gUOvnLAV7SKACLy88Afxpc/0rG4dzVmPyzBdwPxW1SRSCQSiXy02BeRz238/PQH4reBb2z8/p7u+3YpNe8/FpF/+195tN8h4h2cSCQSiUSeMY5BT3YFPHHOferq0n0TLzvn3heR14B/ICKfd8791newv/9fiHuK98SeJR+fXXc/94P/PgC74xVt54V949KL8C7WOWeVF6Wt2wSnQtJlm3B/7QVv86wLLrWZcRzVPse6k+Bw3Nhe+DnEl51wkGvcCYUKVo9qQ6XHHxRdcA3OjeOkSTQf7Ob2cm7jOGnUXdnBTubjrRNyzX3SmOAUvJW6INwtN9r28Xm2Kdwd4tbBJO1FqEIZcku4lTpKhzxjFaye1BLeqGUyPFcuE8eZuhRbNwh9nY4L4LSR8E2CXlzr3CAaPVFRsT8Hw/Y48ePq6QXHAJPQdui7d3MGGGv8tJYN12M22l8e96aDMMA0dZw2veuxQzRiBEa6JhftsE7CkGOSEgTH3cZbMdmIX6gms7HDLVcRmKjYddEO56/v149LtO/L8SG3sGgHQflmfKbC9UUDtR0EzACJkRBftoNY/YO5lypEX7dDPDUwVbX3qnXB8bp/PaVGmPXxzrFUQbRzPgbeSbkX0C9aG8TPvq1foT5+rg7OAJkxQ7x1waEZIFN322mWUFvf51nzreJO43V4nReSMM38C7ruHCdt9U1tZ2kWROzH3Xojrg7SSUar8UO7CPGCjKkKX1tnOeJ8aKui4JkKZzscT9T5FyBD40zoVET72DwZcruSiTolWxxPzEM2SSmCQNiJ5ZG8tzEuL2zuRcoAj+Td4AScUjBmfinfoX/q4eNSUspW+P24/e1h3GakazPGaL6T+utD22QUjhMVaZ9Vw9hSUwTRsojhonoQYomupZEsuBqvqschbkI8DfHl+qu/9h2+YOB6cdt95sZ/fCW5/urX/8y/dLwi8mngzzrn/pD+/qcAnHP/7Ycc+z8Bf3dTZPy7iT9L4iOqSCQSiUReLD4LvCkir4pIDnwG+KVvp6GI7Ij4r7+JyD7w42xod54n4gVOJBKJRCLPGufvVF7Fz+/YlXMt8CeAvwe8DfyCc+4LIvLnROQnAUTkh0TkPeCPAH9DRL6gzb8X+JyI/Drwq8DPfODbV88NUYMTiUQikcgz5oo1OL9zf879MvDLH9j3pze2Pwvc+ZB2/w/wr33HB3gFvDB3cGprOKlzTuqc+XzF9taS7a0lu3f8jwEO1wWHa//c9tp4ybXxkh+885B51jHPOn57mXHRGi5aw27e8OPXD/nx64fs5pZ3FynvLlIqK1RWmKUtP7p/zI/uH7OdWb66SPjqIqGxwiTtmKQdP3ZwyjyzzDPL1xYp1vmq5NPU8uP7J/z4/gmz1PHuIuHdRYLDvwnGqeXH9k/5sf3TS3GAcWIZJ5ZP750xShyjxPH1pX+KbfCakE/vnfPpvXPGiWOcOH57YRDxuo7SOD69d8Gn9y4oE3hvKby3FAyOMrGUiQ0xH/e6i0S8dig3jh/ZW5Ibr6F5f+mrfKea+0d2l/zI7pIigXtL/+Pb+p8f3l2RiTflu7/yP4nxuqPCOH54dx36e7C63PcP7az5oZ01iTgerIZ4Jo5MHJ/aqfjUTkVq4OHK/2z2/YM7FYLXyDxae1PCRByZgR/cqflBrTz/ZG15srakhvDzyZ2GT+54Mc3jteXx2tsBFon/+b75oOd4snYkIiQiZALfv93x/dtd+OvrcO2NHI14ndEn5h2fmHdYN+ROxOuIMuP4PXNL57yG50hj3yp+XHWXcn987vj43NFZx3HV+TiQipCK8LG51+80Fk7rjtP6cvytLW9u2FjHUTXMMU/grS3/01rHad1yWvt4ZvzPazOhtY7WOs6aNmheNuN156g7x2kzVCRPDbw6E16dCXVnOW0bTrWieWqE1AgvTxNenia01nHeNaGieYjPEmrbUduO867G4rD4c31nknBnklC5jnO75tyuN+JyKX7h1ly4dYhlRrg1SaloqGi4kCUW/x9Xbgw3xxk3xxkVNRU1F7LAOYdzjswYro8yro8yKqlYmgVLs6CjIzeG3BiulQWVVFRSsZDFxrgMmTEc5AWVrKlkzWojXkjCQT7iIB9Ry4q1XLCWCzppySUjl4z9ZELF8tJPR0NBTkHOvmzRsKJhRUtFI/4ndwU7bs6Om9O6Na2raF2FpaFwJYUr2bG77NhdWlvRuVZ/GjJXkLmCud2nsxWdrXDO0tqK1lbkMmbKPlP2g4EgEI5NpWRsdhibnQ0DQWhtRaI6nFGyg7Ut1ra+Yrut6WxNanLKdJsy3cZhETGIGKytsbb2RoDpjCIdNEbfaZ7WHZwXhRfmAicSiUQikciLQ3xEFYlEIpHIc8B3raPec0q8wIlEIpFI5BnjcLwoti1Pi/iIKhKJRCKRyEeOF+YOjkAw6fv1r9/gB172xk+9fmzVpMxzL0R8b1myW3qjrtPzEY+18vitsuWw7g34hFXjTbQeVgl3x95Q7KhWAz5rWGnF4MeV4e64Nw8zYRyLJuWw8sffHnWct1rR28GF5j6uhVsj3/ZCK4/v5rDQisFHG/HzVkLl8WWbBnO6G6XlvK9anjlWnR9Xb053Y+Qkw9cJAAAgAElEQVS40O2dDC6aVMcK17x/2KXcizblVDWf10t/HMBcX00XbRLGeq104ditzLcFOG+Ea2VvmCZspfab2u4XLhy7pYaDyy5h1fn4XjEY8M0zx0LNGxct7Gkl7fPGV4H3bdW0q3XsFoMJ3lzjqy6hskOF8N4Eb57BUs9N1blQxbuv2r21EV93Q5XvZeuYaxX0ZWdCBfbtjdyz1BtBAqEC+1YuLDbWbKXjbi1sqfvhoh3M+JadBJPAaW5YqdayN8xbdoZO5zVJDSvte5oK624wKNw0ydtSs8J1J6Ga+DhNNuKE+fYGgJM0CXPsnI/1lMmwfp0aVm6aC/bx2loaq4Z5VoJpYZkMBnutJYzbC+MT3e+CUV6fWwQy178nLa01IZ6oiVvGUI29ti4YbqYITj8iQ7xz1Np3IobU9aaZlrob+s60nXUOq6aT684yCrn9mDu6UOm97iyNrkPmMtzGA4u19YtZWkPm1PRPWqweE+IuIdNK22sGs8Clbchtn7tgLRdDbufF84VLyNQwsHLeTNCQsJSVxlMy8QZ7tbsYTPDMgtz6+WYyZm3P/PEyZSnnusZaHVwKqs7H82TEmgttV5CquV/VnVOm2zqvUxLTVxbPqTs/pz5e2QsS4/tOTEHd+v6KbE7TXeh5SoO5X9styVJfHb3pVhjxuY3kdGqumJiJHrsO8afF0yq2+aLwwlzgRCKRSCTyPBOvb66W+IgqEolEIpHIR454BycSiUQikWeMIz6iumriBU4kEolEIs8aFy9wrpoX6gLn5ngJwElV8OTQC82WCy+wmxY1RebVmYlYahV2pknHjdIrPkeJpdDq0I01NCrau1G0zDIv8suN0RyOTgWIN8qOWerj09SQSV+h23Cj9CLBWdYx16rghXG02vZaaUPb7ayvNm6puj73EN91Qpn4HLU1XCv89lZmaUO1cBtEq9f7vlNLp8LYMrHUOq9rhQu5u43cq85wvXShbV8suq+cvdn3LLVBVF0mlrXmPigsWzpfX6l8GPeB5p6nfZV0QgX2dWc4KHpxrw3i2tw4qq4XJ/vK70PuoS3AQUkQNXeOUIG9ssKeioK3c3upwvpaxaH75SBaDvMyLlSF3yu8kLuP97lbJ0HYvJ25sGZlstlW47nbmBdhHDuFsJ1rbuvdggFaK+zkg9h6Mzf49jshN5fWrK8yP8+FbZ37pXFb2A5tJewrNnJvq/B5ng9i5yIZhLlbuQnCa4cjFQlrv7XR1scJcS+qTr4pd26G/whmWcJcczg3VJgP8TRlXgzxdCM+S/3H37xILlUkD6LpJGO70EVWEhm8SqYmY56PQizdeODfV/++lY2HtptxX6uQO9ngkiuyGR8xT4ZK3IkZRNVjrf5902xjErnU1gBj60WyN2UfI31le8GocHzsptx0N/R4QXeTiITK4DfsLZ8XE9oZgRL/uXmNO0g3TChR0XQhU/aMd/c3biPu/FoXZspOelf7HtY2dSmZ8Ws1S26QqLjXYcmcX6ssmTLNbmh/KuLGkqowOktKRtmuziXFafX0VMpQfXyU74Tq444uVBxPTE6u4mORYVyJvFD/RX7kiGcvEolEIpHnABdlxldKvMCJRCKRSOQZEzU4V0/8FlUkEolEIpGPHPEOTiQSiUQizwGxUsPV8kJd4Hz5zAvo7oxX7O16l0ujYkmzsFycepFZ5wxbmRcfn64LUhXhnTYpiQqEd4uKdevFaJlxnNQqotN887xh2cfFcajxSWKZFV7MvGyTkO9JlTJV4ete3gbH3+QDbQH2i44LzW0gOC1PUsu2CneXnQkusI+qhGnSO/S2LLvLwskndcJY49uZDY6/QHBuHiWO7bwXGSfhVuqTOgki3p3Mi7EvWhOEmId1EsSu27lloeO2SMhdGhfGvWiTICZ9oq7QZeKCaHjZmSCifVwZSp3KPGuDm3DnCA7RZQLb2vai7R1t4bDuBdtDfNGZILp9XEnIvZ1ZFt1G28q3Ve0q2yPLIuSWjdwuCI4vOgli4SeVhNfJduZC7t6p97CSIJbdHnUhd20dR9p3Zgjn46IVKl20IweZ6UXB/fmS4Cp8XHuhrM/tWLS9YzEce/NuEuPYVu3sRTs4Eh9VKsQVgiB51XlnYz/AQey6nRMcp9edBf92QgRuj9VZuhWW7Td/ot/xGlmN968ksxE3od2qtQiDOvf2ZHBjBlh2HaJ9Owd3poPj9KLtwpj6/1juTBPW6gS97FoSdcrunaDvTNOwHhe2QZoh962JF8bWnePC+k6lHcTWdyZFcDu+cH6xpRE61V3cHZfhPJ6zwOj6Na7j7sgLcBvruBDvuGs6ocMP5nbhP7ta67gw6kJshQY/wDvJThjHuRxjVCDf0HBb9v0cneNcjnxbdSmuZM1td9PnxrHkWOMJlfFf2rjV3Q3jWNjDcKoallxzr/jc4hd10R3Sa4trt2JPXgbAimXd+twu6Wg7vz7b6V2s5l41R9i00fPh47PsFtb5+Lo5JU9aXYeKcX5AT+9wbF1Dp+emTOfDWLsLOpvrufQ5snRKmuY8TWzU4Fwp8RFVJBKJRCKRjxwv1B2cSCQSiUSeV+IjqqslXuBEIpFIJPKMcbBRXjVyFcRHVJFIJBKJRD5yvDB3cCprghvuS3unlFsq9D32IrIvP94LzrTTrGFSeiHaWZVzb+3Fg6VxbKnbcWNNEALfW2dBqCoqEqu6wen43jplXwWfRgguxBa4t/aKu+vFcO3eOwkD3F8lwe24Z9WZcGX63spwa/Thbd9f+e2bG+2rjfg9jd8a2SAa7l11Ae6vTWjrPpB7s23P+tK4te+N3OsN8fKDlXBj5MI6rDfW5MEKze3/7ZyEvp0THq79/uvlcEu36iSIjx+u4Lq2bd2Qu7/7+2AFN0LuYdydEx5p39dH3i24XxP7LXL38+p1to/WjmulbOSWjdw+4bWRCa+12g4OvY9WTvuW4Dy97iQInx+tLNdHvRWvhHPVWni8HnIb50JuvzbwRJWx10ZJ+LNmbYfcT9Yd18pBfF7Zfo7Ck1WjbfXjwkC9Mb4n6yGemn5eg9D3ybrh2si/h1Ijw7is47Dy7zMj/n2YGQmO1FXnOKw1ThFyVx2sVAh81FQk6mTrc/fiYx8/bJcYJiF3rQLhReM4tF6sm7TTIMyuOljoiT3iHNNuAYNDed3BQtXix5yRdt5tOJOEVvtetJZD48W6id0no2/ruGj8AI5D/IBMnXMbO8RP5YjE6hcXyGg091nTcmIe+fnahMz5de37Pm0bzuSxj0tKho93znGqwt0Lc0iqTsq5y2nV8ffUrVjIEz8uk2l8RKfxEzn3ImFAkoQcL3y2OE7MCQDr9ji4EKcUWL0ncWq8gLhqzoe4jgHghIdUKgQWEjIzOESfuHt+fboFouLnzfh598CvQbcM8cQU9J+S5/U9OrsOxyfqMm1MyqJ+6Odgq/C+6F+LRlKW9SFPExefUV0pL8wFTiQSiUQizy2xFtWV81QfUYnIXRH5VRH5ooh8QUT+E92/KyK/IiJf1n93dL+IyF8Vka+IyG+IyA9u5PopPf7LIvJTT3MekUgkEolEnm+etganBf4z59zHgR8F/riIfBz4L4C/75x7E/j7+jvAvwm8qT8/Dfx18BdEwJ8BfgT4YeDP9BdFkUgkEol8t+FFxu5KfiKep/qIyjl3H7iv2+ci8jZwG/jDwO/Tw34O+IfAf677/2fnH0z+YxHZFpGbeuyvOOeOAETkV4CfAP73f0nvbKkRXdMmfOXL3txqVlbhiF4/M8ka3j/xpoCdG2zEzlsJepijOg9XhwbHsZrW7U/9w//TJg1GewBHjT/6jbzlXM3uepO/Pv7apNZ+0m+KAbw89uM/b5JgFGcETjR+d9Rw2qh5XmLDuE8aw52RH9dJnTJOBz1QH79darwZDAcFx4kand0qLUc6x1lqQ+Xks0a4Oep0TXx8K+2CmdxJLUGnc1QnoWK6EThTk7QbpQumf9uZJVG3uFMViNwoHU9CfMh91gzn43GdsKu5EwPnOu7rpQ2Ggbuqg8ouxR2P1RRwL7dBi3HWwDUv7eBJZdjJ+2rT3vwOhvjjStjXCueZwIWO+1oJD9c+30HhQu5F69hX+cGjyrCn48p1YheNY19zP1wP1dVzI1zomu2XXscEcFA6iqTPPVQlf7T27faLQUOyaBx7ZR8njKNMJGhP9krh4arvx1FqGeyFCoP2ChN0Ugeb8caxq7kfrOCg7KvIm6Bb2S0THqz6cQll4s/rSnOXRcJD1Srtl4bS+Piy69jV6t8PV5b9PrdJg2HfTpHyYGl1XH5MY8lZdv6E7SY5D1ad5k4YqwZkaVu2k1xzd+xpBfGxG7F0jfZT6rwaDko11lyPWKqD4bYZ8UC1SntFxrTynx9LKuYy0rYVe4XvZ9pqXFbMtUL3g3XFXu7j43rGWvwiFy7jQeW397OSSbft11sWbDmvAbrfeOPS/WTCyG1p7nNmzv/dd9+esCszXZMdVpwBkLLLQ/8xyq5sM9K/Eyvn9TAJKQ+M16ns2T1KrXBeuYugpXmU3GfH+s/TItmisn4sYgyH8j4AW+5A4zPqPp4Yjt03AJjJNYrUj6+xq6ClOe3uMTF7AGTJhLbz69Dray7aB5SJH3OajGm7QWuzaLyeqEhnJHr+rJr8Aazq49BnbUZYNV/sVYV1e0aaDNXgnwZRgnO1PLNvUYnIK8AngX8CXNeLH4AHwHXdvg18Y6PZe7rvW+3/YB8/LSKfE5HPXXTLKx1/JBKJRCKR55dnIjIWkSnwfwL/qXPuTGS41eGccyJyJdexzrmfBX4W4KXRrXhtHIlEIpHnEhcfL105T/0Ojohk+Iub/9U593/p7of66An995Hufx+4u9H8ju77VvsjkUgkEvmuxLmr+Yl4nva3qAT4W8Dbzrm/uBH6JaD/JtRPAX9nY/9/qN+m+lHgVB9l/T3gD4rIjoqL/6Dui0QikUgkEnnqj6h+HPgPgM+LyD/Xff8l8DPAL4jIHwN+G/h3NfbLwL8FfAVYAv8RgHPuSET+G+Czetyf6wXH34re5A/g1x4cBEHxHTV52yvXnFRe4Hd/MeaLZ14Y+NqkptQq3oURvrFSMeLa8OrECxZHiQtmbb0p4OPK8PLYx8cfiD/WitCvjDsmqQ+0Vri36tsKL499n5PU0agp3P21P11PKsNLITfBrO3BOg2C2bvjjrGe3cb6mG8r3B2LjhvtGx5oRfLDjfg4JVTAflAlHKoe+85YQgXx1sEDNSvs43fHQwXxzsGDtR/TcQ23R0N18n5NHq4Nx6r9u73R1qlM+lE1VLquxwmlCmqt8yJdgJPa0agJXrGh7n5cGU7q3vjOx/NLcQnxxhryjULrfdXw09oFU70NLzweq57xrNnInbgg3j6s4Wwjdz+vfi0AzmobjB9zMwjHN+N16FtCte6T2oXcrZMwJxHCfC705NWdoUx93AAnmvviUt8Sxn1WO861bWWTIH4exN0uiIZrm1CoyNjIMN9l21Fr1foiMRu5bRAF110aBMq9sPy8sUFwXNskiJATIYxp1XbUnX+9liYh6cXbjQ2C4tb25pxpyL1oO5Z2iI8kDX2vdExL21B3/j1eSkqqYtc+79I1tMtC4zmJvkbXtmOpItVmVTIi19yGWqtdL1jTqINi6dScEEOtFb9XUtFUXtQ6ZkyiZbcrmiA4bpqWsRoXGkyo0n2mFcbbrmOsYuKUJFQTv5AFrY6jdBNS5+deS83aeNFv61rGeBGx6N++LRULFSRb01HKlubOqNxSx3dBZ1SM7eZBINxSsbLe4C/Ek3nI3bgla3sW4rmZ6jFZECI33QUXOu4inSE6vtb69ajbBU6NCHvBsG+3CoJk5zoyFQtLOqPp/Fp1ds1aX2tJUpKqcWFvCthtCJKfFvER1dXytL9F9X8D8i3C/8aHHO+AP/4tcv1t4G9f3egikUgkEnk2OMDG50tXSqxFFYlEIpFI5CNHLNUQiUQikchzgIuPqK6UeIETiUQikchzgP2dD4n8LnhhLnAWneHB2osD153hoPCitzzxArYvnW6FYxsr3B33oriOw0UeYv0zveulDdWkL1oTto0KGndzR6Pi0GU3VIdODMEVt3HCSisnN5YgJt7NXXihL9qhSnajYsq+vc89FGhrrLCrsUS8q+0wJ//vbuHITF/1eJBD9ULlvcKRqg3ReTOIQxs7uO+WxvGgHYSlfWXp3nG3TFyoNp5sKK72C8dIhbYP1hLEn9b5fsELsu+rQ6/qYnHArvY9S11w0c0MQai8V/gYwP2Vj4GvCL630Ra8y26Iu8Fxd5Y57m/m1oXdL4V55rcfrgguzkPfwrau+6O1dzPu13S38Adv546H6uCbGQnVoffKoW0fzxMJ1aH3SmFXX35fWrkw7sYSHInnGcHBt0iEquvb+oN3Cnh04uOpGXLvloZddT1+Z9UFMXHdOXZVTb1XCF/S0tyhora17Kub704hvKPxzAiV7Z2EU3b63CftUK3bWg7KbGh70oVxhdzq9rtbCF86XWtuQ2N7J+WcHV3Xd84qMtuLVm1wAt5RN+J3ztZkshkvQ/xL596tt5CUyvk57Kej0PZLiwWFVuuuVKy7n0zYKfzc316ek+tHaE3LgfEi13me8k7lXXQzl9GItmWL7dzne0erWGdkQQi8yzY7mR//O909Mue3G6nZs7sAbKcFX7Lv+nEzosK/YPesdwreMWPekd/Svgsa8cLn3e4a2+JFtF+WL5NRaO6KbXvN53YzvmK+4M+HVmhv3Zo5NwDYslt8TT6v8YJWRdUzucbMejfhr7vfCFXCW1cxVhfiGf7f97vPX44nfv9I5jxu3gF8NXHbO0in25TihcWH9W8FB+NOz1eZbVMa/9l9XL0bBMydrYPoOEsmnFf3NLfBqtA8S6ehKvmy9hXYAazmTpNxqDxeN3zkEJGfAP4KkAB/0zn3Mx+I/17gLwPfB3zGOfeLG7GfAv4r/fXPO+d+7umM+nfHC3OBE4lEIpHI80pfi+ppICIJ8NeAP4CvBPBZEfkl59wXNw77OvBHgT/5gbZ9LchP4Yf9a9r2+GmM/XdDFBlHIpFIJPLMcTh3NT/fBj8MfMU591XnXA38PL724zAa5951zv0G3/zk7A+htSD1oqavBfncEe/gRCKRSCTyHHCFd3D2ReRzG7//rJYu6vmweo4/8m3m/rZqQT4PxAucSCQSiUQ+Wjxxzn3qWQ/iWfPCXOCME8srU++8uW4TyrS7FP+xO/d5cOJFaUXacX/hBXlbecMrYy86XLQJ43S4WzdJhhydCoRL4+Pj1FKY3g22CNflpXHMMt8uN5aluqaOEoI78FZmybXteZtjtHWuDxRnaUehYt2TxoTnjGXimKjrcpnYDZfYwSV3mrjgzLwZ752eR8kgBC4TF0TChSHsz4wL/WcyiG7HG/t6195EQDWbjBJHIv1cTNguDIz0lSgMTsR93lQIrszWDU7EibAx1uE+apmAqJ/kJB/mZnVfkQzi55FIEFV3bnAqNgKj4ODrggg7T9hYb8I4ehF3bgjC7NIM/dSWIOI1QKlKZEGobT+HQZE9Tvs4qPktRQJ9YdpNR+XayqW2s+zyk+d1J6FvgIn27RysVZBcJCZ8RXWSmVDPZtW54FTc7xunCZ3+smqHeTkHkzQJa7ls+zUz4bb5JE2C4H7ZDsLl/i/XSZqG3MtOKEwS4uMk1dyOlSrvC0lC27FJg4B6oScslyTMa2yyIFReNEIhfT7LWLz4t3E2iO8LMlp9VY1VGOvjKugmp8O/lyeUVL1jcSsUKhBu6Rg7L2St6VioOD93vci3odR4Q8dF22rukka8k+7IjYLIedElFNIfXzN2s5AH4MLW5CqcbakonXc9rqXiwvm13BQfl25KJV7IfUFySVzs13dG7byQeSnpJYFwpqLlRiqWeOfhlCIcX5gpLb6ftTotp1LQqAtxnkyCULlmidFzUHcLisTPq7UVjfGf24mk1OpCnCd+XtY1oT/B0KoLcZZMghDZuGpDfLwmVVdja9vgBA2GzvrcifG5nbPBJflp8DQ1OPyr1XN8H/h9H2j7D69kVFdM1OBEIpFIJPIc4OuJ/6v/fBt8FnhTRF4VkRz4DL7247fDd00tyHiBE4lEIpHIC4RzrgX+BP7C5G3gF5xzXxCRPyciPwkgIj8kIu8BfwT4GyLyBW17BPS1ID/Lt1EL8lnxwjyiikQikUjk+cU91WKbzrlfxhe03tz3pze2P4t//PRhbb8rakHGC5xIJBKJRJ4xT1mD80LwwlzgpMYxy71o73tfO+HwoReS3XjTi+O6FTSNurMeLMnve8GgkaHdN86nvDo/A+DxckyrTsXft73ivaUXrr2u8YeLSRAef//OOe8vvfDvza1zHui2dcL3zb2w7d6q5GNb3ln1wWoUxv2JrSUP116w+NaWH+v9S/FViH9s64J7GjPAJ7a84O5RlfHWbKFtyyCC/fiWF/g9rjI+NhvG0Yt/P77V8aTya/LWbMm9lRcgJuL4+JZ/zvukSnlrttLcua41fK/Gj+qEN6crzV0EF+XvmVmOGi96fGu65r7OIRX42Ezbfkg8E8fHZoPA+vWpn8ODdRYchN+YOk4ao9s1D9devNj3/cZUOGn8wW9OKx5oPDeOcur3nzXC61N/3h9WachdTuFU274xbUO8FzIXU+FcdYuvTToeV0nInWvui1Z4ddLq2iehbR8/b4TXpv71d1ibIC7PjAQB7CuTjsNKBauJC07BixZemTg9N72o2pGpmHfROl4aOz03g1g5FcNShbsvTQjrkxtHok7AvWj4pQmc1L3Y2ZGoEHjZwl3/NuC0kSA0N5KwVj3+nTGcqStsmQhGP4J6sfPtieG82RRd98JTx83xMIdBZJ0FkfbNsWHR5w6fbEUQHl8fG9R0mTIB1wt9neP6yCdctY5R2oumy+A4fV1V7pvxzo6CIPraKA1zGKWGTj8POue4VuY6R8tYlfPNUoWsOPZLP47aOkYq6G7WU5z2fZCXwSF6nCRU1VzbWg5SFRFrfJIlVPW8nzx7Kpht6Jik6src1fT/j+4xo1Eh7STJqFT0a1XHsdftDkJqKVjhPycQ2LH7fo7SMnV+vuvkghLf/9zuY8XnmXZTv37mlNz47S2uYTX32M1Ym1MAMjNiaq7p+jVM8C7JlbkgMYWuw15Yg1K8k3GTXJBqvEy3wxxKs0Xd9gLinCLd0rZdGEvTLTDGjztLepFxR67ru6reJfLdxwtzgROJRCKRyPOM/fYEwpFvk3iBE4lEIpHIM8fhJF7gXCXxW1SRSCQSiUQ+crwwd3DypGNSek1FUjis6mPSHa2KnVvmS28oNX4FikOtVls0GNUSpMayt+uf5To3GKft7iyYn3u9y3hch/39MbtbS/YWq5CvxzrYm/k+r69zitz3aZFg7rczXXG7Uo1IqnEnGNXJbI/W3G7TML7ezA5gp/Rjut2mpGpKuNl2Xvrn7XfbhMT0ZncSNDpbec3dSW8GaOmc3xYcs9zP4+54yNdXNTcCk3SIqzcd1zdyj5KWl5CQ71oxGNuVOtZNF6q++rsBCjUqvLshyDsoJFytZ8ZyZ/TNbXtSgTujzbZD2fV+fHdGg5vEfn7ZFPL2yEecjn8zPkkux3c2Yr0Z363Shra7+fAXW6+1uVV2oe/tbIgnItwo/e/WEaqQAxjNd6O0Qfu1Ge+5VrhQBX07H8z7utRxUOq2g61sOKcqT+HaRnymcbdhvLg/GXLPMhdeD7khVKJvnYS2nRuquveVzxsLk17j4gajxOsjE/Qwk1SC9sUIXBtplfNuMIzsNqa+r/F1N2iO2o34XpGECuyjVIIRYedcqCzeGwuWiVB3LsTnue9w0QzanHXrgqHgdp4FY8BRYlhrnkbP8DzJuWhU45ImrDq/v3Ed88Qv2nnbMkm1n7ajwn/GbMuY085vz5IsHLsW/1kzd1ucqqnezJTh2KVcMNfq38dywUy8zuS0q7hITgDY0urlh+aIbeu1KUecs8TXUxyzw5F5pP3scmj8/qU9DpqYI7nPFr7K+RPjq6evumMK1b0c8Q1mqrU54j7rxvedmhEn1lcCmCR7HDu/vWqOyBL/xj7r3vPjyA44tfc0fhyqfzf1ilHm53De3KNuvTZSJKXp/Gdukc2pWz+upj1F1Giw1XiWTFnW/jP0aRBFxlfPC3OBE4lEIpHI80zU4Fwt8RFVJBKJRCKRjxzxDk4kEolEIs8c9+2WWYh8m8QLnEgkEolEnjEOgm9Q5Gp4YS5wOmvYmnvBXTqHu/+6N81L9rxorbq3ZOuTair2bsXNT3ihmYwM7/8Tf8ytl085e+yVljdvn1Le8Lnf//UJe9e9+Pj4iTe8unnjjPLAv1h/+/Pb7O/5/o6Px9w88IZWk+st7769DcDefMnxqW97Z/+U6XUvCHz3nR12t/xYjs58/O7+KbMDLxD+6pf32FWTvqPzCXd2fO6tgzVf/S1vhrU7XXF4rm13zpjv+XX46rs+vj1ec7jwc7w7P2e+4/v76nt7bI+8yO7JcszdLS/U295e8dV7XsA3LyueqHHhnZmf4872kt+6/83x29MFe2ps+JWHe2ypgeLhuuT2xPe5t7Xgy4+0bR+vSu6MfXx/a8G/eOzjs6zhqPJCzFujFQdaLf7LR9vMMi8sPqoKbuocDrSPLx9vM1HB9kmdc3Pk1/JgvORfnHhB5TTtOK792+N6WXN94sf9L07mjFUEfdJkQ1zH96WTLaZaqf64TrmuAucb4yVfOvXiy3FiOVUTw4Oi4dbYn48vnfoKyqOk40xNJw+Klhs6/i+dTkM1+7PGsKei9FujNW+fTbSt47y9LH6+NVrzRY2XxnHRqcA57bilc3/7fBQMBxetYUvFzXdGFV888+evr0i/6IRtFQrfGdV88bzQOMFIbytz3Bn5uf/mWR4E1KvOseWXjTujmt889b+Eiu9OgsD5zqgN8cw41jruSeq4O4R7g8kAACAASURBVPJz+8JZQqoq9grHRD/R7o79+L+AYaOQeqjSfnds+U0VzWcGKjXtHKdwR40Qf/MkDW17s8BRCm+N5ZviRoaK7m/NwR17sasgoW2ZCi9NVEB95NdMhCAKL1PhjYlWYz8aBcF7Y10Qcr+xldMdzULbRMXWvZHj61sZzfGOjglaVSFkYnhtpsaGpwdhPVJnyNTI8fXZmOr8JptkZCT4MX1PuU9VXTYCBBBn+J7Mt6va1UaFbjC6xm/Jqz6eLLFaGV1IQvx19zG+lPn3QevWiPYpJLzsPgFAna+wrm87qCtum4/7dvmS1vrPDLMRv5Z/L/d0f9utMGb4b2+n9ONq7Rqrx4gM8WnhP+TX1deJfPfxwlzgRCKRSCTyPBNFxldLvMCJRCKRSOSZ4+IFzhUTv0UViUQikUjkI0e8gxOJRCKRyDPGQfwW1RXzQl3gqJaO5fuGTEWI1UMvDp18akb7rhfJOgeP3/aCvGs/UHPrk15g2p7AZK5uoGc55U2/fedTS7pzdRZ2XihXLVImWjH61U+d0p6p82pyQbXywslk3PHaJ717Z3sKqYpCV4sMNezktU8co4VwSTONL/MQf+Pjh7RLL0DMMsty6cWNSQFvvHXoc68NmbZdLHOMijhff03jlZCqMHa5zkkLrbr9yiHN2i9amlqW6qicZJbX72jbOiExfi1XKrpNUsvrN48A6FoTqpOvmjS4Qr9x/ZBGhbaJsazVjTlJLG8c+LZ9dXcRR90lYfv1PV2z1gQH5nWbkKjD8Wvbp7TheKg7davWcby6dU5j+32EbYBXVCjdWQG8oLzbcK1+ebIIvw8iUAmu1a9OF5fyNa6vTC28rCJn7widh9yd7YWvqxDvnY4buxlfh76ty8J254Tbo1r3C9aloa3/13Cr9OJMC1gVTzdOwlhvlm1wHrZOghNwZQ3X1Om5H5PFbMSFa0UX5uhUNNo4Ya25D4rhQ7tzhkZ/XXeGveKyc2vrCE7C686wr3HL4E7cWFjqOd3J/cgAulpC7mXXuzkPuU9qaFWUu+qEeT6c11YrmNcdoWJ7L4YGX12+j1+ohnaaDVLXs8aFqubnjWGiVcNF4KzuczvOtcr9JOtdweFMB71uXaikPkpNeH21TUelDsdntaFM+tzCom11rbohrtXdDcKF9ed9bVvO9LwXkoZxX7iKtWu1bUeu/yX0M1uyYkWlcyzIXB5yL8R/MK3NitPGi9gTyUicX7i1XLDW6uOnnc+RJBmJVoiv3AVr/PvtnEXoM5MxtfX7Ky440yrjxhqMqFBaHZpre8F5ehTOU9o7GXdrbOf7XibHOOfXJzE5nYqJnbOsu9PQthcX92JjJy215ng6uFBdPXI1xEdUkUgkEolEPnK8UHdwIpFIJBJ5XomPqK6WeIETiUQikcgzxuGi0d8VEx9RRSKRSCQS+cghzr0Y5dl/YHff/b///WcAsI8WSC/y21JH0Zf2YKniskdnrD5/EdqWH/OKXrdqcUsV833ZkJV+e/LxDFf5bbv0V+CLr0sQNU/fEuza77crx+KeCvmMY/a6iigri/WGtSweDjfWtl7tsHV/jN938TCnP23zl2ucHzZdBReHfj7WCjt3fELbga28YvHssAiC2O3rXqjnHFgVP54dlViN7+wvw7FdI5ydjMLx27tL3RasCjpPT328s4bdncU3x89HQRi7M1th7SDyPF2Uoe32ZBXahviyjwtzdd/dfOmerkqsimCn6oAMXlh8utY10XyTvAlxEceZuiE7B6W6FIu4IPI8r7MgsM1NF8TKvXj6vMlC7szYS/FzFV47JByfiCVTYfZm2812fXzRpiFugVSPyY1l0Q6vk1bXIhUfA1j0Qmscte1de12IrzTut4VMc5eJDTHBBUFvpoLuUeJYtr3Q1bFoh/hYReTLToLL71ljSLXtOBkciROBk6ZfN3/sJHGsbR93HOrrtkwIuSsrqCExjyuhTPpxDQJl1eHyaP3/tXfmQXZc133+Tne/ffY3gxkMBitBgiS4ipJsVWzJSWxHSlKOU3ZsJVWOnMUqp0qVrVIVJ5XYifOHncpSiVOuJCrL8ZKUl8SWo9iSaHqV5JjRRkkkAC4gRYIkltln3v56ufnj3NfvAaQEiB5ggJnzsV6hX597z136drOn+/fOgZI/kGORw2t4CQUu6zKjHJJHQI4zycd5qaM2gFo0EHS7PHLyxXaWRy8eKwzbLobwWlO/lCNhrODrZmoDeKWhwt5KFDDuB5+6YcTiV5r9XEw8UQxz3+VI+GpTO14OQiYK2vHBuVAMhZfaeu0qScRkpOsvc+T+zvfXKDs9nyYCXfs6DwHPpRe1X07P5XFqub0iEc/Ji9qOqzCVTQ3riop7X5BnKIhGTZ/IZnLhcMlpOy/JU7l9jDqBj1hccmVeyZ4CIJIS1UCjrAcSUvB1L/WfzqMQl0MfrZkg93el8wyBFwqXC1N521FQYr2t/RYJKIQDQXSU+9vuvJqPJQqrvu0o99fsPP8F59zbuYmUoxl3ZPLbd8TXC+v/86b3907AXlEZhmEYxq5jyTZ3GntFZRiGYRjGnsOe4BiGYRjGLuOAzFkcnJ3EbnAMwzAMY9exV1Q7zb4SGX/me98HQPnESIhSr94Lv+sdsOmjWr58BabHAEjPXCJ8cFH3t7pkr2wAENSrxOe1fOEdi9Dygt6L2wDIdIX4vG4XH57DtVQYm15qEU6raK7/cpvSgyqWc40e6Yr6CCYL9C9o+dIDE7htX3e17+0RvQsqlK2crpE1dH+yEhNNq2iveyGlcp8KCbNGTLKifxlE0wGdV/WY1+7T+9t0OyFe1X2FaaH9uhdO3iOkDa3XXxWKM1qm+VrE+F1eVN1ydNe8kHBa57J5ucDEMe1f2oLOmhf+TSc0rujYp4708gjN7Y0i1Wkdw9ZyORdHJy3tR3OzxNiUzsHGapX6Qa0YtwOa2zrGsYkum+sqDqzPt+h3dB4a22XGJ9Tf+oaKC+fmGvS72qetRoXJcRVtrm9XmfXi6H4vZKulQsvJWoeNpvqenWzR8xFhN70wemasw1rD2ydG7J0yMz468Xq7Qt2Lp3txxKYXNk+Xu6x31M+sL9tNIrZG7Btd306lk0eL3u4XmS7puDZ65Xy7m0Zs97XMTEnnbLNfYqrYy+1bI/bNvopDJwoxXS8s3oojZkt9X7fIRMFHw/X27SSi7oXcW3HEmI+C3U1DGomWqRdjtr0IuhKmdL1QuZGEzBaTfLvso08P7M0kYNZHTm7EYS747WWSRxiuF1Navnwo0Pei5HYqzBSyfBs02nTP2zsJ1EsD8XaA1wrTz6DtoxPXS45OOhS3+98O5MLomZKj6/elbhgtups6ZnzU5F423J+4Yfl6aehnEPU4zcjtMyXJ93fToWi5nzmmS4Oo1NDxivLUQc+Hd54uBfm+po+MnGYQ++v7VDHII1Vvxxmp/xK7jKmij+DrYKuvE5ExYi8Mw0Gv9bu5PUbLTgfVfC5X0xap6P6ElCk3DkDof3GxLGskDCJjZ4xnkwAUibgcqsA5Jc6fZIxTz6MnL8vLZG74AwGAcjBJ2em1ejV7iXTEXgrG8jJr/fN+fpLcXgxrlIMJADZ6L5NlQxtAFFYoRdr/1e3P3nTRbimacocm3rMjvr668TETGXOLNTgi8rMisiwiz4zsmxGRJ0TkBf/vtN8vIvJTInJeRL4iIm8bqfMBX/4FEfnArRyDYRiGYdwMHOmOfAzlVouMfw547zX7fgT4Xefc3cDv+u8A7wPu9p8PAv8Z9IYI+DHgm4B3Aj82uCkyDMMwjDsTR7ZD/xnKLb3Bcc59Cli/ZvdfAn7eb/888N0j+3/BKU8CUyJyEPhzwBPOuXXn3AbwBG+8aTIMwzCMO4ZBNvGd+BjK7SAynnfOXfLbl4F5v30IeHWk3Gt+39fa/wZE5IPo0x+OTNYo1n0AsSNTtD+zAkDlUX0Hm91/H8Gv/qZWfOgkrHqtzV/5VvAZe7NPfo7g2IyWWagTfs936valS7gnvqDll3zwq1NHiL7vLt3+6su4P3wagOjIBJw+BkDhrx2Hl74KgPvUWaJj2hfuO0LpB7SMfPUC7lNnte5dapdTS1T++sD+Cnz6OQCK904gd6teqHryOPLSy97385Qe0HfJctcCY3f7ui++ouP61HkqD6qGRO5eYOKuo7k9+4OXAKg9UkFOHgBg+uQx5Lz67v/By4w/pnqR4MQcAOV7jsHzau/93gWm3u6zG5+Yp3pK2+aFV3C/8xoA9XdCcEL7XTt1FJ7TfrWf0HfyB74pJTyhbY/fcxSeV3vziSscvNdnKT5RZ+pe7TfPvsL2b2u286V720Qn9JjU7/P25y6w+Uk9vsfvb+TzfuD0MTinvtc+2eDk/Zq1PDoxweJ92j937lVWH1etzML9qtcpnBhn6X5dtu7ZV7n8cdWnHLq/QfGE6n6Ona7jzul4L36yx9HT6rt4ooqc9nXPaYC2Cx/PuOu+dW8vE5zWNZed2+TlT+rj51P3rVA+7jM7PzhJdmYVgPOPV7j/nisAVO7y2d0fXCQ7q3qxc4+P8eDJywBU7woIHzwIQHpujWceVz3E205eonZCpyp6+CDpGfX31BMafO3txy/lGqzCw/MkZ5YB+NzvHuCbj+u8T55IKDys6yF+ZoU//n1t51uOrjF9Qo9Z8eE68Rkd56f/UE/hd8+tMXtC57f08DS9p/U4/cEfHebeum4fON6k/Ij2tff0Fr/9x3pcT89scPCY6t4qj+p67z7d4ONPHvP2TZaO6rzXHqnReVqP3//+7AkenNb5OXJ4g7FHdT23v9Ll17+gE/HAlPo9sbTGxKM6r82nY37li2p/aKrByUUd+9QjwvbT+j+ZX/rKcR6Y0KCY9y2uMvOwztvmM3ot+sWnj/PQpI73vvlV5h7UtbN+NuLnntFxPTjZ58F5Pb7zD3RYOav9+8jZwzw4qZqTR+a07cXTTS4/q2vuv549lNsfm1vh8L06xovPj/Ofn13wvjPeMafH4OjdG7x2Xs+Vnzo358fteNesztldJ1d5+SVdA//h3DT3T+kYvmVum1NH9Xr60qt1/u0ZXa/3T4e8Z07X9H1LuubOX6zzk2dUU3b/VIk/O69zc/rgCi9cOQzAvzoTcHpSr0ffMd/Lx/7C6kP8s7M6Vw/UtI33LcY86NfFi5vfwj9+Xtfi6cIh/uIh1RE9OLPFy41TAPyD889xv7sXgO8+EvGQP64XWt/Eh87/MQD3OFVDfN/hMR6a0jXyLZ/5LMadx+1wg5PjnHMismOqZ+fch4EPAzx2aHZ/qKkNwzCMOxCHs5+J7yi3Q6C/K/7VE/7fZb//deDwSLklv+9r7TcMwzCMOxbT4Owst8MNzseAwS+hPgD875H9f93/muqbgS3/Kutx4DtFZNqLi7/T7zMMwzAMwwBu8SsqEfkl4NuAWRF5Df011E8Cvyoifwt4Bfg+X/zjwJ8HzgNt4G8AOOfWReRfAZ/z5X7cOXetcNkwDMMw7iCc/cR7h9k3gf7eNld3T/7QXwBg68WI+rdrEDe6KiCWP/0wbDUAiD9xBhlkD25klN53d+6n94kXACgslnA+oFb4zuNQUOFh/2Nn1H5smIVXTi2CD6bV++g5iidUQEcxRO5W8SVRSO+j53T3yVqedljuWoBAH7R1P/osAKWTVSj7jOTH5xmkve78+vOUT3nf5Qg5PKvbgdD+Dc2mW767jFS1r3Kknvex9dGXAaicKg3tSzOQ+eB9v/ka1bv9/loRWfRi6szR+E3ViFdP+T5VIoJFFYGSZmx9XEWCY/cIUlMfwcEJSPRkXv+tLSZOaTtBLSKY1wBdg0hnq4+3mLxLj1M4FRHM6ty6OGXlCRWsTt3VJ5zU9oO5Kq6t4srLv++o36XBycJJndOwXs7tFz8dMXtUhY7RdEBQ95nFWzGvfkbFkAeONSl4QWVYL5I1tO4rT2o/5w9vU/Ta83C6QNbUvr742UkOHVJhZ3HG5UEY062UF57SCocWNinXdZzRpB7nZCvjua/osVua36Q6q/6iCSHe1PP17JkDHD3gBbP1Pj4eGf114ennVbR8zItDx2d6RGM+YN5GwJdfVIHpsZktJqdVtFmoZnQ2df6+fGGBY5Pa7+mZNoWyD463qaLmL71+gOMTeq7MTLcolPQ4NrdKPHVJxeDHxpvMTanANCqkeab5p1bqnBhX4eaBiSZRpL43Gmr/0uo0x8f0eMyPtXL7erPCl9Z1zR2rdTg4pj7CIGO1rWv+yxvjHK/psT5Ya4/Y1feXN2scq6mId7HaIfDB7Fa6Zb7i+3e8FrNY0TkRgWUfhPGZbR370WrKYR+QMXPCSk/3n9kucqSq83Ck2suD6l3pFjm7rfN6uJpxuKrtO58h/kov4tntwNvhcFXXVpwJV3pa7/w2HPKn9eFqmgcRvNILOL+tDR2qBb7tNA8muNwL+KoP1HmwGrBUHQQRFJZ1mnilmTJf0XV5pAYtH+tuNbf3ma/oObtUk9y+3HG81tE5PlAqs1RTH80YVv019dV4iwPhuK+r87Tdz1jr6Ry8LsvMZXoNWqpU8yCD62mbi6H+jqSezbPkM4dvpX3W0TW9IhcAzUh+2C2pnSZrwRVf9iLVQNfLgjvOtmi9bXeZZqxlitEEs8Fx7TdrtBIVSndiL/APa4wX9ccFr248ftMD5xWicTc79uiO+Lq89enr9ldE3gv8RyAEfsY595PX2EvALwCPAWvA9zvnXhaRY8A54Dlf9Enn3A/vSMd3mNtKZGwYhmEYxs1FRELgp4HvQH+J/DkR+Zhz7uxIsb8FbDjnTorI+4F/DXy/t73onHvklnb6LXA7aHAMwzAMY59zSwP9vRM475x7yTnXB34ZjT03ymiMuv8F/FkREe4g7AbHMAzDMHYbB86lO/JBda6fH/l88JrWbiSeXF7GOZcAW8BA13BcRJ4SkT8UkW/d8bnYIewVlWEYhmHsLVZvomboEnDEObcmIo8BvyEip51z2zepvbfMvhEZn56Yd1/4IY08HJSEjedVOFeqqrBt4h1lZMFHNb64RXJRhYRJA6rvVuGka/YQL+5Nzm/gfFbfwruOwIo/ttMqgE3PXM7Fv+Ejh2FZRW5MVkmf9oGbAyF8VAVyrGzDeGVY1xM+dhiu+CznNRXAJudWGKgYo8eWhm1XiyTPqqDXJY7CYz767moDKWm/4+c3GAj1C4/6ca21hvbzW7hYfRcfruM2dB4ohsQvqbDU9TXKLEC20UEifRDYf7k9tD+kc+k2u/k89C/0yHyy38rpGtlWL5+H/ms++3gPqvcPs6AP6F9MvV1yMfNAzAvQu+JIe9qP2knBdfQxrcsc3StevOvt43elZJ3huu8M7HGYZ0HPujB40ttejYj7KqKcXBqOYWBvrRWJY/UxtdhlkLDYpZILc3v9iJkFFca6RMi8ELS5VSKO1ff0bDvvU+r9NZulPDt5faaV25M4oNnS9dBLIuqTahMh70uzrfPYTULq421vd8Sx+mv2ivR89u+Zaocg9Bmk45CmF89205Dpsh6nKEzz9ho+C3k/DZjymcejMKXnfbeSAj2f8Xuy2Kfos4a3k4iWL9PPAsYLOlnlMBnafRbyXhbkmcorYZLv76ZhniG8HGZ5mWYS5lnJ+1mQ26u+3+10aO9lQslnKq9FKS0/D71M8uzkkTgmfHbyZuKF/qngE3gjAuPRMDt5P88gnh8mJgsZDV83zvQzymTB5VnSexmkXnycOpgqOu9b8nqpc/n2VBEGp8igT6mDvj+/p0tCIx5mHh9c6tuJY8ZnJ2/ELq+rbWW+rhcN9zPSkf9HNHxU9+ligWasDQ0yjwNspT1mIl13jTRm8P+XwZuNLZpMo8LjbTdc7wEBG4Feu6azWbaDratsANusMIFGWG6gkZsDCRFvb2bLVHxawo7bQPA/KpACrUTDq5XCCXqpXi+FkEB0TbXjVYqhXrv7qT+XCFCpCjTa526+yDisuamxB3bE1/Wyn4vIu4B/4Zz7c/77PwFwzv3ESJnHfZk/FpEIzTQw5665aRCRPwD+kXPu8zvS+R3EXlEZhmEYxi7jAOeyHfncAJ8D7haR4yJSBN6Pxp4bZTRG3fcCv+ezDcx5kTIicgJNiP3STszBTmOvqAzDMAxjH+GcS0TkQ2iQ3BD4WefcGRH5ceDzzrmPAR8BflFEzqNJst/vq78b+HERidHn2D98u8aisxscwzAMw9h1bm2gP+fcx9GAuqP7fnRkuwv8lTep92vAr930Du4AdoNjGIZhGLcBN/h6ybhB9o0GJwwywlpAWAvorTim742ZvjcmS1XwKUvTsDirn15C4UiNwpGaRojNHGQOOTiFa/RwjR7RkQnCiYhwIoJWFxam9bPWhLUm4ck6UgiQQgDbLaiP62ejRXhqjvDUHFIKodnVz/QYbLVhq622YoAUA2h0YLKqn0YXGl2ie2eH9lYXxsswXsY1e0T31InuqQ9trS4yXsZ1YlwnpnByCikIUhBo9qDZQ8ZLuT06MYFEgkSC68QatbhWxLVjCifGKZwYRyJwrT6u1UfGirhugusmFI9VKR6rqr3ZxzX7SLWAizNcnFE8ViYIIQi1vlQipBLh+hmlo0VKR4sEoYqLs0ZMUA4IyoHaj0SUjkRI5MiaCVkzISgHKphOoXwoQAKQALJGmo/RJVBZclSWHEGYEYQZacMRFIWgKLg+VA9lVA9liDiShgrLJYIs1k9tMSEIHEHgSJqSjyFL9TO+0EfEC3ybI/1IhfH5HuPzPQJx9JsR/aYXSPt1N3mgk9fttSN67QiXQZYJWSZM1TsE4gjE0e1EOC8WdU6YqbeYqbcQcXQ6RTqdIlkmOKef+kyT+kyTQKDdLdLuFr1NfcxNNfO2O3Eh71PmhNmJFrMTKrbsxBGdOCJJQ5I0JHPC/FiLeR9NuJ1EtBO1ZwgZwnxtKIhuJxH9NKCfBjgHC7U2Cz7ScDsJaSchvVQ/mRMWKh0WfDThThrQSQO6aZj7G9gAummQf5wTDlZ6HKz0rrIPfGQOFso9FrxoupcJvUzoelvmYL40ImzPhHYS0E6G9oVynI8xyWToG1goJyyUExwahDvJoH2Vb5XjOiBxQuKEdiokToXJC2WXl80ctBP9JBkcKDsOePvg+LUScn8HyvrJnL4zyIBWogLi1MFcWUidywXDrcTl9tmyMOvtA1pxRitWgfFsOWS2HJI6R6DSW1pJmvurlwr5doDQShNaaULqMurFMvVimdRlpC4jQGi7Hm3XI5WUaakxLTVSSQgpEFKgHbRwZDgyZrJpUhJSEkIp0JZt2rKd2yezWVIXk7qYkAIxHWJ0fdSCOrWgTupiAikQSIEk6+U6lUo4ReYSMpcQSIHUJaQuye2laGL0Z9fGHYg9wTEMwzCM2wB7grOz2A2OYRiGYewyzkcyNnaOffOKyjAMwzCM/YM9wTEMwzCM2wB7RbWz7JsbnKiUET16EICxkx3cex4DYPrsCwC4dzwCHRWnBZfXce/StPXFzU1cqZT7kUFU4bfdQ9DwQsr6FK6iUYjlog8HcHyRYEIjY7IwC2X14S48hdytKT8CgGPaJ0olsvNf0v3H5gk6Gh2WQ3NQ1KjL2QvPqH1xhmDOCy0PTEGkAsz03ArRo+o7nC7B7KSWCYTkKysAFB6dJ5gs+H6P5ePqP6WRQUuPzRGMqz+ZrOT27uc3qb5dI5QGtQCZ1G2SjNazKsysvV2j2wYVQcb9nKUZjWdUpDfxWIgU/TzWijgfNXXzTMDMYypwDAoQjGv/XE/rrZ8rUn9YI6gGIQRjumxdN+XKGe3j/AMdAq9DDWoBrqf+Xj87ztIDGoFZBpGlq0LWVfvLz01x7JRGmRaB0A857cBLL2jalRN3r+XzEFYcSVv9PP/iLAB3H18d2ksZ/aY+GH3uwhynjqzktqik4+21I86+phFZ719aySPMRj5qbqdV5NwV9X364AqZj24bRRktH734zHKdhxbUt3NCNIjm2yrx9JpGc31kTvudOSj4aL7b7TJnNqYAeGhmI287FMdGRwd/dnOcR+qbwzH5iL8bXd/21hiPzmx730LgI9mudcuc21Yfj043cGi/A4HVrq6XZxtlHpkaCpD9IWGlp76faxR5dOqND5ZXekVe8ALtR6aC3HcojuWerpcXGhEPT0k+5oH/FW9/sSk8POJ7UOZKL+KrTd1+aGqYSzADrvjo168M7NOF3J44WOmJtzsemIqusgEsd4ULTZ37B6YDBt790mc5htdaar9/Kszno5c5lru6/VqrxwPTJT8eR8/X3Y4dr7e7vq7OeyTQ9gNb7mdc7g0E2WOEPppwP0vZ9uGQLyXb3MeMn0uhn/p1Euv5dlnWuK+n16goEDo+knE/iVkONOK69I5TEJ2nDj220evBWvA6YXwfAAUfEbgjHbZF19amu0joNHJvgQKdQNdU6mKaqUYeDsPTlFzZl3+d1PvuxHqdjUolSq6qfc4u5jcI3WSTsKTHqigVGolGj3cuJU5V4B4GJQqBzlurv5zXTbPu0B4Or4E3HedM0LzD2CsqwzAMwzD2HPvmCY5hGIZh3M44ExnvKHaDYxiGYRi7jjMNzg6zb7KJv/3InPv0X34voEHc1l/S97pzD6vWJfjRv0Hw/PNaeGUdVr0G4cA02b33aJkz5+DKhu4fr0JdNS5u4QBy4XXdv+zts1MwqVlzXaWMXPZajMtrMK8aCSbGIfBvCVfXYXUrb5MJr49JU9jw2cJX/b8HpmDS27t92PYCgbWG2gb963kdz1YLt6Zl5OCU2gDaPiDadgu35jPoLkwO7Z2eBhoEspUmwaLX9IyVoe19NzpkK1o3OOTt4xUNMgi4Rpdsxb/zXpqAWjn37ba0TLrWJVzU8chEWQMQAllu7xEdUj2TjJdwLW3bbXVJ1vSdfGGpitRU4OM6MdmG1k3WUgpLql+QMW/vJmRr2ka8nlFc0nf1wbgGLQRIV/v01/Tc4H71EQAAE0lJREFUKC2FV+mCUt9mf101DaWDaMBHwPUz4hWfdXsjoHrIa4tqQZ59vr+c0d3Q8rXFhHA88HXV3rsCXa83GTsQE45rOy51dC75rNatAmN1HUNhkjyDeetyRLul45ys67ErjA3P8e1LRdpttU/NtCmODS+om5f12LQ6Jaan9JiVx4YZ29cu6zFo9wvMTKi9VInx8guWr4zT7us81cfblCs6T0HguLKq50KrX2Cmqv2qlGMin437tVVdO50kYsYH8quWYgpeW3RhbZK2zyZeL3epFdV3qZjw0pqu+U4aMu0zm48X9d9KIea81xy105AZv79WSBjz289tTNH12cdnijG1SH1PlnucWde6gyzkU8Ukz15eL3f58rr2u5sJM0XdXwtT5iq6/p5an6Drs4xPFzJqvu6Ct39+fTzPQj4RZYz5+ViqdnlyTc+JfgYTBT2GY6HjaE3r/tFqdVjX26uh4+SY2j+1UqXv9TgTBaj6P2dPjfX4vWU9J+IMxgvqoxI6HpjUOfntS0Vvd9Ryu/C2abX/1usR/Uz7WosCyqGWeddswm+8qu30soya1weWQ52/98xn/MrLOr8xGdVAO1UKAr5zUcv84isN+ui6q1Gm6PU733W4xM+8ekV9i46x5moUnK657z88yU+/rtfwHm2q6LEJifibi0cA+HcXnyRxet6UZCzPRP6hg4/yE699AoDU24vBGOIX96XNP7zp2cTDoOTKpaUd8dXuvnTT+3snYE9wDMMwDGOXGWQTN3YOu8ExDMMwjNsA0+DsLPYrKsMwDMMw9hz2BMcwDMMwdh0TGe80+0ZkfFdt0f37038TgHYSkPrgaYerKlZ74MgymRfstZolEi8q3O6VOFRX8W+/H9HoqDgvFEfTCyqXZrdIffnNZiW3dxMVx81NDgObrW3XCANdxJkTpsdUrCkCK1sq4gwERPS4TNU6BD7Q2vKmF+KKy4OvjVd6RD6I25Wt8bydQpAxVlKxXBRlLG/X8jYLvv0xL8gsFFIub6tv5xjaizHFSMV+V5o1UqdjLAZpLvIshilXWuo79kLNcphQ8fXKUcrlloqWExdQ9n2tRAllX+ZyqzpSN6XshZjVgb1dye3VKKUYpLnv5Y4KY3tZkIs/I8nyule6Zfq+bs23XQiutg8EpONRSujnvRolefC5bhow7n2H4qj67Svdom9bcnsg5P240i3S82tqsjAM4FUN0zw4XTcNmPbi1EHguVqUcqWr9n4mTPm6qZNcpLrSK+Ti1ZlCmq/napSx3AvzumrPiN2gbcdqP/Rtw0wx88dOqIZaaLUf0PXdnS05uqn4fmnZtV6Qtz1byugM7KFjra/bvVSYLam/dgo1/6fUWk9y4etsCZqJlh+LXG7vpbp9oAyNZNC2w+vC6adwwMdf245hLPetglytK97uqEW6vdFzedtz5YAtL+oeK8C6DwwZZ44DlSAvP+EFtmu9bMQeenvGWGFQNqXv+z1fjVj3EzhWCNjwAStjl7FQ0eO64sXsE4WIjb4X3WYZCxVdc8vdPhMFHdhGv0/igykulMpc7uk1azIsspl4sbwX5S4Ux7jc1x8UTAYVNjK9vsQSczBQwfSlbJNJ9HzfoEHq6x6UOq+iIt7pTH8IsRas5a9NFrJ5Xg0vePssa4GWdWTMp4cBeD14gUkWANjicp5bac6pyPcSLzAeHNBjk2nwPYC6HONyeg6A8XCBRqpBBJ3LmC4cBWC19zzVggbIbMZX8rqTRRXmrndfpFrQAJmt/nJuHysdZKvzCgCVwjTtvgbAFAmoFHSczd4lSgUvKO+v5/ZiNAHcGtFuEBRdIZrbEV/9+KKJjLFXVIZhGIZh7EHsFZVhGIZh7DoOTGS8o9gNjmEYhmHsNs5+Jr7T2CsqwzAMwzD2HPtGZDxbWHTfPv1DAFzob+JE75RDpw+xJqXCTFFFoyv9Hqm/k45JqIkK/+bKRTb7PtKtc8S+TElC5r14cKvvBYWZo5cNRK0BB6vqe6uX0k29b5flGX4PVYts+rqdJMt9BwhLPkLvwN5KUlJ/3K61t5KBIHV4XJdqJbZ6w7rJNX8lHK6V2PbqzEaSkPm6DsdSVUW823FGI47z/QMPhyplmnHq68a5z0H/lyrV3N5K47xe7FIOV1R83IhTWqnOa4Yj9hl1l0q1vM/NzLftXC6oPFQay8fbSodt94hZLI77uUxpZv2rxtsj5lBB7e00pe19Zzi6PkLqUjhN2/ep7eJ8xB3pcShQYWI3G9iH/lvS4VAw4+0pbR8VFaAtKvg8JLN03KDuiD1QMfpBN0vfz0GHfi7UbActFp2KEHsupYPWdZLREq274A7k8zcYS4ajKSqUX8wW6fmMzD0Z+m7JFvPZIqBrvifeNxnNQOsupGrvk9D39kwyGqKizPn0MLF4weyI7wZrHHAqBE1I8yi0AE1U8Fl3hwBIJSFmOJ/bqFi0zlLuL6aXH48ma8ygvlOSPNt05s/vRrbMjBz29phEhuukmanvKTmUl0+Jyfz8NbMVJsPFfB4AMpcO206XGQ8Xcn8ZI75TjVw+Fs6N2LO8bivRtmvRAUYZZJNuJStUIs1mHxDkY3ektGLNXl+NZvJIu8P6WW4vR5OIjwI86rsdr1KOVFA7Wt+5jHZf65YiPT+CILrGrserGI3ndUf71+1vEIV6zQgkytsftN2LNwmvsge5716s0ePDoDz0LRGZP1eStIFIId+v/Y9wV9kH+wt5lGJHRpb6H3pIkJeBEPAC/6zD4O99GeR8l4jBK6Msa9100a5IwUX+uPxJSZJVExljr6gMwzAM4zbAfia+09gNjmEYhmHcFqTXL2LcMKbBMQzDMAxjz2FPcAzDMAxj17FXVDvNvhEZF6IxtzjxbkAFfJkbiFaHC6oQqqi1lzYIvRAtTjsUQg2bGgUVemnDbxdJvHi1EFQIAxUi95NtAMKgRJr5SMJhhcCL4/rJdl42c3G+HUiBOG3m24P+hUEpr/tm9kAKuY84beZlMxfn22FQ+pp1r7WLBPmciASEXmCdZJ2rBIGD7VBKJFknL3/tnI7Ow7UM+v2N2gf+36rvjIwoUGF25oXCozbQ4zuwZWQE/mHnaN1kRLw8sKcuye2pS66yD75HQTHfdi7L11oyWC9BaSgqHZnrLIuJBmuH7KrjlHmhdBAU8v0DYWcQFPJ5CIPSVfYgKOTzNFgPwFVrZLTuoN5ALDtqD2REkEqW+0vSDqGfEzfS7zAokaQd38erxawDf0nWzbeH85Dk/uK0nW+P1h21DwWpQS5YDYMicdLO2x4VpOZ1k3ber4E9c8O2k7Q9ImoNrmo7TgbnU5T7yLIkF+CO2kfPm2G/myPzGTAQu4ZBOb/G6JwMyvg5G2n7WhFvmLe9lYt1hSA/lmFQJk62fL8K+bgGBFIkSQf2CBXpctV8J8mWF+deW9efj2kD8v0j9qBEOrgGISNlQHzdLGvyBiEwIINzOW1rSPhrfIsUvIh44Hukrh/DYL1f65tcJN29BSLj0AVBZUd83QpR9J2AvaIyDMMwDGPPYa+oDMMwDGPXcWCvqHYUu8ExDMMwjNsAx/6QjNwq7BWVYRiGYRh7jn3zBEcIaKcahdORXiXyBCiGNbpeYJe5mCAYigoHYrl4EA0TFVc6pwJIkeANYtZAImIGwrbgKhFbwQvJuklvKG506VX2bjIQbhausr3BHkRvqDvwPRA3OpcOBZBhiXSk7rX2QjhGN9GIoqVgPPfrXEYhHPO+NykGNT+XQ9Fo5NvuZQ2KXrANQ7FtKRzPRdrX2gff+2krH8ON2HPf0Ti9pOHHUP6adQf2gbgwdd2rffu6QkiStbzvibxuNCJoHQh7i1GNOO3m9lwMm8YUI/Udp928rkhAlr5ZXS84DyLiZDhPsRfiRkEpP2ZxMpzjOO3kdUUC+r7fo/aBQDiUKLcXgkoubA6DUi527o34TrLeVXUB+lmPyAvv02vs+TyFlRFxcjHvXy9pUPBzonWLfsxeSJ+0ct8qwi/m/YuTN/qOwvKIwL9BFJR93aGYeCjCb11lHwh+VWTfyssPxOVadyhWHrQ3tJffVOw8KugdFTNHYXnYrzexh0HxKsHvqJg59P1WEXQ595ekA6H0SNvB0PfAHoblERF0JS9zlW+XEfpza9C/JG0TyHDND0SwYTBse1TkLSO+06x7lfBc7cW8jTTr5GJmGAqbg6BE5o/vtfaB4Ni5gT0asUe54Nhl/WuEygPhc5hfL0fFzOIkL+PyWDS78fe/vaLaSe7oJzgi8l4ReU5EzovIj+x2fwzDMAzjLePcznwM4A6+wRFNcvLTwPuA+4G/KiL3726vDMMwDMO4Hbhjb3CAdwLnnXMvOef6wC8Df2mX+2QYhmEYbwG3Y/8Zyp2swTkEvDry/TXgm0YLiMgHgQ/6r73V7c8+81Yaane/vr3xVpzeOmaB1d3uxM3mmmOwo2Nu7pSjt0DrG7NdNe6vV/d6tP8Eda9H581jM75Vbun6/pN0vR9fv8w3wGw/vvFxx8n1y3wj5UfN6TXpk0a/v1lmpdQHC/xaZNnXvKLOQuvrj9nr1QDe7P/zo29v3DVlnPu6B+jo1213Z3gcktkd8rXnr/k3wp18g3NdnHMfBj4MICKf34+RHffjuPfjmGF/jns/jhn257j3+pidc+/d7T7sNe7kV1SvA4dHvi/5fYZhGIZh7HPu5BuczwF3i8hxESkC7wc+tst9MgzDMAzjNuCOfUXlnEtE5EPA42jWt591zp35OlU+fGt6dtuxH8e9H8cM+3Pc+3HMsD/HvR/HbPwJ2DfZxA3DMAzD2D/cya+oDMMwDMMw3hS7wTEMwzAMY8+xL25w9kNKh+uNUUR+UERWRORL/vO3d6OfNxMR+VkRWRaRtxTv6E7gemMUkW8Tka2R4/yjt7qPtwIROSwivy8iZ0XkjIj8vd3u005zI2PcD8dbRMoi8lkR+bKfh3+5230y7gz2vAbHp3R4HvgONBjg54C/6pw7u6sd20FuZIwi8oPA251zH9qVTt4CROTdaFy+X3DOPbDb/bkZXG+MIvJtwD9yzv3FW923W4mIHAQOOue+KCLjwBeA795j5/V1x7gfjreICFBzzjVFs29+Bvh7zrknd7lrxm3OfniCsx9SOuyHMV4X59yngPXd7sfNZD+M8UZwzl1yzn3RbzeAc2h08z3DfhjjjeCUQUDxgv/s7b/MjR1hP9zgvFlKh712kbjRMX6PiHxFRP6XiBx+E7uxN3iXf5z/CRE5vdududmIyDHgUeD/7W5Pbh7XGeOeP94iEorIl4Bl4Ann3J491sbOsR9ucAzl/wDHnHMPAU8AP7/L/TFuDl8EjjrnHgb+E/Abu9yfm4qIjAG/Bvx959z2bvfnZnCdMe6L4+2cS51zj6AR698pInvyFbSxs+yHG5z9kNLhumN0zq055wa5An8GeOwW9c24hTjntgeP851zHwcKIrJTCfxuK7we49eA/+Gc+/Xd7s/N4Hpj3E/HG8A5twn8PmB5m4zrsh9ucPZDSofrjtELFgd8F/o+39hjiMiCF2UiIu9Ez/G13e3VzuPH+BHgnHPu3+92f24GNzLG/XC8RWRORKb8dgX9McWzu9sr407gjk3VcKO8hZQOdxxfa4wi8uPA551zHwP+roh8F5CgItUf3LUO3yRE5JeAbwNmReQ14Meccx/Z3V7tLG82RlR0iXPuvwDfC/wdEUmADvB+tzd/KvmngB8AnvbaDIB/6p9i7BXedIzAEdhXx/sg8PP+16IB8KvOud/c5T4ZdwB7/mfihmEYhmHsP/bDKyrDMAzDMPYZdoNjGIZhGMaew25wDMMwDMPYc9gNjmEYhmEYew67wTEMwzAMY89hNziGcQciIu4GPi/7sj832DYMw9gv2M/EDeMORES++ZpdHwW+DPyLkX0959xTInIXMOGce+pW9c8wDGO32fOB/gxjL+Kce3L0u4j0gNVr9/uyL96yjhmGYdwm2Csqw9jjXPuKSkSO+VdYPywiPyEil0WkISL/XUSqInJSRB4XkaaInBeRD7yJz4dF5GMisiEiHRH5IxH51ls6MMMwjK+D3eAYxv7lnwCLwAeAHwW+H/gv6Ouu3wL+MvAV4L+JyOlBJRF5G/B/gRngh4DvQfMf/Y6IWBJXwzBuC+wVlWHsX150zg2ezjzun8D8APADzrn/DiAin0eTs34vMMjh9m+AC8Cfcc71fbnHgWeAfw58960bgmEYxptjT3AMY//yiWu+DzI0Pz7Y4ZzbAJaBw5Bnc34P8D+BTEQiEYkAAX4HePfN7rRhGMaNYE9wDGP/snHN9/7X2V/22zNoxvp/7j9vQEQC51y2U500DMN4K9gNjmEY3wibQAb8NPALb1bAbm4Mw7gdsBscwzBuGOdcS0Q+DTwMfNFuZgzDuF2xGxzDML5R/iHwKVSY/BHgEjALvA0InXM/spudMwzDABMZG4bxDeKc+yLwDvSn4T8F/DbwH4EH0RsfwzCMXcdSNRiGYRiGseewJziGYRiGYew57AbHMAzDMIw9h93gGIZhGIax57AbHMMwDMMw9hx2g2MYhmEYxp7DbnAMwzAMw9hz2A2OYRiGYRh7DrvBMQzDMAxjz/H/AardMavbgkYyAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "model.eval()\n", "model.decoder.max_decoder_steps = 2000\n", "speaker_id = 0\n", "sentence = \"Bill got in the habit of asking himself “Is that thought true?” And if he wasn’t absolutely certain it was, he just let it go.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -334,7 +235,7 @@ "outputs": [], "source": [ "sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -346,7 +247,7 @@ "outputs": [], "source": [ "sentence = \"The human voice is the most perfect instrument of all.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -358,7 +259,7 @@ "outputs": [], "source": [ "sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -371,7 +272,7 @@ "outputs": [], "source": [ "sentence = \"This cake is great. It's so delicious and moist.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -390,7 +291,7 @@ "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -402,7 +303,7 @@ "outputs": [], "source": [ "sentence = \"Scientists at the CERN laboratory say they have discovered a new particle.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -414,7 +315,7 @@ "outputs": [], "source": [ "sentence = \"Here’s a way to measure the acute emotional intelligence that has never gone out of style.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -426,7 +327,7 @@ "outputs": [], "source": [ "sentence = \"President Trump met with other leaders at the Group of 20 conference.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -438,7 +339,7 @@ "outputs": [], "source": [ "sentence = \"The buses aren't the problem, they actually provide a solution.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -457,7 +358,7 @@ "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -469,7 +370,7 @@ "outputs": [], "source": [ "sentence = \"Basilar membrane and otolaryngology are not auto-correlations.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -481,7 +382,7 @@ "outputs": [], "source": [ "sentence = \" He has read the whole thing.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -493,7 +394,7 @@ "outputs": [], "source": [ "sentence = \"He reads books.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -506,7 +407,7 @@ "outputs": [], "source": [ "sentence = \"Thisss isrealy awhsome.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -519,7 +420,7 @@ "outputs": [], "source": [ "sentence = \"This is your internet browser, Firefox.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -531,7 +432,7 @@ "outputs": [], "source": [ "sentence = \"This is your internet browser Firefox.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -543,7 +444,7 @@ "outputs": [], "source": [ "sentence = \"The quick brown fox jumps over the lazy dog.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -555,7 +456,7 @@ "outputs": [], "source": [ "sentence = \"Does the quick brown fox jump over the lazy dog?\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -567,7 +468,7 @@ "outputs": [], "source": [ "sentence = \"Eren, how are you?\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -586,7 +487,7 @@ "outputs": [], "source": [ "sentence = \"Encouraged, he started with a minute a day.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -598,7 +499,7 @@ "outputs": [], "source": [ "sentence = \"His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe .\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -610,7 +511,7 @@ "outputs": [], "source": [ "sentence = \"Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . \"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -622,7 +523,7 @@ "outputs": [], "source": [ "sentence = \"If he decided to watch TV he really watched it.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -635,7 +536,7 @@ "outputs": [], "source": [ "sentence = \"Often we try to bring about change through sheer effort and we put all of our energy into a new initiative .\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { @@ -648,7 +549,7 @@ "source": [ "# for twb dataset\n", "sentence = \"In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, speaker_id, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)" ] }, { diff --git a/train.py b/train.py index 1ccfaead..cb101367 100644 --- a/train.py +++ b/train.py @@ -78,7 +78,8 @@ def setup_loader(is_val=False, verbose=False): def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler, ap, epoch): data_loader = setup_loader(is_val=False, verbose=(epoch==0)) - speaker_mapping = load_speaker_mapping(OUT_PATH) + if c.num_speakers > 0: + speaker_mapping = load_speaker_mapping(OUT_PATH) model.train() epoch_time = 0 avg_postnet_loss = 0 @@ -101,19 +102,23 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler, avg_text_length = torch.mean(text_lengths.float()) avg_spec_length = torch.mean(mel_lengths.float()) - speaker_ids = [] - for speaker_name in speaker_names: - if speaker_name not in speaker_mapping: - speaker_mapping[speaker_name] = len(speaker_mapping) - speaker_ids.append(speaker_mapping[speaker_name]) - speaker_ids = torch.LongTensor(speaker_ids) + if c.num_speakers > 0: + speaker_ids = [] + for speaker_name in speaker_names: + if speaker_name not in speaker_mapping: + speaker_mapping[speaker_name] = len(speaker_mapping) + speaker_ids.append(speaker_mapping[speaker_name]) + speaker_ids = torch.LongTensor(speaker_ids) - if len(speaker_mapping) > c.num_speakers: - raise ValueError("It seems there are at least {} speakers in " - "your dataset, while 'num_speakers' is set to {}. " - "Found the following speakers: {}".format(len(speaker_mapping), - c.num_speakers, - list(speaker_mapping))) + if len(speaker_mapping) > c.num_speakers: + raise ValueError("It seems there are at least {} speakers in " + "your dataset, while 'num_speakers' is set to " + "{}. Found the following speakers: {}".format( + len(speaker_mapping), + c.num_speakers, + list(speaker_mapping))) + else: + speaker_ids = None # set stop targets view, we predict a single stop token per r frames prediction stop_targets = stop_targets.view(text_input.shape[0], @@ -137,11 +142,12 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler, mel_lengths = mel_lengths.cuda(non_blocking=True) linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron", "TacotronGST"] else None stop_targets = stop_targets.cuda(non_blocking=True) - speaker_ids = speaker_ids.cuda(non_blocking=True) + if speaker_ids is not None: + speaker_ids = speaker_ids.cuda(non_blocking=True) # forward pass model decoder_output, postnet_output, alignments, stop_tokens = model( - text_input, speaker_ids, text_lengths, mel_input) + text_input, text_lengths, mel_input, speaker_ids=speaker_ids) # loss computation stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1) @@ -266,13 +272,15 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler, tb_logger.tb_model_weights(model, current_step) # save speaker mapping - save_speaker_mapping(OUT_PATH, speaker_mapping) + if c.num_speakers > 0: + save_speaker_mapping(OUT_PATH, speaker_mapping) return avg_postnet_loss, current_step def evaluate(model, criterion, criterion_st, ap, current_step, epoch): data_loader = setup_loader(is_val=True) - speaker_mapping = load_speaker_mapping(OUT_PATH) + if c.num_speakers > 0: + speaker_mapping = load_speaker_mapping(OUT_PATH) model.eval() epoch_time = 0 avg_postnet_loss = 0 @@ -303,9 +311,12 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch): mel_lengths = data[5] stop_targets = data[6] - speaker_ids = [speaker_mapping[speaker_name] - for speaker_name in speaker_names] - speaker_ids = torch.LongTensor(speaker_ids) + if c.num_speakers > 0: + speaker_ids = [speaker_mapping[speaker_name] + for speaker_name in speaker_names] + speaker_ids = torch.LongTensor(speaker_ids) + else: + speaker_ids = None # set stop targets view, we predict a single stop token per r frames prediction stop_targets = stop_targets.view(text_input.shape[0], @@ -320,12 +331,13 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch): mel_lengths = mel_lengths.cuda() linear_input = linear_input.cuda() if c.model in ["Tacotron", "TacotronGST"] else None stop_targets = stop_targets.cuda() - speaker_ids = speaker_ids.cuda() + if speaker_ids is not None: + speaker_ids = speaker_ids.cuda() # forward pass decoder_output, postnet_output, alignments, stop_tokens =\ - model.forward(text_input, speaker_ids, - text_lengths, mel_input) + model.forward(text_input, text_lengths, mel_input, + speaker_ids=speaker_ids) # loss computation stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1) @@ -403,11 +415,12 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch): test_audios = {} test_figures = {} print(" | > Synthesizing test sentences") - speaker_id = 0 + speaker_id = 0 if c.num_speakers > 0 else None for idx, test_sentence in enumerate(test_sentences): try: wav, alignment, decoder_output, postnet_output, stop_tokens = synthesis( - model, test_sentence, speaker_id, c, use_cuda, ap) + model, test_sentence, c, use_cuda, ap, + speaker_id=speaker_id) file_path = os.path.join(AUDIO_PATH, str(current_step)) os.makedirs(file_path, exist_ok=True) file_path = os.path.join(file_path, @@ -471,7 +484,8 @@ def main(args): args.restore_step = checkpoint['step'] # copying speakers.json prev_out_path = os.path.dirname(args.restore_path) - copy_speaker_mapping(prev_out_path, OUT_PATH) + if c.num_speakers > 0: + copy_speaker_mapping(prev_out_path, OUT_PATH) else: args.restore_step = 0 diff --git a/utils/synthesis.py b/utils/synthesis.py index e5d0ff47..b0648d82 100644 --- a/utils/synthesis.py +++ b/utils/synthesis.py @@ -35,17 +35,17 @@ def compute_style_mel(style_wav, ap, use_cuda): return style_mel -def run_model(model, inputs, speaker_id, CONFIG, truncated, style_mel=None): +def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): if CONFIG.model == "TacotronGST" and style_mel is not None: decoder_output, postnet_output, alignments, stop_tokens = model.inference( - inputs, style_mel, speaker_id) + inputs, style_mel=style_mel, speaker_ids=speaker_id) else: if truncated: decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated( - inputs, speaker_id) + inputs, speaker_ids=speaker_id) else: decoder_output, postnet_output, alignments, stop_tokens = model.inference( - inputs, speaker_id) + inputs, speaker_ids=speaker_id) return decoder_output, postnet_output, alignments, stop_tokens @@ -70,10 +70,10 @@ def inv_spectrogram(postnet_output, ap, CONFIG): def synthesis(model, text, - speaker_id, CONFIG, use_cuda, ap, + speaker_id=None, style_wav=None, truncated=False, enable_eos_bos_chars=False, @@ -83,11 +83,11 @@ def synthesis(model, Args: model (TTS.models): model to synthesize. text (str): target text - speaker_id (int): id of speaker CONFIG (dict): config dictionary to be loaded from config.json. use_cuda (bool): enable cuda. ap (TTS.utils.audio.AudioProcessor): audio processor to process model outputs. + speaker_id (int): id of speaker style_wav (str): Uses for style embedding of GST. truncated (bool): keep model states after inference. It can be used for continuous inference at long texts. @@ -100,13 +100,14 @@ def synthesis(model, style_mel = compute_style_mel(style_wav, ap, use_cuda) # preprocess the given text inputs = text_to_seqvec(text, CONFIG, use_cuda) - speaker_id = np.asarray(speaker_id) - speaker_id = torch.from_numpy(speaker_id).unsqueeze(0) + if speaker_id is not None: + speaker_id = np.asarray(speaker_id) + speaker_id = torch.from_numpy(speaker_id).unsqueeze(0) if use_cuda: speaker_id.cuda() # synthesize voice decoder_output, postnet_output, alignments, stop_tokens = run_model( - model, inputs, speaker_id, CONFIG, truncated, style_mel) + model, inputs, CONFIG, truncated, speaker_id, style_mel) # convert outputs to numpy postnet_output, decoder_output, alignment = parse_outputs( postnet_output, decoder_output, alignments)