add suport for AngleProto loss

This commit is contained in:
Edresson 2020-07-31 00:24:42 -03:00 committed by erogol
parent f0bcc390d2
commit bc09ca8111
4 changed files with 171 additions and 5 deletions

View File

@ -100,7 +100,7 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
if global_step % c.steps_plot_stats == 0:
# Plot Training Epoch Stats
train_stats = {
"GE2Eloss": avg_loss,
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time
@ -140,7 +140,13 @@ def main(args): # pylint: disable=redefined-outer-name
lstm_dim=384,
num_lstm_layers=3)
optimizer = RAdam(model.parameters(), lr=c.lr)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method='softmax')
elif c.loss == "angleproto":
criterion = AngleProtoLoss()
else:
raise Exception("The %s not is a loss supported" %c.loss)
if args.restore_path:
checkpoint = torch.load(args.restore_path)
@ -186,7 +192,6 @@ def main(args): # pylint: disable=redefined-outer-name
_, global_step = train(model, criterion, optimizer, scheduler, ap,
global_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(

View File

@ -21,6 +21,7 @@
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
},
"reinit_layers": [],
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
"grad_clip": 3.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.

View File

@ -15,7 +15,7 @@ def save_checkpoint(model, optimizer, model_loss, out_path,
'optimizer': optimizer.state_dict() if optimizer is not None else None,
'step': current_step,
'epoch': epoch,
'GE2Eloss': model_loss,
'loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
torch.save(state, checkpoint_path)
@ -29,7 +29,7 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path,
'model': new_state_dict,
'optimizer': optimizer.state_dict(),
'step': current_step,
'GE2Eloss': model_loss,
'loss': model_loss,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
best_loss = model_loss

View File

@ -0,0 +1,160 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# adapted from https://github.com/cvqluu/GE2E-Loss
class GE2ELoss(nn.Module):
def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"):
"""
Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1]
Accepts an input of size (N, M, D)
where N is the number of speakers in the batch,
M is the number of utterances per speaker,
and D is the dimensionality of the embedding vector (e.g. d-vector)
Args:
- init_w (float): defines the initial value of w in Equation (5) of [1]
- init_b (float): definies the initial value of b in Equation (5) of [1]
"""
super(GE2ELoss, self).__init__()
# pylint: disable=E1102
self.w = nn.Parameter(torch.tensor(init_w))
# pylint: disable=E1102
self.b = nn.Parameter(torch.tensor(init_b))
self.loss_method = loss_method
print('Initialised Generalized End-to-End loss')
assert self.loss_method in ["softmax", "contrast"]
if self.loss_method == "softmax":
self.embed_loss = self.embed_loss_softmax
if self.loss_method == "contrast":
self.embed_loss = self.embed_loss_contrast
# pylint: disable=R0201
def calc_new_centroids(self, dvecs, centroids, spkr, utt):
"""
Calculates the new centroids excluding the reference utterance
"""
excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :]))
excl = torch.mean(excl, 0)
new_centroids = []
for i, centroid in enumerate(centroids):
if i == spkr:
new_centroids.append(excl)
else:
new_centroids.append(centroid)
return torch.stack(new_centroids)
def calc_cosine_sim(self, dvecs, centroids):
"""
Make the cosine similarity matrix with dims (N,M,N)
"""
cos_sim_matrix = []
for spkr_idx, speaker in enumerate(dvecs):
cs_row = []
for utt_idx, utterance in enumerate(speaker):
new_centroids = self.calc_new_centroids(
dvecs, centroids, spkr_idx, utt_idx
)
# vector based cosine similarity for speed
cs_row.append(
torch.clamp(
torch.mm(
utterance.unsqueeze(1).transpose(0, 1),
new_centroids.transpose(0, 1),
)
/ (torch.norm(utterance) * torch.norm(new_centroids, dim=1)),
1e-6,
)
)
cs_row = torch.cat(cs_row, dim=0)
cos_sim_matrix.append(cs_row)
return torch.stack(cos_sim_matrix)
# pylint: disable=R0201
def embed_loss_softmax(self, dvecs, cos_sim_matrix):
"""
Calculates the loss on each embedding $L(e_{ji})$ by taking softmax
"""
N, M, _ = dvecs.shape
L = []
for j in range(N):
L_row = []
for i in range(M):
L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j])
L_row = torch.stack(L_row)
L.append(L_row)
return torch.stack(L)
# pylint: disable=R0201
def embed_loss_contrast(self, dvecs, cos_sim_matrix):
"""
Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid
"""
N, M, _ = dvecs.shape
L = []
for j in range(N):
L_row = []
for i in range(M):
centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i])
excl_centroids_sigmoids = torch.cat(
(centroids_sigmoids[:j], centroids_sigmoids[j + 1 :])
)
L_row.append(
1.0
- torch.sigmoid(cos_sim_matrix[j, i, j])
+ torch.max(excl_centroids_sigmoids)
)
L_row = torch.stack(L_row)
L.append(L_row)
return torch.stack(L)
def forward(self, dvecs):
"""
Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
"""
centroids = torch.mean(dvecs, 1)
cos_sim_matrix = self.calc_cosine_sim(dvecs, centroids)
torch.clamp(self.w, 1e-6)
cos_sim_matrix = self.w * cos_sim_matrix + self.b
L = self.embed_loss(dvecs, cos_sim_matrix)
return L.mean()
# adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py
class AngleProtoLoss(nn.Module):
"""
Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982
Accepts an input of size (N, M, D)
where N is the number of speakers in the batch,
M is the number of utterances per speaker,
and D is the dimensionality of the embedding vector
Args:
- init_w (float): defines the initial value of w
- init_b (float): definies the initial value of b
"""
def __init__(self, init_w=10.0, init_b=-5.0):
super(AngleProtoLoss, self).__init__()
# pylint: disable=E1102
self.w = nn.Parameter(torch.tensor(init_w))
# pylint: disable=E1102
self.b = nn.Parameter(torch.tensor(init_b))
self.criterion = torch.nn.CrossEntropyLoss()
print('Initialised Angular Prototypical loss')
def forward(self, x):
"""
Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
"""
out_anchor = torch.mean(x[:,1:,:],1)
out_positive = x[:,0,:]
num_speakers = out_anchor.size()[0]
cos_sim_matrix = F.cosine_similarity(out_positive.unsqueeze(-1).expand(-1,-1,num_speakers),out_anchor.unsqueeze(-1).expand(-1,-1,num_speakers).transpose(0,2))
torch.clamp(self.w, 1e-6)
cos_sim_matrix = cos_sim_matrix * self.w + self.b
label = torch.from_numpy(np.asarray(range(0,num_speakers))).to(cos_sim_matrix.device)
L = self.criterion(cos_sim_matrix, label)
return L