mirror of https://github.com/coqui-ai/TTS.git
add suport for AngleProto loss
This commit is contained in:
parent
f0bcc390d2
commit
bc09ca8111
|
@ -100,7 +100,7 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
|
|||
if global_step % c.steps_plot_stats == 0:
|
||||
# Plot Training Epoch Stats
|
||||
train_stats = {
|
||||
"GE2Eloss": avg_loss,
|
||||
"loss": avg_loss,
|
||||
"lr": current_lr,
|
||||
"grad_norm": grad_norm,
|
||||
"step_time": step_time
|
||||
|
@ -140,7 +140,13 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
lstm_dim=384,
|
||||
num_lstm_layers=3)
|
||||
optimizer = RAdam(model.parameters(), lr=c.lr)
|
||||
|
||||
if c.loss == "ge2e":
|
||||
criterion = GE2ELoss(loss_method='softmax')
|
||||
elif c.loss == "angleproto":
|
||||
criterion = AngleProtoLoss()
|
||||
else:
|
||||
raise Exception("The %s not is a loss supported" %c.loss)
|
||||
|
||||
if args.restore_path:
|
||||
checkpoint = torch.load(args.restore_path)
|
||||
|
@ -186,7 +192,6 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
_, global_step = train(model, criterion, optimizer, scheduler, ap,
|
||||
global_step)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
},
|
||||
"reinit_layers": [],
|
||||
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
||||
"grad_clip": 3.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
|
|
|
@ -15,7 +15,7 @@ def save_checkpoint(model, optimizer, model_loss, out_path,
|
|||
'optimizer': optimizer.state_dict() if optimizer is not None else None,
|
||||
'step': current_step,
|
||||
'epoch': epoch,
|
||||
'GE2Eloss': model_loss,
|
||||
'loss': model_loss,
|
||||
'date': datetime.date.today().strftime("%B %d, %Y"),
|
||||
}
|
||||
torch.save(state, checkpoint_path)
|
||||
|
@ -29,7 +29,7 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path,
|
|||
'model': new_state_dict,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'step': current_step,
|
||||
'GE2Eloss': model_loss,
|
||||
'loss': model_loss,
|
||||
'date': datetime.date.today().strftime("%B %d, %Y"),
|
||||
}
|
||||
best_loss = model_loss
|
||||
|
|
|
@ -0,0 +1,160 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
|
||||
# adapted from https://github.com/cvqluu/GE2E-Loss
|
||||
class GE2ELoss(nn.Module):
|
||||
def __init__(self, init_w=10.0, init_b=-5.0, loss_method="softmax"):
|
||||
"""
|
||||
Implementation of the Generalized End-to-End loss defined in https://arxiv.org/abs/1710.10467 [1]
|
||||
Accepts an input of size (N, M, D)
|
||||
where N is the number of speakers in the batch,
|
||||
M is the number of utterances per speaker,
|
||||
and D is the dimensionality of the embedding vector (e.g. d-vector)
|
||||
Args:
|
||||
- init_w (float): defines the initial value of w in Equation (5) of [1]
|
||||
- init_b (float): definies the initial value of b in Equation (5) of [1]
|
||||
"""
|
||||
super(GE2ELoss, self).__init__()
|
||||
# pylint: disable=E1102
|
||||
self.w = nn.Parameter(torch.tensor(init_w))
|
||||
# pylint: disable=E1102
|
||||
self.b = nn.Parameter(torch.tensor(init_b))
|
||||
self.loss_method = loss_method
|
||||
|
||||
print('Initialised Generalized End-to-End loss')
|
||||
|
||||
assert self.loss_method in ["softmax", "contrast"]
|
||||
|
||||
if self.loss_method == "softmax":
|
||||
self.embed_loss = self.embed_loss_softmax
|
||||
if self.loss_method == "contrast":
|
||||
self.embed_loss = self.embed_loss_contrast
|
||||
|
||||
# pylint: disable=R0201
|
||||
def calc_new_centroids(self, dvecs, centroids, spkr, utt):
|
||||
"""
|
||||
Calculates the new centroids excluding the reference utterance
|
||||
"""
|
||||
excl = torch.cat((dvecs[spkr, :utt], dvecs[spkr, utt + 1 :]))
|
||||
excl = torch.mean(excl, 0)
|
||||
new_centroids = []
|
||||
for i, centroid in enumerate(centroids):
|
||||
if i == spkr:
|
||||
new_centroids.append(excl)
|
||||
else:
|
||||
new_centroids.append(centroid)
|
||||
return torch.stack(new_centroids)
|
||||
|
||||
def calc_cosine_sim(self, dvecs, centroids):
|
||||
"""
|
||||
Make the cosine similarity matrix with dims (N,M,N)
|
||||
"""
|
||||
cos_sim_matrix = []
|
||||
for spkr_idx, speaker in enumerate(dvecs):
|
||||
cs_row = []
|
||||
for utt_idx, utterance in enumerate(speaker):
|
||||
new_centroids = self.calc_new_centroids(
|
||||
dvecs, centroids, spkr_idx, utt_idx
|
||||
)
|
||||
# vector based cosine similarity for speed
|
||||
cs_row.append(
|
||||
torch.clamp(
|
||||
torch.mm(
|
||||
utterance.unsqueeze(1).transpose(0, 1),
|
||||
new_centroids.transpose(0, 1),
|
||||
)
|
||||
/ (torch.norm(utterance) * torch.norm(new_centroids, dim=1)),
|
||||
1e-6,
|
||||
)
|
||||
)
|
||||
cs_row = torch.cat(cs_row, dim=0)
|
||||
cos_sim_matrix.append(cs_row)
|
||||
return torch.stack(cos_sim_matrix)
|
||||
|
||||
# pylint: disable=R0201
|
||||
def embed_loss_softmax(self, dvecs, cos_sim_matrix):
|
||||
"""
|
||||
Calculates the loss on each embedding $L(e_{ji})$ by taking softmax
|
||||
"""
|
||||
N, M, _ = dvecs.shape
|
||||
L = []
|
||||
for j in range(N):
|
||||
L_row = []
|
||||
for i in range(M):
|
||||
L_row.append(-F.log_softmax(cos_sim_matrix[j, i], 0)[j])
|
||||
L_row = torch.stack(L_row)
|
||||
L.append(L_row)
|
||||
return torch.stack(L)
|
||||
|
||||
# pylint: disable=R0201
|
||||
def embed_loss_contrast(self, dvecs, cos_sim_matrix):
|
||||
"""
|
||||
Calculates the loss on each embedding $L(e_{ji})$ by contrast loss with closest centroid
|
||||
"""
|
||||
N, M, _ = dvecs.shape
|
||||
L = []
|
||||
for j in range(N):
|
||||
L_row = []
|
||||
for i in range(M):
|
||||
centroids_sigmoids = torch.sigmoid(cos_sim_matrix[j, i])
|
||||
excl_centroids_sigmoids = torch.cat(
|
||||
(centroids_sigmoids[:j], centroids_sigmoids[j + 1 :])
|
||||
)
|
||||
L_row.append(
|
||||
1.0
|
||||
- torch.sigmoid(cos_sim_matrix[j, i, j])
|
||||
+ torch.max(excl_centroids_sigmoids)
|
||||
)
|
||||
L_row = torch.stack(L_row)
|
||||
L.append(L_row)
|
||||
return torch.stack(L)
|
||||
|
||||
def forward(self, dvecs):
|
||||
"""
|
||||
Calculates the GE2E loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
|
||||
"""
|
||||
centroids = torch.mean(dvecs, 1)
|
||||
cos_sim_matrix = self.calc_cosine_sim(dvecs, centroids)
|
||||
torch.clamp(self.w, 1e-6)
|
||||
cos_sim_matrix = self.w * cos_sim_matrix + self.b
|
||||
L = self.embed_loss(dvecs, cos_sim_matrix)
|
||||
return L.mean()
|
||||
|
||||
# adapted from https://github.com/clovaai/voxceleb_trainer/blob/master/loss/angleproto.py
|
||||
class AngleProtoLoss(nn.Module):
|
||||
"""
|
||||
Implementation of the Angular Prototypical loss defined in https://arxiv.org/abs/2003.11982
|
||||
Accepts an input of size (N, M, D)
|
||||
where N is the number of speakers in the batch,
|
||||
M is the number of utterances per speaker,
|
||||
and D is the dimensionality of the embedding vector
|
||||
Args:
|
||||
- init_w (float): defines the initial value of w
|
||||
- init_b (float): definies the initial value of b
|
||||
"""
|
||||
def __init__(self, init_w=10.0, init_b=-5.0):
|
||||
super(AngleProtoLoss, self).__init__()
|
||||
# pylint: disable=E1102
|
||||
self.w = nn.Parameter(torch.tensor(init_w))
|
||||
# pylint: disable=E1102
|
||||
self.b = nn.Parameter(torch.tensor(init_b))
|
||||
self.criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
print('Initialised Angular Prototypical loss')
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Calculates the AngleProto loss for an input of dimensions (num_speakers, num_utts_per_speaker, dvec_feats)
|
||||
"""
|
||||
out_anchor = torch.mean(x[:,1:,:],1)
|
||||
out_positive = x[:,0,:]
|
||||
num_speakers = out_anchor.size()[0]
|
||||
|
||||
cos_sim_matrix = F.cosine_similarity(out_positive.unsqueeze(-1).expand(-1,-1,num_speakers),out_anchor.unsqueeze(-1).expand(-1,-1,num_speakers).transpose(0,2))
|
||||
torch.clamp(self.w, 1e-6)
|
||||
cos_sim_matrix = cos_sim_matrix * self.w + self.b
|
||||
label = torch.from_numpy(np.asarray(range(0,num_speakers))).to(cos_sim_matrix.device)
|
||||
L = self.criterion(cos_sim_matrix, label)
|
||||
return L
|
Loading…
Reference in New Issue