From be512056070a51f866355aaee29e968e2bc1878b Mon Sep 17 00:00:00 2001 From: WeberJulian Date: Fri, 6 Oct 2023 11:26:28 +0200 Subject: [PATCH] Add documentation --- docs/source/models/xtts.md | 86 +++++++++++++++++++++++++++++++------- 1 file changed, 70 insertions(+), 16 deletions(-) diff --git a/docs/source/models/xtts.md b/docs/source/models/xtts.md index 85a3afba..e5c42beb 100644 --- a/docs/source/models/xtts.md +++ b/docs/source/models/xtts.md @@ -28,7 +28,8 @@ This model is licensed under [Coqui Public Model License](https://coqui.ai/cpml) Come and join in our 🐸Community. We're active on [Discord](https://discord.gg/fBC58unbKE) and [Twitter](https://twitter.com/coqui_ai). You can also mail us at info@coqui.ai. -Using 🐸TTS API: +### Inference +#### 🐸TTS API ```python from TTS.api import TTS @@ -39,16 +40,9 @@ tts.tts_to_file(text="It took me quite a long time to develop a voice, and now t file_path="output.wav", speaker_wav="/path/to/target/speaker.wav", language="en") - -# generate speech by cloning a voice using custom settings -tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", - file_path="output.wav", - speaker_wav="/path/to/target/speaker.wav", - language="en", - decoder_iterations=30) ``` -Using 🐸TTS Command line: +#### 🐸TTS Command line ```console tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 \ @@ -58,25 +52,85 @@ Using 🐸TTS Command line: --use_cuda true ``` -Using model directly: +#### model directly + +If you want to be able to run with `use_deepspeed=True` and enjoy the speedup, you need to install deepspeed first. + +```console +pip install deepspeed==0.8.3 +``` ```python +import os +import torch +import torchaudio from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts +print("Loading model...") config = XttsConfig() config.load_json("/path/to/xtts/config.json") model = Xtts.init_from_config(config) -model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", eval=True) +model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", eval=True, use_deepspeed=True) +model.cuda() + +print("Computing speaker latents...") +gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path="reference.wav") + +print("Inference...") +out = model.inference( + "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", + "en", + gpt_cond_latent, + speaker_embedding, + diffusion_conditioning, + temperature=0.7, # Add custom parameters here +) +torchaudio.save("xtts.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000) +``` + + +#### streaming inference + +Here the goal is to stream the audio as it is being generated. This is useful for real-time applications. +Streaming inference is typically slower than regular inference, but it allows to get a first chunk of audio faster. + + +```python +import os +import time +import torch +import torchaudio +from TTS.tts.configs.xtts_config import XttsConfig +from TTS.tts.models.xtts import Xtts + +print("Loading model...") +config = XttsConfig() +config.load_json("/path/to/xtts/config.json") +model = Xtts.init_from_config(config) +model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", eval=True, use_deepspeed=True) model.cuda() -outputs = model.synthesize( +print("Computing speaker latents...") +gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path="reference.wav") + +print("Inference...") +t0 = time.time() +chunks = model.inference_stream( "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", - config, - speaker_wav="/data/TTS-public/_refclips/3.wav", - gpt_cond_len=3, - language="en", + "en", + gpt_cond_latent, + speaker_embedding ) + +wav_chuncks = [] +for i, chunk in enumerate(chunks): + if i == 0: + print(f"Time to first chunck: {time.time() - t0}") + print(f"Received chunk {i} of audio length {chunk.shape[-1]}") + wav_chuncks.append(chunk) +wav = torch.cat(wav_chuncks, dim=0) +torchaudio.save("xtts_streaming.wav", wav.squeeze().unsqueeze(0).cpu(), 24000) ```