mirror of https://github.com/coqui-ai/TTS.git
Rename more
This commit is contained in:
parent
486a4795fe
commit
bfee55af2b
|
@ -56,7 +56,7 @@ if __name__ == "__main__":
|
||||||
description="""Compute the accuracy of the encoder.\n\n"""
|
description="""Compute the accuracy of the encoder.\n\n"""
|
||||||
"""
|
"""
|
||||||
Example runs:
|
Example runs:
|
||||||
python TTS/bin/eval_encoder.py emotion_encoder_model.pth.tar emotion_encoder_config.json dataset_config.json
|
python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json
|
||||||
""",
|
""",
|
||||||
formatter_class=RawTextHelpFormatter,
|
formatter_class=RawTextHelpFormatter,
|
||||||
)
|
)
|
||||||
|
|
|
@ -14,5 +14,5 @@ To run the code, you need to follow the same flow as in TTS.
|
||||||
|
|
||||||
- Define 'config.json' for your needs. Note that, audio parameters should match your TTS model.
|
- Define 'config.json' for your needs. Note that, audio parameters should match your TTS model.
|
||||||
- Example training call ```python speaker_encoder/train.py --config_path speaker_encoder/config.json --data_path ~/Data/Libri-TTS/train-clean-360```
|
- Example training call ```python speaker_encoder/train.py --config_path speaker_encoder/config.json --data_path ~/Data/Libri-TTS/train-clean-360```
|
||||||
- Generate embedding vectors ```python speaker_encoder/compute_embeddings.py --use_cuda true /model/path/best_model.pth.tar model/config/path/config.json dataset/path/ output_path``` . This code parses all .wav files at the given dataset path and generates the same folder structure under the output path with the generated embedding files.
|
- Generate embedding vectors ```python speaker_encoder/compute_embeddings.py --use_cuda true /model/path/best_model.pth model/config/path/config.json dataset/path/ output_path``` . This code parses all .wav files at the given dataset path and generates the same folder structure under the output path with the generated embedding files.
|
||||||
- Watch training on Tensorboard as in TTS
|
- Watch training on Tensorboard as in TTS
|
||||||
|
|
|
@ -147,7 +147,7 @@ def setup_speaker_encoder_model(config: "Coqpit"):
|
||||||
|
|
||||||
|
|
||||||
def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_step, epoch):
|
def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_step, epoch):
|
||||||
checkpoint_path = "checkpoint_{}.pth.tar".format(current_step)
|
checkpoint_path = "checkpoint_{}.pth".format(current_step)
|
||||||
checkpoint_path = os.path.join(out_path, checkpoint_path)
|
checkpoint_path = os.path.join(out_path, checkpoint_path)
|
||||||
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
|
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
|
||||||
|
|
||||||
|
@ -177,7 +177,7 @@ def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path
|
||||||
"date": datetime.date.today().strftime("%B %d, %Y"),
|
"date": datetime.date.today().strftime("%B %d, %Y"),
|
||||||
}
|
}
|
||||||
best_loss = model_loss
|
best_loss = model_loss
|
||||||
bestmodel_path = "best_model.pth.tar"
|
bestmodel_path = "best_model.pth"
|
||||||
bestmodel_path = os.path.join(out_path, bestmodel_path)
|
bestmodel_path = os.path.join(out_path, bestmodel_path)
|
||||||
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path))
|
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path))
|
||||||
save_fsspec(state, bestmodel_path)
|
save_fsspec(state, bestmodel_path)
|
||||||
|
|
|
@ -5,7 +5,7 @@ from TTS.utils.io import save_fsspec
|
||||||
|
|
||||||
|
|
||||||
def save_checkpoint(model, optimizer, model_loss, out_path, current_step):
|
def save_checkpoint(model, optimizer, model_loss, out_path, current_step):
|
||||||
checkpoint_path = "checkpoint_{}.pth.tar".format(current_step)
|
checkpoint_path = "checkpoint_{}.pth".format(current_step)
|
||||||
checkpoint_path = os.path.join(out_path, checkpoint_path)
|
checkpoint_path = os.path.join(out_path, checkpoint_path)
|
||||||
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
|
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path, current_s
|
||||||
"date": datetime.date.today().strftime("%B %d, %Y"),
|
"date": datetime.date.today().strftime("%B %d, %Y"),
|
||||||
}
|
}
|
||||||
best_loss = model_loss
|
best_loss = model_loss
|
||||||
bestmodel_path = "best_model.pth.tar"
|
bestmodel_path = "best_model.pth"
|
||||||
bestmodel_path = os.path.join(out_path, bestmodel_path)
|
bestmodel_path = os.path.join(out_path, bestmodel_path)
|
||||||
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path))
|
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path))
|
||||||
save_fsspec(state, bestmodel_path)
|
save_fsspec(state, bestmodel_path)
|
||||||
|
|
|
@ -114,7 +114,7 @@ class ModelManager(object):
|
||||||
e.g. 'tts_model/en/ljspeech/tacotron'
|
e.g. 'tts_model/en/ljspeech/tacotron'
|
||||||
|
|
||||||
Every model must have the following files:
|
Every model must have the following files:
|
||||||
- *.pth.tar : pytorch model checkpoint file.
|
- *.pth : pytorch model checkpoint file.
|
||||||
- config.json : model config file.
|
- config.json : model config file.
|
||||||
- scale_stats.npy (if exist): scale values for preprocessing.
|
- scale_stats.npy (if exist): scale values for preprocessing.
|
||||||
|
|
||||||
|
@ -127,7 +127,7 @@ class ModelManager(object):
|
||||||
model_item = self.models_dict[model_type][lang][dataset][model]
|
model_item = self.models_dict[model_type][lang][dataset][model]
|
||||||
# set the model specific output path
|
# set the model specific output path
|
||||||
output_path = os.path.join(self.output_prefix, model_full_name)
|
output_path = os.path.join(self.output_prefix, model_full_name)
|
||||||
output_model_path = os.path.join(output_path, "model_file.pth.tar")
|
output_model_path = os.path.join(output_path, "model_file.pth")
|
||||||
output_config_path = os.path.join(output_path, "config.json")
|
output_config_path = os.path.join(output_path, "config.json")
|
||||||
|
|
||||||
if os.path.exists(output_path):
|
if os.path.exists(output_path):
|
||||||
|
@ -152,7 +152,7 @@ class ModelManager(object):
|
||||||
output_d_vector_file_path = os.path.join(output_path, "speakers.json")
|
output_d_vector_file_path = os.path.join(output_path, "speakers.json")
|
||||||
output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json")
|
output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json")
|
||||||
speaker_encoder_config_path = os.path.join(output_path, "config_se.json")
|
speaker_encoder_config_path = os.path.join(output_path, "config_se.json")
|
||||||
speaker_encoder_model_path = os.path.join(output_path, "model_se.pth.tar")
|
speaker_encoder_model_path = os.path.join(output_path, "model_se.pth")
|
||||||
|
|
||||||
# update the scale_path.npy file path in the model config.json
|
# update the scale_path.npy file path in the model config.json
|
||||||
self._update_path("audio.stats_path", output_stats_path, config_path)
|
self._update_path("audio.stats_path", output_stats_path, config_path)
|
||||||
|
|
Loading…
Reference in New Issue