Revert back again rand_segment

This commit is contained in:
Eren Gölge 2022-02-20 11:51:56 +01:00
parent 00c7600103
commit c11944022d
1 changed files with 35 additions and 17 deletions

View File

@ -57,7 +57,7 @@ def sequence_mask(sequence_length, max_len=None):
return mask
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4):
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False):
"""Segment each sample in a batch based on the provided segment indices
Args:
@ -66,16 +66,25 @@ def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4):
segment_size (int): Expected output segment size.
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size.
"""
ret = torch.zeros_like(x[:, :, :segment_size])
# pad the input tensor if it is shorter than the segment size
if pad_short and x.shape[-1] < segment_size:
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2)))
segments = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = segment_indices[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
index_start = segment_indices[i]
index_end = index_start + segment_size
x_i = x[i]
if pad_short and index_end > x.size(2):
# pad the sample if it is shorter than the segment size
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2)))
segments[i] = x_i[:, index_start:index_end]
return segments
def rand_segments(
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False
):
"""Create random segments based on the input lengths.
@ -90,16 +99,25 @@ def rand_segments(
- x: :math:`[B, C, T]`
- x_lengths: :math:`[B]`
"""
b, _, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
if (ids_str_max < 0).sum():
raise ValueError("Segment size is larger than the input length.")
ids_str = (torch.rand([b]).to(x.device) * ids_str_max).long()
ret = segment(x, ids_str, segment_size)
return ret, ids_str
_x_lenghts = x_lengths.clone()
B, _, T = x.size()
if pad_short:
if T < segment_size:
x = torch.nn.functional.pad(x, (0, segment_size - T))
T = segment_size
if _x_lenghts is None:
_x_lenghts = T
len_diff = _x_lenghts - segment_size + 1
if let_short_samples:
_x_lenghts[len_diff < 0] = segment_size
len_diff = _x_lenghts - segment_size + 1
else:
assert all(
len_diff > 0
), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}"
segment_indices = (torch.rand([B]).type_as(x) * len_diff).long()
ret = segment(x, segment_indices, segment_size)
return ret, segment_indices
def average_over_durations(values, durs):
"""Average values over durations.