mirror of https://github.com/coqui-ai/TTS.git
add unit tests for SC-GST
This commit is contained in:
parent
99d5a0ac07
commit
c1fff5b556
|
@ -61,6 +61,7 @@
|
|||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST.
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10
|
||||
|
|
|
@ -140,6 +140,7 @@
|
|||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) == len(gst_style_tokens).
|
||||
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST.
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10
|
||||
|
|
|
@ -93,6 +93,7 @@
|
|||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_style_tokens).
|
||||
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST.
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_style_tokens": 10
|
||||
|
|
|
@ -238,3 +238,58 @@ class TacotronGSTTrainTest(unittest.TestCase):
|
|||
), "param {} {} with shape {} not updated!! \n{}\n{}".format(
|
||||
name, count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase):
|
||||
@staticmethod
|
||||
def test_train_step():
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 128, (8, )).long().to(device)
|
||||
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||
mel_lengths[0] = 30
|
||||
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||
speaker_embeddings = torch.rand(8, 55).to(device)
|
||||
|
||||
for idx in mel_lengths:
|
||||
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||
|
||||
stop_targets = stop_targets.view(input_dummy.shape[0],
|
||||
stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
|
||||
criterion = MSELossMasked(seq_len_norm=False).to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, speaker_embedding_dim=55, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens'], gst_use_speaker_embedding=c.gst['gst_use_speaker_embedding']).to(device)
|
||||
model.train()
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(),
|
||||
model_ref.parameters()):
|
||||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for i in range(5):
|
||||
mel_out, mel_postnet_out, align, stop_tokens = model.forward(
|
||||
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_embeddings=speaker_embeddings)
|
||||
assert torch.sigmoid(stop_tokens).data.max() <= 1.0
|
||||
assert torch.sigmoid(stop_tokens).data.min() >= 0.0
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# check parameter changes
|
||||
count = 0
|
||||
for name_param, param_ref in zip(model.named_parameters(),
|
||||
model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
# if count not in [145, 59]:
|
||||
name, param = name_param
|
||||
if name == 'gst_layer.encoder.recurrence.weight_hh_l0':
|
||||
continue
|
||||
assert (param != param_ref).any(
|
||||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
count += 1
|
|
@ -284,3 +284,75 @@ class TacotronGSTTrainTest(unittest.TestCase):
|
|||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase):
|
||||
@staticmethod
|
||||
def test_train_step():
|
||||
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
||||
input_lengths[-1] = 128
|
||||
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||
linear_spec = torch.rand(8, 30, c.audio['fft_size']).to(device)
|
||||
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||
speaker_embeddings = torch.rand(8, 55).to(device)
|
||||
|
||||
for idx in mel_lengths:
|
||||
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||
|
||||
stop_targets = stop_targets.view(input_dummy.shape[0],
|
||||
stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) >
|
||||
0.0).unsqueeze(2).float().squeeze()
|
||||
|
||||
criterion = L1LossMasked(seq_len_norm=False).to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron(
|
||||
num_chars=32,
|
||||
num_speakers=5,
|
||||
postnet_output_dim=c.audio['fft_size'],
|
||||
decoder_output_dim=c.audio['num_mels'],
|
||||
gst=True,
|
||||
gst_embedding_dim=c.gst['gst_embedding_dim'],
|
||||
gst_num_heads=c.gst['gst_num_heads'],
|
||||
gst_style_tokens=c.gst['gst_style_tokens'],
|
||||
gst_use_speaker_embedding=c.gst['gst_use_speaker_embedding'],
|
||||
r=c.r,
|
||||
memory_size=c.memory_size,
|
||||
speaker_embedding_dim=55,
|
||||
).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
||||
model.train()
|
||||
print(" > Num parameters for Tacotron model:%s" %
|
||||
(count_parameters(model)))
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
for param, param_ref in zip(model.parameters(),
|
||||
model_ref.parameters()):
|
||||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for _ in range(5):
|
||||
mel_out, linear_out, align, stop_tokens = model.forward(
|
||||
input_dummy, input_lengths, mel_spec, mel_lengths,
|
||||
speaker_embeddings=speaker_embeddings)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||
loss = loss + criterion(linear_out, linear_spec,
|
||||
mel_lengths) + stop_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# check parameter changes
|
||||
count = 0
|
||||
for name_param, param_ref in zip(model.named_parameters(),
|
||||
model_ref.parameters()):
|
||||
# ignore pre-higway layer since it works conditional
|
||||
# if count not in [145, 59]:
|
||||
name, param = name_param
|
||||
if name == 'gst_layer.encoder.recurrence.weight_hh_l0':
|
||||
continue
|
||||
assert (param != param_ref).any(
|
||||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
|
||||
|
|
Loading…
Reference in New Issue