mirror of https://github.com/coqui-ai/TTS.git
configpy updates including TTSDataset cached mode
This commit is contained in:
parent
8ff9253abd
commit
c245cb4f75
24
config.json
24
config.json
|
@ -1,5 +1,5 @@
|
||||||
{
|
{
|
||||||
"model_name": "TTS-master",
|
"model_name": "TTS-dev-tweb",
|
||||||
"model_description": "Higher dropout rate for stopnet and disabled custom initialization, pull current mel prediction to stopnet.",
|
"model_description": "Higher dropout rate for stopnet and disabled custom initialization, pull current mel prediction to stopnet.",
|
||||||
|
|
||||||
"audio":{
|
"audio":{
|
||||||
|
@ -22,18 +22,18 @@
|
||||||
"clip_norm": true, // clip normalized values into the range.
|
"clip_norm": true, // clip normalized values into the range.
|
||||||
"mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
"mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||||
"mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!!
|
"mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!!
|
||||||
"do_trim_silence": true // enable trimming of slience of audio as you load it.
|
"do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||||
},
|
},
|
||||||
|
|
||||||
"embedding_size": 256,
|
"embedding_size": 256,
|
||||||
"text_cleaner": "english_cleaners",
|
"text_cleaner": "english_cleaners",
|
||||||
"epochs": 1000,
|
"epochs": 1000,
|
||||||
|
|
||||||
"lr": 0.0001,
|
"lr": 0.001,
|
||||||
"lr_decay": false,
|
"lr_decay": false,
|
||||||
"warmup_steps": 4000,
|
"warmup_steps": 4000,
|
||||||
|
|
||||||
"batch_size": 32,
|
"batch_size": 20,
|
||||||
"eval_batch_size":32,
|
"eval_batch_size":32,
|
||||||
"r": 5,
|
"r": 5,
|
||||||
"wd": 0.000001,
|
"wd": 0.000001,
|
||||||
|
@ -44,12 +44,12 @@
|
||||||
|
|
||||||
"run_eval": true,
|
"run_eval": true,
|
||||||
"data_path": "../../Data/LJSpeech-1.1/", // can overwritten from command argument
|
"data_path": "../../Data/LJSpeech-1.1/", // can overwritten from command argument
|
||||||
"meta_file_train": "prompts_train.data", // metafile for training dataloader
|
"meta_file_train": "transcript.txt", // metafile for training dataloader.
|
||||||
"meta_file_val": "prompts_val.data", // metafile for validation dataloader
|
"meta_file_val": "", // metafile for evaluation dataloader.
|
||||||
"data_loader": "TTSDataset", // dataloader, ["TTSDataset", "TTSDatasetCached", "TTSDatasetMemory"]
|
"dataset": "tweb", // one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||||
"dataset": "nancy", // one of TTS.dataset.preprocessors, only valid id dataloader == "TTSDataset", rest uses "tts_cache" by default.
|
"min_seq_len": 0, // minimum text length to use in training
|
||||||
"min_seq_len": 0,
|
"max_seq_len": 300, // maximum text length
|
||||||
"output_path": "../keep/",
|
"output_path": "../keep/", // output path for all training outputs.
|
||||||
"num_loader_workers": 8,
|
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||||
"num_val_loader_workers": 4
|
"num_val_loader_workers": 4 // number of evaluation data loader processes.
|
||||||
}
|
}
|
Loading…
Reference in New Issue