mirror of https://github.com/coqui-ai/TTS.git
remove merge conflicts
This commit is contained in:
parent
c5074cfd8e
commit
c2c4126a18
|
@ -254,17 +254,9 @@ class TacotronLoss(torch.nn.Module):
|
||||||
torch.flip(decoder_b_output, dims=(1, )), mel_input,
|
torch.flip(decoder_b_output, dims=(1, )), mel_input,
|
||||||
output_lens)
|
output_lens)
|
||||||
else:
|
else:
|
||||||
<<<<<<< HEAD
|
|
||||||
decoder_b_loss = self.criterion(
|
|
||||||
torch.flip(decoder_b_output, dims=(1, )), mel_input)
|
|
||||||
decoder_c_loss = torch.nn.functional.l1_loss(
|
|
||||||
torch.flip(decoder_b_output, dims=(1, )), decoder_output)
|
|
||||||
loss += decoder_b_loss + decoder_c_loss
|
|
||||||
=======
|
|
||||||
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1, )), mel_input)
|
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1, )), mel_input)
|
||||||
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1, )), decoder_output)
|
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1, )), decoder_output)
|
||||||
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
|
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
|
||||||
>>>>>>> differential spectral loss
|
|
||||||
return_dict['decoder_b_loss'] = decoder_b_loss
|
return_dict['decoder_b_loss'] = decoder_b_loss
|
||||||
return_dict['decoder_c_loss'] = decoder_c_loss
|
return_dict['decoder_c_loss'] = decoder_c_loss
|
||||||
|
|
||||||
|
@ -273,14 +265,8 @@ class TacotronLoss(torch.nn.Module):
|
||||||
decoder_b_loss = self.criterion(decoder_b_output, mel_input,
|
decoder_b_loss = self.criterion(decoder_b_output, mel_input,
|
||||||
output_lens)
|
output_lens)
|
||||||
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
|
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
|
||||||
<<<<<<< HEAD
|
|
||||||
attention_c_loss = torch.nn.functional.l1_loss(
|
|
||||||
alignments, alignments_backwards)
|
|
||||||
loss += decoder_b_loss + attention_c_loss
|
|
||||||
=======
|
|
||||||
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
|
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
|
||||||
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
|
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
|
||||||
>>>>>>> differential spectral loss
|
|
||||||
return_dict['decoder_coarse_loss'] = decoder_b_loss
|
return_dict['decoder_coarse_loss'] = decoder_b_loss
|
||||||
return_dict['decoder_ddc_loss'] = attention_c_loss
|
return_dict['decoder_ddc_loss'] = attention_c_loss
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue