mirror of https://github.com/coqui-ai/TTS.git
Allow padding for shorter segments
This commit is contained in:
parent
47fbddc8d4
commit
c4c471d61d
|
@ -57,40 +57,61 @@ def sequence_mask(sequence_length, max_len=None):
|
|||
return mask
|
||||
|
||||
|
||||
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4):
|
||||
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False):
|
||||
"""Segment each sample in a batch based on the provided segment indices
|
||||
|
||||
Args:
|
||||
x (torch.tensor): Input tensor.
|
||||
segment_indices (torch.tensor): Segment indices.
|
||||
segment_size (int): Expected output segment size.
|
||||
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size.
|
||||
"""
|
||||
# pad the input tensor if it is shorter than the segment size
|
||||
if pad_short and x.shape[-1] < segment_size:
|
||||
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2)))
|
||||
|
||||
segments = torch.zeros_like(x[:, :, :segment_size])
|
||||
|
||||
for i in range(x.size(0)):
|
||||
index_start = segment_indices[i]
|
||||
index_end = index_start + segment_size
|
||||
segments[i] = x[i, :, index_start:index_end]
|
||||
x_i = x[i]
|
||||
if pad_short and index_end > x.size(2):
|
||||
# pad the sample if it is shorter than the segment size
|
||||
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2)))
|
||||
segments[i] = x_i[:, index_start:index_end]
|
||||
return segments
|
||||
|
||||
|
||||
def rand_segments(x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4):
|
||||
def rand_segments(x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False):
|
||||
"""Create random segments based on the input lengths.
|
||||
|
||||
Args:
|
||||
x (torch.tensor): Input tensor.
|
||||
x_lengths (torch.tensor): Input lengths.
|
||||
segment_size (int): Expected output segment size.
|
||||
let_short_samples (bool): Allow shorter samples than the segment size.
|
||||
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size.
|
||||
|
||||
Shapes:
|
||||
- x: :math:`[B, C, T]`
|
||||
- x_lengths: :math:`[B]`
|
||||
"""
|
||||
_x_lenghts = x_lengths.clone()
|
||||
B, _, T = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = T
|
||||
max_idxs = x_lengths - segment_size + 1
|
||||
assert all(max_idxs > 0), " [!] At least one sample is shorter than the segment size."
|
||||
segment_indices = (torch.rand([B]).type_as(x) * max_idxs).long()
|
||||
if pad_short:
|
||||
if T < segment_size:
|
||||
x = torch.nn.functional.pad(x, (0, segment_size - T))
|
||||
T = segment_size
|
||||
if _x_lenghts is None:
|
||||
_x_lenghts = T
|
||||
len_diff = _x_lenghts - segment_size + 1
|
||||
if let_short_samples:
|
||||
_x_lenghts[len_diff < 0] = segment_size
|
||||
len_diff = _x_lenghts - segment_size + 1
|
||||
else:
|
||||
assert all(len_diff > 0), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}"
|
||||
segment_indices = (torch.rand([B]).type_as(x) * len_diff).long()
|
||||
ret = segment(x, segment_indices, segment_size)
|
||||
return ret, segment_indices
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import torch as T
|
||||
|
||||
from TTS.tts.utils.helpers import average_over_durations, generate_path, segment, sequence_mask
|
||||
from TTS.tts.utils.helpers import average_over_durations, generate_path, segment, sequence_mask, rand_segments
|
||||
|
||||
|
||||
def average_over_durations_test(): # pylint: disable=no-self-use
|
||||
|
@ -39,6 +39,34 @@ def segment_test():
|
|||
for idx, start_indx in enumerate(segment_ids):
|
||||
assert x[idx, :, start_indx : start_indx + 4].sum() == segments[idx, :, :].sum()
|
||||
|
||||
try:
|
||||
segments = segment(x, segment_ids, segment_size=10)
|
||||
raise Exception("Should have failed")
|
||||
except:
|
||||
pass
|
||||
|
||||
segments = segment(x, segment_ids, segment_size=10, pad_short=True)
|
||||
for idx, start_indx in enumerate(segment_ids):
|
||||
assert x[idx, :, start_indx : start_indx + 10].sum() == segments[idx, :, :].sum()
|
||||
|
||||
|
||||
def rand_segments_test():
|
||||
x = T.rand(2, 3, 4)
|
||||
x_lens = T.randint(3, 4, (2,))
|
||||
segments, seg_idxs = rand_segments(x, x_lens, segment_size=3)
|
||||
assert segments.shape == (2, 3, 3)
|
||||
assert all(seg_idxs >= 0), seg_idxs
|
||||
try:
|
||||
segments, _ = rand_segments(x, x_lens, segment_size=5)
|
||||
raise Exception("Should have failed")
|
||||
except:
|
||||
pass
|
||||
x_lens_back = x_lens.clone()
|
||||
segments, seg_idxs= rand_segments(x, x_lens.clone(), segment_size=5, pad_short=True, let_short_samples=True)
|
||||
assert segments.shape == (2, 3, 5)
|
||||
assert all(seg_idxs >= 0), seg_idxs
|
||||
assert all(x_lens_back == x_lens)
|
||||
|
||||
|
||||
def generate_path_test():
|
||||
durations = T.randint(1, 4, (10, 21))
|
||||
|
|
Loading…
Reference in New Issue