mirror of https://github.com/coqui-ai/TTS.git
Refactor multi-speaker init in BaseTTS-Tacotron1-2
This commit is contained in:
parent
127571423c
commit
c514351c0e
|
@ -3,11 +3,13 @@
|
|||
import torch
|
||||
from coqpit import Coqpit
|
||||
from torch import nn
|
||||
from torch.cuda.amp.autocast_mode import autocast
|
||||
|
||||
from TTS.tts.layers.tacotron.gst_layers import GST
|
||||
from TTS.tts.layers.tacotron.tacotron import Decoder, Encoder, PostCBHG
|
||||
from TTS.tts.models.base_tacotron import BaseTacotron
|
||||
from TTS.tts.utils.measures import alignment_diagonal_score
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||
|
||||
|
||||
|
@ -15,11 +17,17 @@ class Tacotron(BaseTacotron):
|
|||
"""Tacotron as in https://arxiv.org/abs/1703.10135
|
||||
It's an autoregressive encoder-attention-decoder-postnet architecture.
|
||||
Check `TacotronConfig` for the arguments.
|
||||
|
||||
Args:
|
||||
config (TacotronConfig): Configuration for the Tacotron model.
|
||||
speaker_manager (SpeakerManager): Speaker manager to handle multi-speaker settings. Only use if the model is
|
||||
a multi-speaker model. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Coqpit):
|
||||
def __init__(self, config: Coqpit, speaker_manager: SpeakerManager=None):
|
||||
super().__init__(config)
|
||||
|
||||
self.speaker_manager = speaker_manager
|
||||
chars, self.config, _ = self.get_characters(config)
|
||||
config.num_chars = self.num_chars = len(chars)
|
||||
|
||||
|
@ -240,21 +248,22 @@ class Tacotron(BaseTacotron):
|
|||
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input)
|
||||
|
||||
# compute loss
|
||||
loss_dict = criterion(
|
||||
outputs["model_outputs"],
|
||||
outputs["decoder_outputs"],
|
||||
mel_input,
|
||||
linear_input,
|
||||
outputs["stop_tokens"],
|
||||
stop_targets,
|
||||
stop_target_lengths,
|
||||
mel_lengths,
|
||||
outputs["decoder_outputs_backward"],
|
||||
outputs["alignments"],
|
||||
alignment_lengths,
|
||||
outputs["alignments_backward"],
|
||||
text_lengths,
|
||||
)
|
||||
with autocast(enabled=False): # use float32 for the criterion
|
||||
loss_dict = criterion(
|
||||
outputs["model_outputs"].float(),
|
||||
outputs["decoder_outputs"].float(),
|
||||
mel_input.float(),
|
||||
linear_input.float(),
|
||||
outputs["stop_tokens"].float(),
|
||||
stop_targets.float(),
|
||||
stop_target_lengths,
|
||||
mel_lengths,
|
||||
outputs["decoder_outputs_backward"].float(),
|
||||
outputs["alignments"].float(),
|
||||
alignment_lengths,
|
||||
outputs["alignments_backward"].float(),
|
||||
text_lengths,
|
||||
)
|
||||
|
||||
# compute alignment error (the lower the better )
|
||||
align_error = 1 - alignment_diagonal_score(outputs["alignments"])
|
||||
|
@ -263,17 +272,23 @@ class Tacotron(BaseTacotron):
|
|||
|
||||
def _create_logs(self, batch, outputs, ap):
|
||||
postnet_outputs = outputs["model_outputs"]
|
||||
decoder_outputs = outputs["decoder_outputs"]
|
||||
alignments = outputs["alignments"]
|
||||
alignments_backward = outputs["alignments_backward"]
|
||||
mel_input = batch["mel_input"]
|
||||
linear_input = batch["linear_input"]
|
||||
|
||||
pred_spec = postnet_outputs[0].data.cpu().numpy()
|
||||
gt_spec = mel_input[0].data.cpu().numpy()
|
||||
pred_linear_spec = postnet_outputs[0].data.cpu().numpy()
|
||||
pred_mel_spec = decoder_outputs[0].data.cpu().numpy()
|
||||
gt_linear_spec = linear_input[0].data.cpu().numpy()
|
||||
gt_mel_spec = mel_input[0].data.cpu().numpy()
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
|
||||
figures = {
|
||||
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
|
||||
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
|
||||
"pred_linear_spec": plot_spectrogram(pred_linear_spec, ap, output_fig=False),
|
||||
"real_linear_spec": plot_spectrogram(gt_linear_spec, ap, output_fig=False),
|
||||
"pred_mel_spec": plot_spectrogram(pred_mel_spec, ap, output_fig=False),
|
||||
"real_mel_spec": plot_spectrogram(gt_mel_spec, ap, output_fig=False),
|
||||
"alignment": plot_alignment(align_img, output_fig=False),
|
||||
}
|
||||
|
||||
|
@ -281,7 +296,7 @@ class Tacotron(BaseTacotron):
|
|||
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
|
||||
|
||||
# Sample audio
|
||||
audio = ap.inv_spectrogram(pred_spec.T)
|
||||
audio = ap.inv_spectrogram(pred_linear_spec.T)
|
||||
return figures, {"audio": audio}
|
||||
|
||||
def train_log(
|
||||
|
|
|
@ -3,22 +3,45 @@
|
|||
import torch
|
||||
from coqpit import Coqpit
|
||||
from torch import nn
|
||||
from torch.cuda.amp.autocast_mode import autocast
|
||||
|
||||
from TTS.tts.layers.tacotron.gst_layers import GST
|
||||
from TTS.tts.layers.tacotron.tacotron2 import Decoder, Encoder, Postnet
|
||||
from TTS.tts.models.base_tacotron import BaseTacotron
|
||||
from TTS.tts.utils.measures import alignment_diagonal_score
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||
|
||||
|
||||
class Tacotron2(BaseTacotron):
|
||||
"""Tacotron2 as in https://arxiv.org/abs/1712.05884
|
||||
Check `TacotronConfig` for the arguments.
|
||||
"""Tacotron2 model implementation inherited from :class:`TTS.tts.models.base_tacotron.BaseTacotron`.
|
||||
|
||||
Paper::
|
||||
https://arxiv.org/abs/1712.05884
|
||||
|
||||
Paper abstract::
|
||||
This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text.
|
||||
The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character
|
||||
embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize
|
||||
timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of 4.53 comparable
|
||||
to a MOS of 4.58 for professionally recorded speech. To validate our design choices, we present ablation
|
||||
studies of key components of our system and evaluate the impact of using mel spectrograms as the input to
|
||||
WaveNet instead of linguistic, duration, and F0 features. We further demonstrate that using a compact acoustic
|
||||
intermediate representation enables significant simplification of the WaveNet architecture.
|
||||
|
||||
Check :class:`TTS.tts.configs.tacotron2_config.Tacotron2Config` for model arguments.
|
||||
|
||||
Args:
|
||||
config (TacotronConfig):
|
||||
Configuration for the Tacotron2 model.
|
||||
speaker_manager (SpeakerManager):
|
||||
Speaker manager for multi-speaker training. Uuse only for multi-speaker training. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Coqpit):
|
||||
def __init__(self, config: Coqpit, speaker_manager: SpeakerManager=None):
|
||||
super().__init__(config)
|
||||
|
||||
self.speaker_manager = speaker_manager
|
||||
chars, self.config, _ = self.get_characters(config)
|
||||
config.num_chars = len(chars)
|
||||
self.decoder_output_dim = config.out_channels
|
||||
|
@ -28,9 +51,7 @@ class Tacotron2(BaseTacotron):
|
|||
for key in config:
|
||||
setattr(self, key, config[key])
|
||||
|
||||
# set speaker embedding channel size for determining `in_channels` for the connected layers.
|
||||
# `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based
|
||||
# on the number of speakers infered from the dataset.
|
||||
# init multi-speaker layers
|
||||
if self.use_speaker_embedding or self.use_d_vector_file:
|
||||
self.init_multispeaker(config)
|
||||
self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim
|
||||
|
@ -100,6 +121,7 @@ class Tacotron2(BaseTacotron):
|
|||
|
||||
@staticmethod
|
||||
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
|
||||
"""Final reshape of the model output tensors."""
|
||||
mel_outputs = mel_outputs.transpose(1, 2)
|
||||
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
|
||||
return mel_outputs, mel_outputs_postnet, alignments
|
||||
|
@ -107,7 +129,8 @@ class Tacotron2(BaseTacotron):
|
|||
def forward( # pylint: disable=dangerous-default-value
|
||||
self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={"speaker_ids": None, "d_vectors": None}
|
||||
):
|
||||
"""
|
||||
"""Forward pass for training with Teacher Forcing.
|
||||
|
||||
Shapes:
|
||||
text: [B, T_in]
|
||||
text_lengths: [B]
|
||||
|
@ -174,6 +197,12 @@ class Tacotron2(BaseTacotron):
|
|||
|
||||
@torch.no_grad()
|
||||
def inference(self, text, aux_input=None):
|
||||
"""Forward pass for inference with no Teacher-Forcing.
|
||||
|
||||
Shapes:
|
||||
text: :math:`[B, T_in]`
|
||||
text_lengths: :math:`[B]`
|
||||
"""
|
||||
aux_input = self._format_aux_input(aux_input)
|
||||
embedded_inputs = self.embedding(text).transpose(1, 2)
|
||||
encoder_outputs = self.encoder.inference(embedded_inputs)
|
||||
|
@ -208,7 +237,7 @@ class Tacotron2(BaseTacotron):
|
|||
return outputs
|
||||
|
||||
def train_step(self, batch, criterion):
|
||||
"""Perform a single training step by fetching the right set if samples from the batch.
|
||||
"""A single training step. Forward pass and loss computation.
|
||||
|
||||
Args:
|
||||
batch ([type]): [description]
|
||||
|
@ -218,7 +247,6 @@ class Tacotron2(BaseTacotron):
|
|||
text_lengths = batch["text_lengths"]
|
||||
mel_input = batch["mel_input"]
|
||||
mel_lengths = batch["mel_lengths"]
|
||||
linear_input = batch["linear_input"]
|
||||
stop_targets = batch["stop_targets"]
|
||||
stop_target_lengths = batch["stop_target_lengths"]
|
||||
speaker_ids = batch["speaker_ids"]
|
||||
|
@ -245,21 +273,22 @@ class Tacotron2(BaseTacotron):
|
|||
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input)
|
||||
|
||||
# compute loss
|
||||
loss_dict = criterion(
|
||||
outputs["model_outputs"],
|
||||
outputs["decoder_outputs"],
|
||||
mel_input,
|
||||
linear_input,
|
||||
outputs["stop_tokens"],
|
||||
stop_targets,
|
||||
stop_target_lengths,
|
||||
mel_lengths,
|
||||
outputs["decoder_outputs_backward"],
|
||||
outputs["alignments"],
|
||||
alignment_lengths,
|
||||
outputs["alignments_backward"],
|
||||
text_lengths,
|
||||
)
|
||||
with autocast(enabled=False): # use float32 for the criterion
|
||||
loss_dict = criterion(
|
||||
outputs["model_outputs"].float(),
|
||||
outputs["decoder_outputs"].float(),
|
||||
mel_input.float(),
|
||||
None,
|
||||
outputs["stop_tokens"].float(),
|
||||
stop_targets.float(),
|
||||
stop_target_lengths,
|
||||
mel_lengths,
|
||||
None if outputs["decoder_outputs_backward"] is None else outputs["decoder_outputs_backward"].float(),
|
||||
outputs["alignments"].float(),
|
||||
alignment_lengths,
|
||||
None if outputs["alignments_backward"] is None else outputs["alignments_backward"].float(),
|
||||
text_lengths,
|
||||
)
|
||||
|
||||
# compute alignment error (the lower the better )
|
||||
align_error = 1 - alignment_diagonal_score(outputs["alignments"])
|
||||
|
|
|
@ -217,12 +217,13 @@ class Vits(BaseTTS):
|
|||
|
||||
# pylint: disable=dangerous-default-value
|
||||
|
||||
def __init__(self, config: Coqpit):
|
||||
def __init__(self, config: Coqpit, speaker_manager: SpeakerManager=None):
|
||||
|
||||
super().__init__(config)
|
||||
|
||||
self.END2END = True
|
||||
|
||||
self.speaker_manager = speaker_manager
|
||||
if config.__class__.__name__ == "VitsConfig":
|
||||
# loading from VitsConfig
|
||||
if "num_chars" not in config:
|
||||
|
@ -314,7 +315,7 @@ class Vits(BaseTTS):
|
|||
if args.init_discriminator:
|
||||
self.disc = VitsDiscriminator(use_spectral_norm=args.use_spectral_norm_disriminator)
|
||||
|
||||
def init_multispeaker(self, config: Coqpit, data: List = None):
|
||||
def init_multispeaker(self, config: Coqpit):
|
||||
"""Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer
|
||||
or with external `d_vectors` computed from a speaker encoder model.
|
||||
|
||||
|
@ -351,18 +352,6 @@ class Vits(BaseTTS):
|
|||
self.speaker_manager = SpeakerManager(d_vectors_file_path=config.d_vector_file)
|
||||
self.embedded_speaker_dim = config.d_vector_dim
|
||||
|
||||
def on_init_start(self, trainer):
|
||||
"""Save the speaker.json at the beginning of the training. And update the config.json with the
|
||||
speakers.json file path."""
|
||||
if self.speaker_manager is not None:
|
||||
output_path = os.path.join(trainer.output_path, "speakers.json")
|
||||
self.speaker_manager.save_speaker_ids_to_file(output_path)
|
||||
trainer.config.speakers_file = output_path
|
||||
trainer.config.model_args.speakers_file = output_path
|
||||
trainer.config.save_json(os.path.join(trainer.output_path, "config.json"))
|
||||
print(f" > `speakers.json` is saved to {output_path}.")
|
||||
print(" > `speakers_file` is updated in the config.json.")
|
||||
|
||||
@staticmethod
|
||||
def _set_cond_input(aux_input: Dict):
|
||||
"""Set the speaker conditioning input based on the multi-speaker mode."""
|
||||
|
|
|
@ -108,6 +108,8 @@ class TorchSTFT(nn.Module): # pylint: disable=abstract-method
|
|||
class AudioProcessor(object):
|
||||
"""Audio Processor for TTS used by all the data pipelines.
|
||||
|
||||
TODO: Make this a dataclass to replace `BaseAudioConfig`.
|
||||
|
||||
Note:
|
||||
All the class arguments are set to default values to enable a flexible initialization
|
||||
of the class with the model config. They are not meaningful for all the arguments.
|
||||
|
|
Loading…
Reference in New Issue