mirror of https://github.com/coqui-ai/TTS.git
Enforce phonemizer definition for synthesis (#1441)
* Enforce phonemizer definition for synthesis * Fix train_tts, tokenizer init can now edit config * Add small change to trigger CI pipeline * fix wrong output path for one tts_test * Fix style * Test config overides by args and tokenizer * Fix style
This commit is contained in:
parent
37896e1743
commit
c66a6241fd
|
@ -57,7 +57,7 @@ def main():
|
|||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
train_args,
|
||||
config,
|
||||
model.config,
|
||||
config.output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
|
|
|
@ -191,6 +191,7 @@ class TTSTokenizer:
|
|||
phonemizer = get_phonemizer_by_name(
|
||||
DEF_LANG_TO_PHONEMIZER[config.phoneme_language], **phonemizer_kwargs
|
||||
)
|
||||
new_config.phonemizer = phonemizer.name()
|
||||
except KeyError as e:
|
||||
raise ValueError(
|
||||
f"""No phonemizer found for language {config.phoneme_language}.
|
||||
|
|
|
@ -112,6 +112,9 @@ class Synthesizer(object):
|
|||
self.use_phonemes = self.tts_config.use_phonemes
|
||||
self.tts_model = setup_tts_model(config=self.tts_config)
|
||||
|
||||
if self.use_phonemes and self.tts_config["phonemizer"] is None:
|
||||
raise ValueError("Phonemizer is not defined in the TTS config.")
|
||||
|
||||
if not self.encoder_checkpoint:
|
||||
self._set_speaker_encoder_paths_from_tts_config()
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@ tensorboardX
|
|||
pyworld
|
||||
# coqui stack
|
||||
coqui-trainer
|
||||
coqpit # config managemenr
|
||||
coqpit # config management
|
||||
# chinese g2p deps
|
||||
jieba
|
||||
pypinyin
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -42,7 +43,7 @@ command_train = (
|
|||
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
||||
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
||||
"--coqpit.datasets.0.path tests/data/ljspeech "
|
||||
"--coqpit.test_delay_epochs -1"
|
||||
"--coqpit.test_delay_epochs 0 "
|
||||
)
|
||||
run_cli(command_train)
|
||||
|
||||
|
@ -54,6 +55,14 @@ continue_config_path = os.path.join(continue_path, "config.json")
|
|||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -74,6 +75,14 @@ out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -73,6 +74,14 @@ continue_config_path = os.path.join(continue_path, "config.json")
|
|||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -61,6 +62,14 @@ out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = config.d_vector_file
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -58,6 +59,14 @@ out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -55,6 +56,14 @@ continue_config_path = os.path.join(continue_path, "config.json")
|
|||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -54,6 +55,14 @@ continue_config_path = os.path.join(continue_path, "config.json")
|
|||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example for it.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -61,6 +62,14 @@ out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = config.d_vector_file
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -59,6 +60,14 @@ out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -54,6 +55,14 @@ continue_config_path = os.path.join(continue_path, "config.json")
|
|||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,55 +0,0 @@
|
|||
import glob
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from tests import get_device_id, get_tests_output_path, run_cli
|
||||
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
||||
|
||||
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
|
||||
output_path = os.path.join(get_tests_output_path(), "train_outputs")
|
||||
|
||||
config = Tacotron2Config(
|
||||
r=5,
|
||||
batch_size=8,
|
||||
eval_batch_size=8,
|
||||
num_loader_workers=0,
|
||||
num_eval_loader_workers=0,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=False,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"),
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1,
|
||||
print_step=1,
|
||||
test_sentences=[
|
||||
"Be a voice, not an echo.",
|
||||
],
|
||||
print_eval=True,
|
||||
max_decoder_steps=50,
|
||||
)
|
||||
config.audio.do_trim_silence = True
|
||||
config.audio.trim_db = 60
|
||||
config.save_json(config_path)
|
||||
|
||||
# train the model for one epoch
|
||||
command_train = (
|
||||
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path file://{config_path} "
|
||||
f"--coqpit.output_path file://{output_path} "
|
||||
"--coqpit.datasets.0.name ljspeech "
|
||||
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
||||
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
||||
"--coqpit.datasets.0.path tests/data/ljspeech "
|
||||
"--coqpit.test_delay_epochs 0 "
|
||||
)
|
||||
run_cli(command_train)
|
||||
|
||||
# Find latest folder
|
||||
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
||||
|
||||
# restore the model and continue training for one more epoch
|
||||
command_train = (
|
||||
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path file://{continue_path} "
|
||||
)
|
||||
run_cli(command_train)
|
||||
shutil.rmtree(continue_path)
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -92,6 +93,14 @@ languae_id = "en"
|
|||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
continue_languages_path = os.path.join(continue_path, "language_ids.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -99,6 +100,14 @@ languae_id = "en"
|
|||
continue_speakers_path = config.d_vector_file
|
||||
continue_languages_path = os.path.join(continue_path, "language_ids.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --language_ids_file_path {continue_languages_path} --language_idx {languae_id} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -65,6 +66,14 @@ out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|||
speaker_id = "ljspeech-1"
|
||||
continue_speakers_path = os.path.join(continue_path, "speakers.json")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --speakers_file_path {continue_speakers_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
@ -54,6 +55,14 @@ continue_config_path = os.path.join(continue_path, "config.json")
|
|||
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
||||
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
|
||||
# Check integrity of the config
|
||||
with open(continue_config_path, "r", encoding="utf-8") as f:
|
||||
config_loaded = json.load(f)
|
||||
assert config_loaded["characters"] is not None
|
||||
assert config_loaded["output_path"] in continue_path
|
||||
assert config_loaded["test_delay_epochs"] == 0
|
||||
|
||||
# Load the model and run inference
|
||||
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
||||
run_cli(inference_command)
|
||||
|
||||
|
|
Loading…
Reference in New Issue