diff --git a/.compute b/.compute index c4bf43c9..7978efd3 100644 --- a/.compute +++ b/.compute @@ -3,5 +3,5 @@ ls ${SHARED_DIR}/data/ pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1.post2-cp36-cp36m-linux_x86_64.whl yes | apt-get install espeak python3 setup.py develop -# python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --restore_path ${USER_DIR}/best_model.pth.tar -python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ +python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --restore_path ${USER_DIR}/best_model_4258.pth.tar +# python3 distribute.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ diff --git a/config_cluster.json b/config_cluster.json index d707b929..ae28c765 100644 --- a/config_cluster.json +++ b/config_cluster.json @@ -55,7 +55,7 @@ "meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader. "dataset": "nancy", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training - "max_seq_len": 1000, // DATASET-RELATED: maximum text length + "max_seq_len": 50, // DATASET-RELATED: maximum text length "output_path": "../keep/", // DATASET-RELATED: output path for all training outputs. "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes.