mirror of https://github.com/coqui-ai/TTS.git
Update BaseTrainerModel
This commit is contained in:
parent
b0cff949f5
commit
c911729896
93
TTS/model.py
93
TTS/model.py
|
@ -1,39 +1,28 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, List, Tuple, Union
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from coqpit import Coqpit
|
||||
from torch import nn
|
||||
|
||||
# pylint: skip-file
|
||||
|
||||
|
||||
class BaseModel(nn.Module, ABC):
|
||||
class BaseTrainerModel(ABC, nn.Module):
|
||||
"""Abstract 🐸TTS class. Every new 🐸TTS model must inherit this.
|
||||
|
||||
Notes on input/output tensor shapes:
|
||||
Any input or output tensor of the model must be shaped as
|
||||
|
||||
- 3D tensors `batch x time x channels`
|
||||
- 2D tensors `batch x channels`
|
||||
- 1D tensors `batch x 1`
|
||||
"""
|
||||
|
||||
def __init__(self, config: Coqpit):
|
||||
super().__init__()
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def init_from_config(config: Coqpit):
|
||||
"""Init the model from given config.
|
||||
|
||||
Override this depending on your model.
|
||||
"""
|
||||
pass
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, input: torch.Tensor, *args, aux_input={}, **kwargs) -> Dict:
|
||||
"""Forward pass for the model mainly used in training.
|
||||
"""Forward ... for the model mainly used in training.
|
||||
|
||||
You can be flexible here and use different number of arguments and argument names since it is intended to be
|
||||
used by `train_step()` without exposing it out of the model.
|
||||
|
@ -51,7 +40,7 @@ class BaseModel(nn.Module, ABC):
|
|||
|
||||
@abstractmethod
|
||||
def inference(self, input: torch.Tensor, aux_input={}) -> Dict:
|
||||
"""Forward pass for inference.
|
||||
"""Forward ... for inference.
|
||||
|
||||
We don't use `*kwargs` since it is problematic with the TorchScript API.
|
||||
|
||||
|
@ -66,9 +55,25 @@ class BaseModel(nn.Module, ABC):
|
|||
...
|
||||
return outputs_dict
|
||||
|
||||
def format_batch(self, batch: Dict) -> Dict:
|
||||
"""Format batch returned by the data loader before sending it to the model.
|
||||
|
||||
If not implemented, model uses the batch as is.
|
||||
Can be used for data augmentation, feature ectraction, etc.
|
||||
"""
|
||||
return batch
|
||||
|
||||
def format_batch_on_device(self, batch:Dict) -> Dict:
|
||||
"""Format batch on device before sending it to the model.
|
||||
|
||||
If not implemented, model uses the batch as is.
|
||||
Can be used for data augmentation, feature ectraction, etc.
|
||||
"""
|
||||
return batch
|
||||
|
||||
@abstractmethod
|
||||
def train_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]:
|
||||
"""Perform a single training step. Run the model forward pass and compute losses.
|
||||
"""Perform a single training step. Run the model forward ... and compute losses.
|
||||
|
||||
Args:
|
||||
batch (Dict): Input tensors.
|
||||
|
@ -96,11 +101,11 @@ class BaseModel(nn.Module, ABC):
|
|||
Returns:
|
||||
Tuple[Dict, np.ndarray]: training plots and output waveform.
|
||||
"""
|
||||
pass
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def eval_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]:
|
||||
"""Perform a single evaluation step. Run the model forward pass and compute losses. In most cases, you can
|
||||
"""Perform a single evaluation step. Run the model forward ... and compute losses. In most cases, you can
|
||||
call `train_step()` with no changes.
|
||||
|
||||
Args:
|
||||
|
@ -117,45 +122,55 @@ class BaseModel(nn.Module, ABC):
|
|||
|
||||
def eval_log(self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int) -> None:
|
||||
"""The same as `train_log()`"""
|
||||
pass
|
||||
...
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def load_checkpoint(self, config: Coqpit, checkpoint_path: str, eval: bool = False) -> None:
|
||||
def load_checkpoint(self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True) -> None:
|
||||
"""Load a checkpoint and get ready for training or inference.
|
||||
|
||||
Args:
|
||||
config (Coqpit): Model configuration.
|
||||
checkpoint_path (str): Path to the model checkpoint file.
|
||||
eval (bool, optional): If true, init model for inference else for training. Defaults to False.
|
||||
strcit (bool, optional): Match all checkpoint keys to model's keys. Defaults to True.
|
||||
"""
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def init_from_config(config: Coqpit):
|
||||
def init_from_config(config: Coqpit, samples: List[Dict] = None, verbose=False) -> "BaseTrainerModel":
|
||||
"""Init the model from given config.
|
||||
|
||||
Override this depending on your model.
|
||||
"""
|
||||
pass
|
||||
...
|
||||
|
||||
def get_optimizer(self) -> Union["Optimizer", List["Optimizer"]]:
|
||||
"""Setup an return optimizer or optimizers."""
|
||||
pass
|
||||
@abstractmethod
|
||||
def get_data_loader(
|
||||
self,
|
||||
config: Coqpit,
|
||||
assets: Dict,
|
||||
is_eval: True,
|
||||
data_items: List,
|
||||
verbose: bool,
|
||||
num_gpus: int):
|
||||
...
|
||||
|
||||
def get_lr(self) -> Union[float, List[float]]:
|
||||
"""Return learning rate(s).
|
||||
# def get_optimizer(self) -> Union["Optimizer", List["Optimizer"]]:
|
||||
# """Setup an return optimizer or optimizers."""
|
||||
# ...
|
||||
|
||||
Returns:
|
||||
Union[float, List[float]]: Model's initial learning rates.
|
||||
"""
|
||||
pass
|
||||
# def get_lr(self) -> Union[float, List[float]]:
|
||||
# """Return learning rate(s).
|
||||
|
||||
def get_scheduler(self, optimizer: torch.optim.Optimizer):
|
||||
pass
|
||||
# Returns:
|
||||
# Union[float, List[float]]: Model's initial learning rates.
|
||||
# """
|
||||
# ...
|
||||
|
||||
def get_criterion(self):
|
||||
pass
|
||||
# def get_scheduler(self, optimizer: torch.optim.Optimizer):
|
||||
# ...
|
||||
|
||||
def format_batch(self):
|
||||
pass
|
||||
# def get_criterion(self):
|
||||
# ...
|
||||
|
|
Loading…
Reference in New Issue