mirror of https://github.com/coqui-ai/TTS.git
update deprecated functions call from speaker encoder
This commit is contained in:
parent
5e11d81e12
commit
cb212b8049
|
@ -0,0 +1,60 @@
|
||||||
|
|
||||||
|
"github_branch":"* dev-gst-embeddings",
|
||||||
|
{
|
||||||
|
"run_name": "libritts_100+360-angleproto",
|
||||||
|
"run_description": "train speaker encoder for libritts 100 and 360",
|
||||||
|
"audio":{
|
||||||
|
// Audio processing parameters
|
||||||
|
"num_mels": 80, // size of the mel spec frame.
|
||||||
|
"num_freq": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||||
|
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||||
|
"win_length": 1024, // stft window length in ms.
|
||||||
|
"hop_length": 256, // stft window hop-lengh in ms.
|
||||||
|
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||||
|
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||||
|
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||||
|
"min_level_db": -100, // normalization range
|
||||||
|
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||||
|
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||||
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||||
|
// Normalization parameters
|
||||||
|
"signal_norm": true, // normalize the spec values in range [0, 1]
|
||||||
|
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||||
|
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||||
|
"clip_norm": true, // clip normalized values into the range.
|
||||||
|
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||||
|
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||||
|
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||||
|
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
|
||||||
|
},
|
||||||
|
"reinit_layers": [],
|
||||||
|
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
||||||
|
"grad_clip": 3.0, // upper limit for gradients for clipping.
|
||||||
|
"epochs": 1000, // total number of epochs to train.
|
||||||
|
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||||
|
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
||||||
|
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||||
|
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||||
|
"steps_plot_stats": 10, // number of steps to plot embeddings.
|
||||||
|
"num_speakers_in_batch": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||||
|
"wd": 0.000001, // Weight decay weight.
|
||||||
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||||
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||||
|
"print_step": 1, // Number of steps to log traning on console.
|
||||||
|
"output_path": "../../checkpoints/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
|
||||||
|
"model": {
|
||||||
|
"input_dim": 80, // input_dim == num_mels
|
||||||
|
"proj_dim": 128,
|
||||||
|
"lstm_dim": 384,
|
||||||
|
"num_lstm_layers": 3
|
||||||
|
},
|
||||||
|
"datasets":
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"name": "vctk",
|
||||||
|
"path": "../../../datasets/VCTK-Corpus-removed-silence/",
|
||||||
|
"meta_file_train": null,
|
||||||
|
"meta_file_val": null
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
|
@ -247,7 +247,7 @@ if __name__ == '__main__':
|
||||||
new_fields)
|
new_fields)
|
||||||
|
|
||||||
LOG_DIR = OUT_PATH
|
LOG_DIR = OUT_PATH
|
||||||
tb_logger = TensorboardLogger(LOG_DIR)
|
tb_logger = TensorboardLogger(LOG_DIR, model_name='Speaker_Encoder')
|
||||||
|
|
||||||
try:
|
try:
|
||||||
main(args)
|
main(args)
|
||||||
|
|
|
@ -36,6 +36,7 @@
|
||||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||||
"steps_plot_stats": 10, // number of steps to plot embeddings.
|
"steps_plot_stats": 10, // number of steps to plot embeddings.
|
||||||
"num_speakers_in_batch": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
"num_speakers_in_batch": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||||
|
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||||
"wd": 0.000001, // Weight decay weight.
|
"wd": 0.000001, // Weight decay weight.
|
||||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||||
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||||
|
|
|
@ -31,7 +31,7 @@ class MyDataset(Dataset):
|
||||||
print(f" | > Num speakers: {len(self.speakers)}")
|
print(f" | > Num speakers: {len(self.speakers)}")
|
||||||
|
|
||||||
def load_wav(self, filename):
|
def load_wav(self, filename):
|
||||||
audio = self.ap.load_wav(filename)
|
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
|
||||||
return audio
|
return audio
|
||||||
|
|
||||||
def load_data(self, idx):
|
def load_data(self, idx):
|
||||||
|
|
Loading…
Reference in New Issue